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Abstract—This paper describes a complete system to create anatomically accurate example-based volume deformation and animation

of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence

problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated

by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration

method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body

volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the non-linear optimization,

using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step

establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an

occlusion free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation

of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical

issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably

the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries.

Index Terms—Registration, Deformation, Volume Animation.
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1 INTRODUCTION

1.1 Motivation

AN anatomically accurate 3D human body model
including the bones, muscles, tendons, and other

anatomical layers is important in various fields. Artic-
ulated body regions such as the human knee or hand
are capable of a wide range of skeletal movements,
resulting in complex deformation of the surrounding soft
tissues. Although a physically-based model of important
anatomical layers can approximate such deformations,
manually creating an accurate physical model including
many anatomical layers is difficult and may not exactly
mimic the complex interaction and compression among
different tissue layers for a specific person.

The difficulty in manually or algorithmically defining
complex articulated body structures of an individual
subject can be avoided by adopting a data-driven ap-
proach. Since scans of a living subject at multiple poses
can be used as the training samples, accurate deformable
models can be built from actual data. Also, a model con-
structed from living human scans reflects characteristics
of the subject and provides personalized information,
which is often essential to create a virtual clone for
medical and other applications.

Volume data obtained from 3D medical image scans
(e.g. MRI or CT) represents 3D interior anatomy with-
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out any occlusion. Translucent volume rendering can
successively visualize all these anatomical layers with-
out losing the overall context of the subject. Previous
scan based approaches have focused on surface scans
and deformation. We develop a data-driven approach
in the volume domain using appropriate deformation
algorithms, resulting in accurate volume deformation
informed by multiple scans of articulated body regions
from a living person. Based on our literature survey, we
believe this is the first achievement of this type.

One of the challenging issues in scan-based deforma-
tion is to obtain geometric correspondences across the
volume samples [1]. In case of medical image volumes,
the geometrical information is represented by voxel
properties without explicit geometric parameterizations,
and creating iso-surfaces of each layer from in vivo
MRI volumes is very difficult due to poor delineation
of different tissue layers.

Our approach uses the only available voxel intensity
information without any fiducial markers. To accomplish
this, the non-rigid volume registration requires complex
non-linear optimization, and the total degrees of freedom
(DOF) in the deformation must be carefully controlled.
In addition, the optimization must start from proper
initialization to avoid the strong local minima that arise
in matching articulated subjects.

There are also issues involving the use of in vivo
MRI that do not arise with cadavers or non-articulated
subjects; these concerns are described in section 2.
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Fig. 1. From the left: human hand volumes obtained from 3D MRI scans (the template volume is green, and the

posed scan is magenta), the template volume registered (blue) to the posed scan, volume visualization of the template

deformed to an arbitrary pose using example based volume deformation (EVD) (the clipping plane shows the deformed
interior), an EVD result for a knee volume, and a ground truth volume which is not included in the EVD training set.

1.2 Related Work

1.2.1 Articulated Human Body Deformation from Scans

Surface reconstruction methods for 3D human body
shapes have been a recent research focus. In [2], [3]
a template human body model created from 3D range
scans is fit to an individual human body shape guided
by sparse 3D markers. Allen et al. [1] demonstrated
example-based skin deformation from range scan data
and their efforts are enhanced by [4] as a data-driven
method for creating deformable human body shapes of
individual people. Park et al. [5] capture subtle skin
deformation using motion capture devices and around
350 markers. The methods produce very detail animation
for subtle skin deformation such as bending, bulging,
jiggling, and stretching. The surveyed methods are based
on surface scans and they have difficultly capturing
inner anatomical layers as well as occluded surfaces (e.g.
the palmar skin in a fist pose).

Several volume based approaches have started from
the Visible Human data [6], a set of high resolution im-
ages captured from a cadaver. Teran et al. [7] generated a
physically based articulated body animation of muscular
and skeletal body using segmented surfaces of the visible
human. Although it is based on volumetric data, the
method focuses on the boundary deformations of spe-
cific tissues. Volumetric animation of the visible human
data has been shown in [8], [9] but their parametric
deformation methods could not produce anatomically
accurate tissue deformation of complex human tissues.
Although the visible human data is high quality, it
cannot provide person-specific scans nor multiple pose
samples. In [10], an accurate example-based deformable
human hand model is derived from multiple CT scans
of a living person. Although they capture multiple volu-
metric scans, they just use skin surface meshes extracted
from the volumes. Therefore, the method could not pro-
vide adequate solutions for volume deformation. Rhee et
al. [11] extended the linear blending skinning algorithm
to articulated volume deformation. However the result
is constrained by the limitations of the linear blending
algorithm and the accuracy of deformation within the
soft-tissue volume is not guaranteed.

Physically inspired deformation and other skin defor-

mation algorithms should be also surveyed as important
areas. However, we entrust the review of these subjects
to the papers [12], [7], [13], [14], [15].

Previous efforts for freeform volume deformation also
should be noted. Kurzion and Yagel [16] introduces
methods to simulate deformation using ray distortion.
Recently, this idea has been enhanced to the real-time
volume animation system using GPU computation by
Westermann and Rezk-Salama [17], [18]. Although this
is not the main focus of this paper, we are also fully ben-
efited by recent real-time volume graphics technologies
to visualize the result [19].

Large amounts of previous works related to sampled
object representation are well surveyed in [20]. Based
on this survey of recent related works, articulated hu-
man volume animation and inner tissue deformation
especially from multiple living human scans of complex
skeletal regions (e.g. human hand) appear to be unad-
dressed issues in the previous research. We present a
complete system to solve this problem.

1.2.2 Non-rigid volume registration

One of the main issues for scan based volume deforma-
tion is to obtain volumetric correspondences across the
samples. Approaches using non-rigid volume registra-
tion can provide adequate solutions. The literature on
image registration and non-rigid deformation is exten-
sive and is surveyed elsewhere [21], [22], [23], [24].

The non-rigid volume registration problem can be
solved using non-linear optimization. Therefore, manag-
ing the large DOFs of a global deformation function is
a central concern to reduce registration cost. The use of
methods such as B-splines [25] that are based on regular
grids of control points results in unnecessary DOFs.

Adaptive registration has been studied to reduce
DOFs and computation times. Rohde et al. [26] used
the gradient of global mutual information (MI) to find
mismatching regions, with Wu’s radial basis functions
(RBF) [27] providing smooth volume deformation over
irregularly allocated sparse control points. Locally mea-
sured normalized MI was used by [28] to identify highly
mismatched regions requiring additional control points,
and thin-plate spline (TPS) radial basis interpolation was
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Fig. 2. A complete system to create an anatomically
accurate deformable human volume model from multiple

scans of a live human subject.

used as a global deformation function.
Previous non-rigid registration studies have been gen-

erally focused on non-articulated subjects such as the
brain. Although there is much work in rigid articulated
registration as reviewed by [21], [29], articulated non-
rigid registration has only recently become a focus in
medical imaging research. A rigid body registration
method for serial lower-limb mouse CT images is pre-
sented by [30]. Li et al. [31] demonstrated articulated
whole body registration of serial micro CT mouse im-
ages. Aische et al. [32] registered neck images using artic-
ulated rigid registration and deformation propagation to
whole volume though elastic mesh and MI based optical
flow.

In recent work by [33], human knee MRI volumes
in highly different poses are adaptively registered. The
volumetric linear blending algorithm [11] was used for
initialization in combination with successive adaptive
registration using global deformation functions such as
RBFs based on TPS [28].

However, approaches based on global deformation
have difficulty registering complex articulated subjects
since the computation time of global nonlinear optimiza-
tion is in general exponential in the number of DOF [34].
We use a novel registration algorithm based on a locally
constrained deformation function, thereby reducing the
total DOFs and search space efficiently and avoiding
the deep local minima that arise in matching complex
articulated subjects such as the human hand (e.g. the
index finger in one scan aligning to a different finger in
subsequent scan).

1.3 Overview, Contribution, and Applications

In this paper, we present a complete system to create an
anatomically accurate deformable human volume model
from multiple living human scans. The results provide
an occlusion free person-specific 3D human body model,
asymptotically accurate inner tissue deformations, and
realistic volume animations of articulated movements,
while handling the practical limitations arising in ob-
taining volume data from articulated living subjects. The
overview of the system is shown in figure 2

We approaches the problem in stages. In order to solve
the correspondence problem across scans, a particular
volume scan is designated as a template and this tem-
plate is registered to each of the other scans. The use
of a template results in a linear number of template-to-
sample registrations rather than the quadratic number
of registrations if scans were registered pairwise. It also
produces a correspondence between the template and
the scans, thus inducing a common low-level param-
eterization. The wide range of pose variations is first
approximated by volume blend deformation (VBD) [11],
providing proper initialization of an articulated subject
in different poses.

The initialized template volume is then registered to
each volume scan while minimizing a similarity measure
such as the mutual information (MI) or sum of squared
intensity difference (SSD) without relying on any artifi-
cial markers. We present a novel algorithm to efficiently
reduce the registration cost while avoiding strong local
minima. The algorithm highly constrains the DOFs and
search space involved in the non-linear optimization by
using hierarchical volume structures and a locally con-
strained deformation function, the biharmonic clamped
plate spline [35].

Compared with previous algorithms using global de-
formation [33], fewer than one percent of the total
DOFs are required (e.g. the total DOFs can be reduced
from 7000 to 24). It should be noted that the human
hand MRI volume could not be registered using a global
registration approach [33] due to strong local minima
and dramatically increasing computation time with ad-
ditional control points; our registration tests with this
method failed after running for more than 72 hours. To
our knowledge, our locally based approach is the first
achievement to register entire human hand MRI volumes
in different poses (including soft-tissue deformations)
within a reasonable time. The details will be covered in
section 4, and section 6.

Our registration step establishes a correspondence
across scans that permits the last step, a data-driven
deformation approach that we extend from surface to
the volume domain.

Although the computation time in the construction of
the model is substantial, manual guidance is limited to
several steps in the initial identification of the skele-
ton. The model can be displayed with existing volu-
metric rendering systems and animated with standard
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keyframe techniques; sophisticated motion generation
steps such as using motion capture data are beyond the
scope of this study and are left for future work. Also,
since our algorithm adapts to practical issues involved
in using living human scans, the final image quality has
necessary limitations compared with previous results
using high quality CT scans of cadavers.

In addition to these general contributions, a number
of specific applications are foreseeable:

• Medical image registration has many important ap-
plications [23], [24]. Our registration algorithm help
to extend the range of medical image registration
study to articulated body regions, supporting quan-
tification and measurements of tissue deformations
required in clinical study of patients suffering from
joint pain.

• A moveable articulated volume with realistic treat-
ment of internal tissues could be used in medical
education, and surgical simulation as a substitute
for a widely used static visible human data.

• The visual presentation of multiple scans of a spe-
cific individual as a single coherent model can
potentially benefit the patient’s (and possibly the
doctor’s) understanding of problems such as knee
injuries, arthritis, artificial limbs, and joint rehabili-
tation.

• Volume MRI scans of the hand holding an object
capture the position and compression of skin re-
gions that are in contact with the object but visually
occluded. This information is useful in ergonomics
and product design.

2 3D MEDICAL IMAGE SCANS OF A LIVING

HUMAN BODY

Visible light scanning of articulated 3D objects such as
the human hand cannot capture 3D interior anatomy,
and also cannot capture even the skin surface in poses
involving visual occlusion, object contact, or self-contact.
Computerized tomography (CT) scanning provides high
quality 3D imaging with fine spatial resolution and
straightforward segmentation [10], [31], but involves ex-
posure to harmful ionizing radiation, and its associated
risks.

We chose to use magnetic resonance imaging (MRI),
because it is non-invasive and involves no ionizing
radiation and little risk. Compared to CT however, the
image quality obtained by MRI is highly limited due
to lower signal-to-noise ratio (SNR), non-uniform bone
signal, and overlapping intensity ranges between differ-
ent tissues. As a result, thresholding is not sufficient for
segmentation of MRI. In addition, MRI scans of articu-
lated human body regions require careful consideration
of subject comfort, scan-time, SNR, and potential for
motion artifacts. Our algorithms are designed to handle
image quality lower than that of previous approaches
involving CT and/or cadaver scans.

The number of obtainable volume samples is in prac-
tice limited in the case of human subjects. However, as
was demonstrated by [10] in the non-volumetric case,
useful models can be built with surprisingly few scans.
Our method produces a fully articulated hand model
using relatively few scans at critical poses; the details
are discussed in section 7.

TABLE 1

MRI scan parameters

Parameters Hand Knee
Flip Angle 15◦ 20◦

Volume Size(mm) 200×200×100 320×320×163.2
Spatial Resolution(mm) 0.78×0.78×1.0 1.25×1.25×1.2
Scan Time per Pose 5 min. 6 min.

3D MRI volumes of the human hand were captured in
ten different poses and 3D volumes of the human knee
were captured in four different poses from a healthy
male volunteer. The relevant imaging parameters are
summarized in Table 1. In order to improve patient
comfort and minimize motion artifacts, casts for the
hand were made using MR-compatible air-dry clay. This
material has virtually no moisture, and produces an
MR signal that is below the noise level. Background
elimination was not required.

3 ARTICULATED VOLUME INITIALIZATION

Although MRI volumes contain the actual skeletal struc-
ture, the kinematic joint locations are unknown and must
be extracted from the raw volume data. The discovered
joint structures for each volume scan provide a compact
description of the pose that is used in subsequent artic-
ulated volume initialization and for data driven volume
deformation.

3.1 Bone Registration for Pose Estimation

The actual skeletal structure can be segmented from ev-
ery raw volume scan, but segmenting all the bones from
every volume sample would require unnecessary time
and effort. Instead, the bones extracted from a single
neutral-pose template volume V 0 are registered to every
other sample V k using intensity based rigid volume
registration, and the bone transformation obtained from
the registration defines the pose of each sample. When
discussing the sub-problem of registering the template to
a particular scan V k, we will refer to the template as the
source volume V s and the particular scan as the target
V t.

Since automatic bone segmentation from MRI images
is difficult [36], [37], those bones related to articulated
joint movement are segmented from a template volume
using the graph cut algorithm [38] and they are then
registered to each volume sample using semi-automatic
rigid bone registration [11], [37] as described below.

The oriented bounding box (OBB) of each bone of the
template volume is created from the principal axes of
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Fig. 3. Bone registration across poses: the left most image is the base volume including extracted bones and their
OBBs (yellow boxes); the base bones are then registered (red points) to the other poses; the right most image shows

estimated CORs.

the covariance matrix of the bone voxels, and the center
of the OBB’s base is taken as the origin of the bone’s
coordinates. In order to support better user control and
speed registration [11], the hierarchical kinematic joint
structures of the template volume are thus represented
by the bone OBB coordinates. The proximal phalanx,
middle phalanx, and distal phalanx of each finger are
successively linked, and the tibia and fibula are attached
to the femur bone, allowing forward kinematics for easy
user control.

The bone registration process is semi-automatic. A
bone volume is first roughly initialized to the target
volume pose using manual transformation of bone OBB
coordinates. This bone is then accurately registered to
the target volume using intensity based rigid volume
registration minimizing the SSD between the volumes,

min
Tj

n
∑

i=1

|Is(Tjvi)− It(vi)|2 (1)

where It is the voxel intensity of target bone j, vi ∈ V s is
a voxel grid point of the bone volume in world coordi-
nates, Tj is the world coordinate transformation of bone
volume j from a source frame to target volume, Is(Tjvi)
is the intensity of the source volume at location Tjvi
obtained with trilinear interpolation, and n is resolution
of the bone volume. Although Mutual Information (MI)
would be better for multi-modal images, we have a
single modality and SSD is adequate for rigid volume
registration.

The resulting matrices Tj are the world coordinate
transformations of each bone volume from the template
pose to the corresponding target pose. The concatenated
set of all Tj registered to target pose k is defined as the
pose vector Pk that defines the pose of the object during
later processing.

From the multiple pose vectors obtained from the bone
registration, the center of rotation (COR) of each joint
is estimated by the methods presented by [10], [11].
The estimated joints provide intuitive joint control for
articulated animation. The results are shown in Fig. 3.

3.2 Volume Blend Deformation

The linear blending algorithm [39] was extended to the
volume domain by [11] and we call it volume blend

deformation (VBD) in this paper. VBD deformation can
be written

va = (

nj
∑

j=1

wjTj)vs (2)

where nj is the number of joints, vs ∈ V s is a voxel grid
point in the volume V s containing the source pose, va
is a deformed voxel grid point in an arbitrary pose a,
Tj is a homogeneous 4 × 4 transformation matrix that
transfers joint j from the source pose to the arbitrary
pose in world coordinates, and wj is a joint weight that
defines the contribution of joint j’s transformations to
the deformation. The volumetric weight map to define
wj is computed as described in [11]. The detail of the
linear blending algorithm is explained in the references
[39], [40].

We apply this method for articulated volume initial-
ization to approximately register the template volume to
all volume samples k. The pose vector Pk computed in
section 3.1 contains the necessary transformation matrix
T k
j for use in equation (2). Since the VBD algorithm

smoothly deforms the soft-tissue volume while preserv-
ing rigid bone regions, a template volume is smoothly
deformed to target sample volume k while maintaining
the already registered voxels in the rigid bone area. The
results of this step are shown in figure 4.

Fig. 4. Articulated volume initialization examples: a tem-

plate volume (cyan) is initialized to target volume (purple)
samples using the VBD algorithm controlled by joint trans-

forms estimated from the target volume.
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4 LOCALLY ADAPTIVE NON-RIGID VOLUME

REGISTRATION

Following articulated volume initialization we need to
define a non-rigid registration approach capable of ac-
curate and detailed matching while operating on exten-
sive volume data. General non-rigid volume registration
methods can be defined by a cost function minimizing
the mismatch between the source and target volumes
[33],

max
f

SM(V s +D(V s, c, f), V t) (3)

where SM is a similarity measure such as SSD or MI
(in case of SSD the value should be minimized), V s is
a source volume, V t is a target volume, D is a warping
function to determine the needed additional deformation
of volume V s, c is a control point vector assigned at
the target volume frame, f is the displacement value
(warping energy) of the related control point (c, f are
discussed further in section 4.3). In our case, V s is the
template scan that will be registered to each of the other
(target) scans V t. Typically, the cost function is optimized
by iterative non-linear optimization and the computation
time is determined by both the DOF of deformation
function D and the volume size involved in the fit.

We present a method to efficiently reduce the DOF
and volume size involved in the optimization while
avoiding strong local minima arising from the articulated
subject registration. Multi-resolution source and target
volumes are created, and the volumes are hierarchically
divided into multiple source and target blocks Bs

x,y,z

and Bt
x,y,z where x, y, z ∈ {1..nx, 1..ny, 1..nz} and the

block resolution rx,y,z = volume resolutionx,y,z/nx,y,z.
The number of blocks nx,y,z is determined by the block
hierarchy level b; the coarse level bmin has nx,y,z = 8
blocks.

Locally sufficient (but globally sparse) control points c
are adaptively allocated at the block Bs

x,y,z that has mini-
mum local similarity (maximum mismatch), as described
in section 4.3. Then the corresponding local blocks Bs

x,y,z

and Bt
x,y,z are registered, optimizing the cost function

(equation (3)) using the small number of control points.
Global deformation functions such as RBFs based on

TPS [28], [33] cannot provide locally constrained defor-
mation and therefore require an excessive number of
control points and DOFs to register complex articulated
subject such as the human hand. As shown in Fig. 5,
control points allocated on a mismatching local block
cannot register the local block using a global deformation
function. In order to produce a smooth but locally con-
strained deformation over these local control points, the
biharmonic clamped plate spline (described in section
4.2) is used as D. Whereas many image registration
approaches minimize a functional that includes a data
fidelity term and an expensive global smoothness term,
in our approach globally smooth deformation is obtained
by applying a locally smooth deformation adaptively
and cumulatively over a hierarchy of scales.

Fig. 5. Global vs local deformation functions: the left

image shows allocated control points (blue dots) and the
displacements (white bars) to warp a mismatching block;

the middle image is the result of a global deformation ap-

proach (RBFs based on TPS) warping entire volume; the
right image shows the smooth CPS deformation applied

to a local block; The source volume is shown in green and
the deformed volume is shown in cyan.

4.1 Volume Similarity Measure

Similarity measures based on the raw intensity values
are attractive because they make use of all the available
data and do not require fiducial markers (which are
difficult to place inside the body) or prior data reduction
and segmentation. For our similarity measure function
SM , an adaptive combination of SSD and MI is used to
measure similarity. In this context SSD is defined as

SMSSD =

n
∑

i=1

|Is(vi)− It(vi)|2 (4)

where vi is a corresponding voxel grid point of source
and target volume, and the others are same as equation
(1). Since the SSD method is fast and easy to implement,
it is widely used for unimodal medical image registra-
tion [21]. Also, similarity thresholds defined in terms of
intensity are relatively intuitive.

In recent research, MI based similarity measures are
widely used for multi-modal image registration, since
they can capture any functional relationship between
image intensity values. The MI of the image volumes
V s, V t is

MI(V s, V t) = H(V s) +H(V t)−H(V s, V t) (5)

where H(x) = −∑

P (x) logP (x) and H(x, y) =
−
∑

x,y P (x, y) logP (x, y) are respectively the marginal
and joint entropies, applied to the histograms of the
voxel values. The marginal entropies can usually be
considered constant, so maximizing MI entails finding
the transformation that minimizes the joint entropy
H(x, y) [41], [22]. Pluim et al. [22] surveys a number of
variations of this idea. We use a normalized variant of
MI by [28], who observed that areas that are relatively
featureless are poor candidates for matching. The ratio
MI/min(H(V s), H(V t)) is lowest in areas that have
low MI but high detail; these are then the areas that
registration should focus on.

For our overall similarity measure function SM , MI
and SSD are adaptively selected. Since the probability
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Fig. 6. Top: comparison of the 2D clamped plate spline

(left) with a thin plate spline (right) interpolating the same
points. The clamped plate spline is both smooth and

localized, decaying to zero at the boundary of the unit
disc. Bottom: comparison of the 3D biharmonic clamped

plate spline (black line) with Gaussian RBF interpolation

(red). The plot is the density of a linear section through
an interpolated volume. Note that the control points are

distributed through the volume and cannot meaningfully

be visualized on this plot. The Gaussian RBF interpolation
has unnecessary ripples. Increasing σ reduces these, but

at the cost of increasing the overshoot.

density functions needed by MI can be approximated by
histograms only when the histogram contains a sufficient
number of values, the MI measure may not be accurate
within small regions. We switch from MI at the ≈ 323

resolution level to SSD at the ≈ 163 level.

4.2 Biharmonic Clamped Plate Spline

Because the overall registration is being adaptively split
into smaller sub-problems to speed the optimization, we
require a deformation that is smooth but localized; see
figure 5. Gaussian RBFs would be a default choice for
this purpose, but in fact they are not ideal. The Gaus-
sian function is not strictly localized, but this is easily
remedied by using a Wendland or Wu basis [42], [27],
or by simple thresholding. Another issue is that while
Gaussians are smooth in the sense of being infinitely
differentiable, they are not smooth in the alternate sense
of minimizing a curvature functional

∫

(Lf(x))2dx of a
differential operator L.

The clamped plate spline (CPS) introduced in [35] is a
better solution to the opposing goals of smoothness and
locality, as is seen in figure 6. It minimizes the standard
spline curvature functional

∫

ℜn

∑

a1+a2+···=m

∥

∥

∥

∥

∂mf

∂xa1

1 ∂xa2

2 · · ·

∥

∥

∥

∥

2

dx,

which would ordinarily result in a bi- or tri-harmonic
solution ∆2mf = 0, but subject to having zero value and
derivative on the boundary of the unit disc in ℜn. The

derivation of the clamped plate spline resembles that of
RBFs, with the solution being a weighted sum of Green’s
function (the operator inverse of L†L). However, the
Green’s function in this case is not a radially symmetric
function but instead depends on the location relative to
the origin. The function for the biharmonic case in three
dimensions has been derived [35]1,

{

G(x, y) = ‖x− y‖(A+ 1/A− 2)

A(x, y) =

√
‖x‖2‖y‖2−2xT y+1

‖x−y‖

The x component of the resulting interpolated deforma-
tion at a point p is calculated as

dx =

nfeature
∑

k=1

wkG(p, ck)

(and similarly for the y, z components) where ck are the
locations of the feature points to be interpolated. The
weights wk are solved as a linear system









G11 G12 G13 · · ·
G21 G22 · · ·
· · ·















w1

w2

...






=







d1
d2
...







where Gjk
.
= G(pj ,pk) and dk are the desired displace-

ments at the feature locations. Note that the Gjk matrix
is common to the x, y, z dimensions.

4.3 Algorithm and Implementation

1 for (bmin < b < bmax) do
2 compute number of block n and resolution r;
3 construct block Bs

xyz, B
t
xyz;

4 while (min(SM(Bs
xyz, B

t
xyz)) < tolerance) do

5 Bs,t
min is assigned having

min(SM(Bs
xyz, B

t
xyz));

6 allocate c and f to Bs,t
min;

7 construct Bs∗,t∗

min using surrounding blocks;

8 normalize c, f, and Bs∗,t∗

min for CPS;

9 optimize cost function using c, f, and Bs∗,t∗

min ;
10 deform V s using D(c, f∗);

Algorithm 1: Registration Algorithm; bmin and bmax

are minimum and maximum block level; the other
variables are same as defined in the paper; the cost
function in line 9 is equation (3).

The volumes are hierarchically divided into small
local blocks Bs

x,y,z and Bt
x,y,z. The pair of corre-

sponding blocks which has minimum similarity value
SM(Bs

x,y,z,Bt
x,y,z) can be considered as the most mis-

matched local region. When such a block Bs,t
min is found,

1. Note that Table 1 in [35] has a typographical error: Green’s
function identified for the triharmonic 3D case is actually the solution
for the biharmonic (∇2)2 case.
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control points c are assigned at a small fixed distance
inside the corners of the block as in figure 7. As in Park
et al. [28], eight control points are used in a 2 × 2 × 2
grid (eight points are sufficient to control the shape of
a local volumetric displacement within the block, and
the 2× 2× 2 placement is easy to visualize and debug).
If additional detail is needed it is provided through
subsequent refinement levels. This use of an adaptive
but deterministic scheme for control point allocation
resembles that in quadtree splines [43] and some other
adaptive schemes. Note that while irregular placement
of the control points could be considered, the additional
degrees of freedom would further complicate the opti-
mization problem, and an optimal choice of control point
locations is likely to be difficult.

To provide better support for the local registration,

the block is enlarged to Bs∗,t∗

min using the surrounding
3x3x3 blocks. This also provides a boundary region for
the CPS to smoothly fade to zero without counteracting
the desired effect in the center block. For this purpose,

Bs∗,t∗

min ’s coordinates are scaled and centered at (0,0,0),
thereby locating all voxel grid points in (-1..1), since CPS
requires coordinates within the unit sphere as in figure 7.

Now the minimum similarity source block is reg-
istered to the target block while optimizing the cost
(equation (3)) for the local block, where V s = Bs∗

min and
V t = Bt∗

min. The result is a set of x, y, z vectors f∗ that
give the optimal displacement values at the given control
points c for warping the source block to target block.
The bone voxels registered in section 3.1 can be used as
fixed control points to guide registration and maintain
rigidity in the bone region. Since the cost function SM is
evaluated over the entire 3x3x3 region when optimizing
the displacement values f∗ in the center block, previ-
ously computed displacements affecting the neighboring
blocks are considered and improved upon.

If the minimum similarity measure of all blocks at
level b is less than a given tolerance, the hierarchy level
is increased to create additional small blocks to register
smaller details. The end result is a progressive registra-
tion of the source volume to the target volume while
reducing the maximum mismatch across a succession of
scales. The progressive registration result is shown in fig-
ure 8 and the method is summarized in algorithm 1 and
figure 7; one additional loop over the multi-resolution
volume is not mentioned in the algorithm summary.

The multi-resolution volume, random restarts of the
simplex optimizer, and the locally constrained registra-
tion algorithm together efficiently handle the local min-
ima that arise in matching complex articulated subjects.

5 EXAMPLE BASED VOLUME DEFORMATION

The registered volumes now provide correspondence
across scans, and the displacements of each voxel grid
point between the different poses can be computed.
This provides the volume displacements required for

Fig. 7. Locally adaptive non-rigid volume registration:
from left, find the maximum mismatching block and allo-

cate control points; construct Bs∗,t∗ (front and back blocks

are omitted to simplify the figure); register and deform the
local block.

data-driven volume deformation, allowing us to ma-
nipulate the articulated volume to any arbitrary pose.
The example-based volume deformation (EVD) has the
general form

va = E(v0 + da) (6)

where v0 is an undeformed voxel grid point in the
neutral-pose template volume V 0, da is a displacement
of the voxel grid point in an arbitrary pose a, and E
is the VBD function in equation 2. The displacement at
the arbitrary pose da is obtained by interpolating the
displacements at the training poses Pk in a “pose space”
[40], [44], [45].

Pk, the pose vector for volume sample k, has been
obtained from bone registration in section 3, and the
template volume V 0 registered to each sample k (sec-
tion 4) provides corresponding voxel grid geometry V̂ k.
The volumetric displacements between V̂ k and V 0 are
calculated by:

dk = (

njoint
∑

j=1

wjTj)
−1v̂k − v0 (7)

where v̂k is a registered voxel grid point in V̂k and dk
is the displacement of this voxel grid relative to v0. The
inverse VBD transfers v̂k to its template pose and the dis-
placement is calculated in the template pose coordinate
frame. After defining the displacement of each sample
pose, the displacement at an arbitrary pose da can be
smoothly interpolated using RBFs or normalized RBFs
[40], [10], [46].

The end result provides the ability to rapidly ma-
nipulate the articulated volume to any arbitrary pose
while including detailed deformation that interpolates
actual data. A posed volume produced by example-
based volume deformation (EVD) is shown in figure 10
and figure 1. Both the surface and inside anatomical
volume layers of the arbitrary pose are adequately re-
produced by the EVD algorithm.
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Fig. 8. Progressive non-rigid volume registration results: the template source volume is shown in cyan and the

target volume is shown in magenta; The template volume initialized using the VBD algorithm (the left most image)
is progressively registered to the target volume using adaptively allocated local control points (block level is 3) in the

most mismatching region.

6 RESULTS

The robustness of our methods is tested by their appli-
cation on human knee and hand MRI volumes. Four
different knee volume poses and ten different hand
volume poses were captured while considering practical
issues as discussed in section 2. We approximated the
knee joint as one DOF and the hand joint as the 23
DOF which produce the largest articulated motion. The
articulated volume initialization in section 3 smoothly
manipulates the template volume to different poses.
Then, the initialized template volumes are progressively
registered to the scan samples using our locally adaptive
volume registration algorithm to obtain correspondences
across scans.

6.1 Articulated Volume Registration

Since no geometric markers are used in the intensity-
based registration, validation is usually performed by
additional measurements or showing a result obtained
with pairs of synthetic data for which the geometric
correspondences are known [23], [24]. In this paper,
three stages of validations show the robustness of our
registration algorithm.

First, we registered synthetically posed knee volumes
with small pose variations without articulated initializa-
tion. The registration only relies on the locally adaptive
registration algorithm in a setting where the ground
truth correspondences are known. Voxel grid points
identified as inside of the base source volume V 0 are
bent 10 degrees using the VBD algorithm and produce a
target volume V̂ t; 10 degrees bending generates volume
differences that are relatively larger than in typical non-
articulated problems. Using the corresponded geometry
between source and target volumes, the Mean Euclidean
Distance (MED) between corresponding points can be
computed [33]. The tolerance (algorithm 1) for finding
minimum similarity block was set to around 1.5 x base
MI ( = MI(source (or initialized) volume, target volume),
≈ 18 SSD) for all the following tests. The MED between
source and target is reduced from 5.5 to 3.5 (mm) and
the Correlation Coefficient (CC) of the two volumes is
improved from 0.63 to 0.80. Table 2 shows the MED, SSD,

CC, and MI voxel similarity measure results. While con-
sidering spatial resolution of each voxel (1.25x1.25x1.2
mm) and volume interpolations for reconstruction, the
MED of 3.5 shows accurate results within two voxels of
the ground truth result.

volume MED SSD CC MI
source 5.5 mm 21.3 0.63 0.52
register 3.5 mm 15.6 0.80 0.73

TABLE 2
Registration results for synthetic data. MED, SSD, CC,

and MI measures evaluate registration between a

template volume and a synthetically posed volume.

Second, following our articulated initialization step,
the knee volumes in four significantly different poses
are registered. In order to compute the MED between
the registered and target volumes, we attached a small
number of MR compatible markers on the knee skin sur-
faces only for the validation purpose; small dots of knee
volumes in figure 9 shows the markers. The MED of the
markers and other similarity measures with respect to
the target volume is shown in table 3. The registration
result of 3.8 MED is reasonable considering the voxel
spatial resolution. The results are visually validated in
figure 9.

volume MED of markers SSD CC MI
source 18.5 mm 41.1 0.31 0.11
initialize 5.8 mm 18.3 0.72 0.55
register 3.8 mm 15.7 0.79 0.65

TABLE 3

Registration results for the knee volume: Mean Euclidean

Distance is measured using eight markers; MED, SSD,
CC, and MI are averaged after registering a template

pose volume to three other sample volumes.

Finally, we tested our algorithm on a very challenging
subject, the human hand (to our knowledge, there are
no previous demonstrations of intensity based non-rigid
volume registration of the full hand in significantly
different poses). In case of the human hand, the complex
and varied deformation cannot be meaningfully sampled
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Fig. 9. Non rigid articulated registration; from the left column, template volumes in the neutral pose, target volumes,

template volumes registered to the target volumes, differences between registrations (cyan points) and target volumes
(magenta) with allocated control points at block level 3 (323 resolution blocks), and interior views of the deformed

volume; the markers (small dots) in knee volumes are successfully registered and used only for the validation.

with only a few discrete fiducial markers, so we evaluate
the registration using similarity measures and visual
validation as was generally accepted in many previous
papers [25], [28], [31], [33]. The result are shown in
table 4, figure 8, and figure 9.

volume SSD CC MI
source 31.6 0.01 0.07
initialize 19.4 0.53 0.23
register 17.8 0.60 0.28

TABLE 4

Registration results of the hand volume: SSD, CC, and

MI are averaged after registering a template pose
volume to nine other sample volumes.

Non-rigid volume registration takes a large amount of
time [47], [28]. Registration of articulated subjects require
vastly more computation time due to the additional DOF,
the larger areas of mismatch, and decreased smoothness
in the deformation due motion of the skeleton. Since
human hand registration requires highly constrained
local deformation in the finger areas, registration using
global deformation functions [28], [33] did not provide
adequate results in our attempts.

Our locally adaptive algorithm adequately registers
the articulated knee volumes in 5 hours using around
900∼1250 total allocated control points at block level 3,
and the human hand volumes in an average of 4 hours
using 2000 ∼ 2500 allocated control points at block levels
3, 4, 5. Although the total DOFs based on the allocated
control points are very large (2700∼7000), the actual
DOFs are always constrained to 24 (eight control points
in 3D) at every optimization step; potentially a few more
points (less than 4 x 3) from the bone volume registered

in section 3.1 can be considered as fixed control points.
The experiments are performed by a machine having a
Intel Xeon 3.0GHZ processor with 3 Gbyte memory.

For comparison [28] reported 11-hour compute times
for non articulated CT volume registration using 48 fixed
control points and a global registration function.

6.2 Example Based Volume Deformation

The registered volumes in different poses provide cor-
respondence across samples, allowing volume displace-
ments between the different poses to be computed. The
EVD algorithm manipulates a template volume in the
neutral pose to any arbitrary pose using kinematic joint
control estimated in section 3.

Kurihara et al. [10] obtained an excellent surface defor-
mation model of the hand with only five scans; we use
10 volume scans of the hand for the EVD basis. Recent
bio-engineering research showed that most actually en-
countered human hand poses can be reproduced using a
combination of a limited number of principal poses [48].
We tested this idea using 60 different meaningful poses
from the “Poser” character system – the 10 dominant
eigenposes covered more than 90% of the variation.

Although the example based volume deformation re-
quires complex pre-computations to handle raw medical
volume samples, note that the EVD deformation time
itself is small: the time is around 3.5 seconds to deform
the human hand volume (255x255x90 voxel grid points)
and 1.7 sec. to deform the knee volume (255x255x123
voxel grid points) to any arbitrary pose. The human
hand and knee volume deformed to arbitrary poses are
shown in figures 10 and 1. The volume interior contain-
ing all anatomical layers is also adequately deformed
and shown via a clipping plane. In figure 11 and 12,
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the VBD, and EVD results are compared with a volume
scan excluded from the training set. A real-time volume
rendering program [49] is used for display.

Fig. 11. The VBD and EVD results for the hand. Green

(VBD) and cyan (EVD) points represents the deformed
volume, and the magenta region shows the difference

between the deformation and a ground truth volume

7 CONCLUSION

This paper describes a complete system to produce an
anatomically accurate scan-based volume deformation
model of articulated body regions of a specific indi-
vidual, while managing the practical limitations arising
in multiple volume scans of a living human. In order
to provide correspondences across scans, a template
volume is registered to each volume sample using VBD
initialization in combination with a locally adaptive
non-rigid volume registration algorithm that efficiently
reduces computation cost while avoiding the strong local
minima inherent in articulated body registration. The
end result is a person-specific articulated deformable
volume model with anatomical accuracy well beyond
current state of the art systems that are generally based
on a single cadaver scan with simple parametric defor-
mation.

The approach is demonstrated on human knee and
hand MRI volumes. Both subjects are challenging and
important for many applications. In particular, the hu-
man hand is one of the most complex articulated human
body regions. It is difficult to scan and therefore pro-
duces poor MRI images with unclear tissue boundaries.
Based on our survey, our results may be the first to
register full human hand MRI volumes in highly dif-
ferent poses using intensity-based non-rigid registration.
Given the results obtained with this complex subject,
we feel there is a good argument that the method will
work better for many simpler cases as shown in our
result using knee MRIs. Previous registration papers and
skin deformation papers have often shown restricted
examples [40], [1], [26], [28], [31], [24].

To our knowledge, fully volumetric scan-based de-
formation from living human scans has never been
attempted in the previous work. A model constructed
from living human scans provides personalized infor-
mation, which is often essential for medical applications.

Therefore, our model can substitute for previous cadaver
based static models in many applications while provid-
ing the full advantages of manipulatable volume data.

Our contributions are evident and many applications
are feasible as described in section 1.3. On the other
hand, due to the challenging problems associated with
scans from living humans, several limitations were en-
countered. Our methods for volume registration and
data-driven volume deformation are fully automated
except for the bone extraction and initialization steps,
which are partially automated. Manual guidance in these
steps would not be necessary if the CT scans were
used, since bones can be reliably segmented with simple
thresholding. However, CT scans involve ionizing radi-
ation.

Since we set the MR parameters to cover the entire
knee volume, the MR signals on the patella (knee cap)
and tendons were not distinguishable. As we skipped
the patella during the manual segmentation, the region
was not properly initialized for the subsequent non rigid
registration, resulting in some artifacts. Custom MRI
setting or CT scans can provide better data resulting in
easy segmentation and accurate registration. Although
we approximated the knee joint as one DOF for simple
animation control, more DOF should be considered for
accurate control.

An obvious question arises concerning the accuracy
of using a limited number of scans in the EVD of the
hand. This is not an intrinsic limitation as the system
can accommodate more scans. However, as discussed in
section 6.2, the number of scans needed is fewer than
one might expect.

Since we focused on several challenging problems in
this initial study, some important related issues were
skipped and left for future work. More accurate joint es-
timation, sophisticated motion generation using motion
capture, and high quality volume visualization should be
considered for further study, but are beyond the scope
of this paper.

As we discussed, most of the limitations of our method
come from the challenges of using scans of articulated
regions of living subjects. Although we can solve many
of the addressed limitations using CT scans of cadaver
volumes while increasing quality of registration and final
animation, results obtained from in vivo subjects have
obvious advantages and are highly evaluated in medical
and biomechanics research. The trade off between the
higher quality visual output from a cadaver (e.g. [6])
or CT scans versus the practical limitations arising from
using living human subjects may be a good discussion
issue in this study.
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Fig. 10. Volume deformation by EVD: the human hand and knee volume are deformed to arbitrary poses; translucent

volume rendering visualizes the complex anatomical layers without losing the context of the subject; a clipping plane
shows the interior MRI volumes.

Fig. 12. The VBD and EVD results for the knee. From the left: a template volume in the undeformed neutral pose (the

red area shows segmented bone volumes), the VBD and EVD results of the knee volume deformed to ground truth
volumes that are not included in the training set, and the ground truth knee volume. Please see the accompanying

video for additional examples.
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