Computational Visual Media
https://doi.org/10.1007 /s41095-019-0138-z

Research Article

Vol. 5, No. 2, June 2019, 171-191

Optimal and interactive keyframe selection for motion capture

Richard Roberts! (<), J. P. Lewis?, Ken Anjyo'?, Jaewoo Seo?*, and Yeongho Seol®

© The Author(s) 2019.

Abstract Motion capture is increasingly used in games
and movies, but often requires editing before it can be
used, for many reasons. The motion may need to be
adjusted to correctly interact with virtual objects or to
fix problems that result from mapping the motion to a
character of a different size or, beyond such technical
requirements, directors can request stylistic changes.
Unfortunately, editing is laborious because of the low-
level representation of the data. While existing motion
editing methods accomplish modest changes, larger edits
can require the artist to “re-animate” the motion by
manually selecting a subset of the frames as keyframes.
In this paper, we automatically find sets of frames to
serve as keyframes for editing the motion. We formulate
the problem of selecting an optimal set of keyframes as
a shortest-path problem, and solve it efficiently using
dynamic programming. We create a new simplified
animation by interpolating the found keyframes using a
naive curve fitting technique. Our algorithm can simplify
motion capture to around 10% of the original number of
frames while retaining most of its detail. By simplifying
animation with our algorithm, we realize a new approach
to motion editing and stylization founded on the time-
tested keyframe interface. We present results that show
our algorithm outperforms both research algorithms and
a leading commercial tool.
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1 Introduction

Motion capture (“mocap”) is widely used in games

and movies. However, the raw motion capture data is

rarely usable for final production. It is often necessary
to edit the mocap, for several reasons:

e Complex interactions between characters, such as
hugging or wrestling, can introduce tracking and
solving errors due to extensive occlusion and close
proximity of the characters.

e Motion is frequently “retargeted” to virtual fantasy

Such

retargeted motion may require editing to look

characters with different proportions.

realistic.

e [t is often necessary to adjust the character’s
motion to fit the virtual environment. This can
happen if the proportions of the mocap studio do
not match the virtual environment: for example,
the virtual terrain may be uneven while the studio

Beyond matching problems,

changes to the design of a scene or object can

also occur during post-production after motion
is captured. For example, the heights of doors

has a flat floor.

or controls in a spaceship might change, with
consequent changes required to the motion.

e In games, it is often necessary to alter player-
triggered moves, such as punches, to be more rapid,
to provide a more responsive feel to the game.

e The director may request adjustments to the
performance for a variety of reasons.
Unfortunately it is not practical to directly edit

mocap, for much the same reason that editing a

picture by changing individual pixels is ineffective.

Mocap is typically recorded at 30 frames per second

(fps) or higher (60 and 120 fps are common), and the

body model may have 50 degrees of freedom or more,

so even a short motion may be represented by tens
of thousands of numbers.

oy .
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A standard approach provided by motion editing
and animation software is to allow the motion editor
to blend changes to a given pose smoothly across
This
approach is suitable for relatively small and smooth

surrounding frames using a spline falloff .

edits, but it raises the question of where to place
the control vertices (CVs) or keyframes on such a
spline. Simply placing keys at regular intervals is
adequate for mild edits, but does not provide precise
control, since the range of influence of each CV is
not related to the motion. For example, adjusting
the motion before a footstep, but not afterwards,
generally requires having a CV located at the time
of the step.

In practice, when extensive editing is required,
motion editors sometimes resort to manually deleting
ranges of frames to create an editable representation
with a small number of frames that can serve as
keyframes [1, 2].

1.1 Terminology

In this paper we will use the word keyframe (KF) to
denote a frame where a key exists for every degree
of freedom (i.e., on every motion curve), whereas
keypoint will denote a key on a single curve at a
frame in which other curves may not have keys.

1.2 Approach

While a number of pioneering techniques, such as
space—time optimization and sketching interfaces
provide powerful and novel interfaces for motion
editing, they are yet to be widely adopted in
commercial motion editing practice.

Keyframe animation is both widely supported and
a central part of training for both motion editors
Based on the observation that
animation practice generally recommends working
with keyframes first and keypoints later, we suggest
that introducing a motion editing technique based

and animators.

primarily on the manipulation of keyframes will help
with adoption®.

In this paper we introduce an interactive and
optimal way to identify keyframes from a motion that
are important for editing. With a set of keyframes

@ Tools for falloff editing are provided by most feature-complete digital
content creation tools such as Autodesk’s Maya and Blender Foundation’s
Blender.

@ Animation practice generally recommends working in terms of poses
(keyframes) when making initial large-scale edits, followed by editing
individual curves in a subsequent refinement stage. This is termed pose-to-
pose animation [3, 4].

/ .
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Fig. 1 Frames from an animation, before (character on right in grey)
and after (character on left in yellow) editing using our technique.

identified, we build a new animation in which the
selected keyframes serve as a minimal set of poses
that can be interpolated to closely approximate
the original motion of the character or object. By
recreating the motion in this way we can overcome
the problem that motion capture is difficult to edit
due to the low-level representation of its data.

In abstract terms, a sparse set of keyframes
provide an economical set of parameters that provide
complete control over an animation. From this
perspective, our approach converts mocap into a
simplified keyframe-based animation that can be
edited using the extensive and fluid support for
keyframe-based editing that commercial software
provides. A number of approaches for keyframe
selection have already been explored as an extension
to keypoint selection methods; these are summarized
in Section 2. Conceptually, keypoint selection is
the process of identifying a sparse set of points that
summarize a curve effectively. Extending to the case
of animation, keyframe selection is the process of
identifying a sparse set of frames that summarize the
motion effectively.

One aspect that demands careful consideration is
the criterion that determines the importance of each
frame. Some keypoint approaches assume that points
of high curvature or curvature extrema provide good
keypoints for approximation. While these approaches
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are simple to implement and inexpensive to evaluate,
it is easy to find counterexamples where these simple
heuristics lead to a set of keypoints that provide
a poor summary (see Fig. 2). In contrast, other
approaches take the approach of fitting a geometric
approximation and choosing points that correspond to
the approximation’s vertices; the well-known Ramer—
Douglas—Peucker algorithm [5] and its variations
often perform well in contrast to the extrema-based
approaches. While still fast, a primary limitation of
greedy approximation approaches is that they tend
to produce suboptimal solutions. Recent research
has explored how genetic algorithms and particle
swarm optimization can be used to choose keyframes
that minimize a combination of compression and
approximation error. However, the problem of
choosing keyframes to minimize such a function
leads to a non-convex problem space. Converging
to the optimal solution in this space requires heavier
computation and is not practical for interactive use
(see Sections 2.1 and 4.4).

As our primary contribution, we provide the
first interactive and optimal approach for keyframe
selection. To realize a solution that is both interactive
and optimal, we formulate the problem as a search
for a minimal set of frames that, when interpolated,
provide the closest approximation to the entire
motion. This is a combinatorial problem as there are
(]]X ) potential choices of k keyframes to summarize
N frames. While this is intractable, our formulation
of the problem is related to a particular form of the
classic shortest path problem [6] and, consequently,
we can use an efficient dynamic programming
algorithm to obtain the optimal solution. In practice

Fig. 2 Picking important points on a motion using simple intuitive
principles such as extrema (a) or points of high curvature (b) can
easily fail. In this schematic diagram, the freeform curve represents
the motion, and points represent keyframes. Points (1)—(6) nicely
summarize this one-dimensional curve, although points (2), (4), (5)
are neither points of high curvature nor extrema. Instead of focusing on
points individually, our approach considers the error in approximating
the intervening motion by pairs of points (visualized as the grey line
in this one-dimensional case). For any number of points, we find the
optimal set of points in terms of reducing this approximation error.

an optimal set of keyframes can be found in a
reasonable time (e.g., less than a second for clips
of typical length) when executed on a personal
computer.

Our algorithm targets professional motion editors.
While these are a fraction® of the potential novice
users of any computer graphics technique, they have
both disproportionate need and impact:
editors perform editing many hours per day year

motion

round whereas a casual user might only occasionally
launch a graphics tool. Furthermore, much of the
world’s population has experienced movies or games
that include motion-edited characters. An important
aspect of our algorithm, with regards to professional
motion editing, is that in a single execution it provides
the optimal solution for all numbers of keyframes less
than or equal to a number requested by the artist.
After execution all solutions are encoded in a lookup
table and, therefore, the entire range of solutions
can be browsed interactively by specifying differing
numbers of keyframes. Browsing the solutions in
this way is important to help artists find the
particular solution that is best suited to their editing
task.

In terms of quality, the resulting keyframe
animation closely resembles the original motion, but is
now editable using standard approaches and polished
industrial tools. Additionally, fine-scale detail lost
through keyframe approximation can be saved by
subtracting the approximation from the original. If
it is important to preserve such lost fine-scale detail
this residual can be added back to the simplified
animation after editing®. Adding the residual re-
establishes the fine-scale detail so that unedited areas
are recreated exactly as in the original. While adding
the residual can be useful to preserve such detail, it
can result in artefacts after editing. Consider the case
of the fine-scale finger motion of someone playing the
guitar. If the artist changes the motion such that
the guitar playing pauses momentarily, adding the
residual vibrations of the fingers during that pause
may appear as an artefact. Consequently, the extent
to which the residual layer is employed must be
directed by the artist.

® For example the U.S. game industry is estimated at 220,000 jobs [7],
while the global games audience has been estimated at more than 2.2 billion
people [8].

@ Leading animation software typically provides a mechanism to compose
animation by summing multiple channels, such as Autodesk’s Maya’s
animation layers.

@ ’ENSIVIE§SI(';,YI-I!R[éé @ Springer
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In summary, we contribute the first interactive
and optimal solution to the important problem of
editing motion capture. Importantly, our solution
respects the keyframe interface typically preferred by
artists. As we demonstrate in Section 4, our solution
outperforms both existing methods and a leading
commercial tool.

2 Related work

In this section, we examine the closely related work
on keyframe selection for mocap (Section 2.1), briefly
summarize research surrounding motion editing
(Section 2.2), and touch upon tangential work
(Section 2.3). We conclude the section by outlining a
set of limitations that are addressed by our algorithm
(Section 2.4).
processing and editing techniques for mocap.

See Ref. [9] for a recent survey of

2.1 Keyframe selection

The problem of identifying KFs resembles the problem
of picking a perceptually important subset of vertices
on a curve so as to simplify it. In contrast to that
problem, the KF problem is high-dimensional.

To provide context for our algorithm, we present

a brief review of the closely related literature on

keyframe selection, organizing the reviewed work into

three categories:

e detection, in which local properties of the
motion’s data are used to identify keyframes;

e approximation, in which geometry is fitted to the
motion and keyframes are selected as those frames
that correspond to the fitted geometry’s vertices,
and

e optimization, in which a function providing an
error-based criterion for keyframe selection is
minimized.

2.1.1 Detection

Detection approaches identify points on a curve
that should be retained as keypoints using local
properties without considering the remainder of the
curve. A common criterion is to pick keypoints

based on derivative features, such as points of high

curvature or extrema (derivative zero crossings).

Techniques have been proposed that use extrema
of the first principle component of the animation
data [10], that pick keypoints using curvature-related
finite differences operating at a coarse scale [11],
that consider changes between neighbouring poses

@ ’Euslvlsgsﬁvl-glg?s @ Springer

[12-14], and others that use a saliency measure based
on differences between Gaussian-weighted averages
at different scales [15, 16]—this measure can also
be interpreted as a derivative, recalling a classic
vision result that the difference of Gaussians closely
approximates the Laplacian of a Gaussian-smoothed
version of the signal [17].

While detection methods can be efficient in terms of
computational effort, it is difficult to directly control
the number of keypoints obtained. Furthermore some
postprocessing is generally needed to remove near-
duplicate detections and those due to noise [15, 16].

These methods are poorly suited to our problem:
they use a purely local objective and, consequently,
can fail to find points that summarize the entire
curve (or, in our case, the motion). In addition,
most of these methods are only formulated for
the one-dimensional case, although analogous high-
dimensional methods may be possible. In any case,
they are rarely able to offer explicit control over
the number of keyframes provided, which limits the
number of editing tasks to which they can be applied.
2.1.2  Approzimation
Rather than examining points in isolation, curve
approximation techniques consider the accuracy
of approximating the entire curve when picking
keypoints, and thus produce generally better results.
A number of methods are variants of the Ramer—
Douglas—Peucker (RDP) algorithm [5, 18, 19]. In this
greedy algorithm, the curve is approximated by a
chord, and the point on the curve that is furthest (in
a perpendicular direction) to the chord is selected as
a new keypoint. This keypoint divides the curve into
two, and the algorithm recurses on each sub-curve,
terminating when some error tolerance is reached.
Figure 3 illustrates two iterations.

(a) Selecting keypoint #4 (b) Selecting keypoint #5

Fig. 3 Iterations performed by the Ramer-Douglas—Peucker (RDP)
algorithm for identifying keypoints that summarize a curve [5, 18, 19].
In each iteration, the algorithm adds the keypoint furthest from the
piecewise linear interpolation of the current set of keypoints.
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In the context of motion capture, Lim and
Thalmann [20] introduced the idea of applying
an RDP-like approach to compressing mocap by
simplifying the high-dimensional curve representing
the motion. A reverse variation has also been
proposed, in which the algorithm starts with the
full curve and eliminates unimportant points. While
both techniques employ the same measure, the reverse
algorithm generally performs less well [21].

With the high-dimensional representation, appro-
ximation techniques have the advantage of identifying
keyframes based on poses in the motion rather than
keypoints on individual motion curves. Furthermore,
they also are relatively fast as they need only scan
the motion once in each iteration. Despite these
advantages, their greedy design means that the
resulting keyframes are a suboptimal representation

of the motion.

2.1.8  Optimization

The use of global optimization to approximate mocap
has also been explored, with the benefit that the
resulting solutions offer the best trade-off between
compression and error. In contrast to approximation
techniques, the advantage of finding salient poses is
that the latter can offer higher levels of sparsity while
preserving the same level of detail.

Since the problem of optimal approximation is
combinatorial, researchers have employed evolutionary
algorithms such as particle-swarm optimization and

(a) Taunt (99 frames)

genetic algorithms [22-25]. While these approaches
can produce optimal results they unfortunately must
traverse a highly non-linear problem space (see Fig. 4)
and generally cannot provide a bound on the time
required to find the global optimum.
considerable computation may be required.

Beyond evolutionary algorithms, another approach
to optimization is dynamic programming. In the
case of one-dimensional curves, efficient and optimal

In practice,

dynamic programming algorithms have been used for
a number of purposes, including incremental spline
fitting [26], curve simplification [21], and finding
perceptually important points [27]. As described later
in Section 3, we extend such dynamic programming
techniques to the higher-dimensional problem of
motion capture to realize our approach.

2.2 Motion editing research

Researchers in computer graphics have developed
a number of novel, powerful, and efficient motion
editing techniques that bypass the use of keyframes.
These include methods that optimize a motion
to simultaneously satisfy editing constraints and
(typically derivative) similarity to the original motion,
using a space—time approach [28-31]. In fact, some
of these approaches resemble KF interpolation in an
abstract form, in that minimizing a derivative energy
is a foundational principle for splines. However,
they differ in that edit constraints may be applied
temporarily as needed, at arbitrary frames, and

150

100
Error

0

(b) Opening door inwards (383 frames)

Fig. 4 Finding the optimal set of keyframes to approximate a motion is a difficult problem. Here we show a problem of choosing just two
additional keyframes, ki and k2, to approximate a motion (resulting in the set of keyframes {1, k1, k2, n}, where 1 and n are the first and last
frames of the motion). Horizontal axes correspond to k1 and k2, while the vertical axes gives the resulting error. Importantly, note that the
problem space is not convex. Instead, it contains multiple extrema and regions that break geometric continuity. When choosing more than two
keyframes the dimensionality of the problem space increases and, consequently, both the number of extrema and the number of regions breaking
geometric continuity increase. These attributes make optimizing keyframe selection computationally expensive for numerical solvers and genetic
algorithms. Note: error values here have been adapted to clarify the visualization: the error values are first scaled so that they span [0, 1] and

then scaled again by half the number of frames in the motion.

@ ’Euslvggsﬁvl-glgés @ SPI' il’lger
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at isolated (incomplete) degrees of freedom. On
the other hand, in the case of KF animation,
such “constraints” are usually temporally aligned
and form the fundamental and relatively permanent
representation of the data.
remains a disconnect between these techniques and
keyframe animation practice. =~ Other work has
introduced motion editing interfaces that discard
the idea of KF animation by instead allowing the

Consequently, there

artist to fluidly sketch aspects of the motion or pose
(32, 33]. We will not further survey these sketching
and optimization-based editing approaches since they
are not directly related to our goal of identifying KFs
to support a traditional animation approach.

2.3 Compression and other techniques

Other topics that use keyframe-like representations,
but are otherwise tangential to our purpose of
keyframe selection for editing include motion
remixing [34-36], retargeting [37], synthesis [38], and
visualization and summarization [39-41].

While keyframe identification produces a com-
pressed approximation of the motion in terms of
the interpolated KFs, other methods that focus
specifically on compression of mocap [42-45] generally
do not satisfy our purpose of producing an editable
representation. This is because compression methods
typically represent information at a particular frame
as a weighted linear sum of multiple basis vectors that
have no temporal identity. This differs considerably
from the interface provided by KF animation, where
the pose of a frame can be determined by nonlinear
spline interpolation of the closest two KFs (with
corresponding tangents) that temporally bound the
particular frame.

2.4 Limitations of previous work

From this survey of related work we see that research
methods surrounding motion editing and compression
do not offer the ability to edit mocap using the same
interface as keyframes.

In contrast, keyframe selection techniques can be
applied to convert mocap into an editable keyframe
animation, but suffer from one or more limitations
with respect to our goal of identifying keyframes
suitable for editing:

e simplification of individual curves rather than
addressing the high-dimensional problem of
identifying poses;

/ .
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e the use of local objectives (detection) or greedy
algorithms that do not always produce the best
result, and

e the use of stochastic optimization, which is
needlessly inefficient (see Section 4.4) and does
not provide a bound on the time required to obtain
an optimal result.

In the next section we introduce a new algorithm,
named Salient Poses, that does not have any of these
limitations.

Section 4 demonstrates the advantages of this
algorithm through comparison to alternative approaches
and a commercial tool.

3 Fast and optimal keyframe selection

3.1 Considerations and objectives

The qualities of “good” keyframes are a matter
of artistic judgement rather than mathematical
definition. Individual artists do not always agree on
some aspects of what constitutes a “good” keyframe.

We

professional motion editors and animators from

have discussed our research with seven

three major companies and found the following

disagreements:

e Flat versus free tangents. Animation practice [4]
often recommends that the tangents of individual
curves at keyframes should be flat (have zero
derivative) wherever possible, ensuring that
keyframes are extrema of the motion. While
one of our experts agreed with this practice, the
majority advocated allowing the tangents to be
“free” so as to best fit the motion. One artist
presented the other extreme, preferring to displace
flat tangents so as to avoid a “pose-to-pose” or
cartoon animation feel.

Whole pose versus individual curves. In general
artists prefer to work in terms of KFs early in the
editing process to the extent possible, and switch
to editing of individual curves when necessary to
add details [3, 4]. However one artist felt that using
KFs biases the result, and thus he prefers to work
at the level of individual curves.
Nevertheless, there are several criteria that are both
self-evident and supported in animation literature:
1. Keyframes may occur at the extremes of the
motion, and more generally at locations where there
are large-scale changes. For example, imagining that
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the keypoint (3) in Fig. 2 depicts a point of impact,
this keypoint permits both sides of the impact to be
edited, whereas a keypoint at (c) would not. The
maxima at points (a), (b) are not important, but (a)
will become important as more keypoints are added.
Finally, point (4) is important despite not being an
extremuim.

2. The spacing of keyframes should be proportional
to the amount of change. All other things being equal,
a representation in which the keyframes are spread
more evenly is to be preferred.

While the desirable points (1)—(6) in Fig. 2 have
little in common, it is clear that they are vertices of
a polyline that closely approximates the curve. From
this observation, we find the following approximation
keyframes are those frames
that best allow the remainder of the motion to be
interpolated.

3.2 Algorithm

principle is evident:

To solve our problem, we express it as a particular
shortest path problem [6], having a dynamic
Fach of N
frames in the original mocap clip, in which every
frame is a keyframe, becomes a node in a graph with
directed edges to all temporally subsequent nodes

(see Fig. 5). The weight of an edge e; ; is the cost of

programming algorithm for solution.

approximating the high-dimensional motion between
frames i,j by an approximation that uses nodes i
and j as keyframes. The approximation and error
measure (least squares, absolute value, infinity norm,
etc.) are both design choices; we describe our choice
in Section 3.3.

Our problem differs only slightly from the single-

—% - o %

(a) 3 keyframes between 1 and 5

(b) 3 keyframes between 1 and 5 (optimal)

€« o o v

(c) 3 keyframes between 1 and 5

source-all-destinations problem used to motivate
Dijkstra’s well known algorithm [46]. Similar to
Dijkstra’s formulation of the problem, we seek a single
minimum-cost path from the start node (here, the
first frame of the animation) to the end node (the last
frame). Unique to our problem, the keyframes have a
total (temporal) ordering and we seek a solution that
passes through a number (denoted K, and specified by
the artist) of intermediate keyframes while skipping

the remaining keyframes.
3.2.1 All pairs table
As a preprocessing step, a table
{eij; 1<i<j< N}

of all edge costs is computed. The table has (%)
unique entries and hence quadratic cost. The entries
can be computed independently however, and are
computed in parallel in our implementation (taking
advantage of parallel computation, typically via the
GPU, is essential for good performance).

In practice the cost of this step is minor and
generally not noticeable compared to the time
required for common interface interactions such as

loading files and opening user interface windows.
3.2.2  Successive keyframe selections

Dynamic programming relies on the problem having
an optimal substructure, which means that the
optimal solution for the complete problem is
composed of optimal sub-solutions to smaller parts of
the problem.

Our shortest path problem exhibits an optimal
substructure in that the optimal solution using m
keyframes is necessarily equal to the combination of:
(1) the solution for m — 1 keyframes between the start

v~ . . .

(d) Substitution of optimal partial solution (b) into
choice of four keyframes

Fig. 5 Salient Poses enumerates selections of keyframes to find those that are optimal. While the computational cost of such a process would
otherwise be combinatorial, the solution for a subset of keyframes can be reused during the search for a larger set. This figure illustrates a step
in this computation. (a)—(c) schematically show three choices of keyframes for a motion beginning at frame 1 and ending at frame 5. The arcs
encode the cost of approximating that span of the motion using the keyframes that bound it. Choice (b) is selected as optimal here. A later
step of the search (d) considers the best set of four keyframes lying between frames 1 and 11. In cases where there are no keyframes between 5
and 11, the previously found optimal solution for frames 1...5 is substituted into this search, thereby limiting the combinatorial complexity.

@ ’Euslvlslnqsﬁvl-glg?s; @ SPI' il’lger
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node i and some node k, and (2) the (trivial) solution
for the remaining frames k. .. j that contains only the
two keyframes at k and j. This structural division
can be applied to decompose the solution for m — 1
keyframes into two parts, which can continue until
the base case of m = 2. Note that the condition
i < k < j must hold.

Using the notion of optimal substructure, our
dynamic programming algorithm can be concisely
described as

B = mkin (E?fk_l + e;w-)

3¥)
with
1
Ei,j = em

The formula above states that the optimal appro-
ximation of m keyframes for the entire motion,
denoted E;",
sub-solution of m — 1 keyframes, denoted Em;l.

can be computed from the optimal

With the observation that each optimal solution
of m keyframes can be derived from an optimal
sub-solution of m — 1 keyframes, we can formulate
an iterative algorithm that computes the optimal
solution for every m as

: m—1
arg min E + ek

Importantly, the computation for step m is reused
in step m + 1 (see Fig. 5), thereby resulting in a
dynamic programming optimization. This is critical
as it enables solutions from each m — 1 to be recycled
as sub-solutions in the successor m.

Also note that, unlike the greedy RDP algorithms,
the set of keyframes chosen for m keyframes is not
a superset of those chosen for the solution of its
predecessor (m — 1 keyframes). Nevertheless, our
algorithm produces keyframe selections for all m <
K (the solution for each m is stored in a table).
Preserving each selection of m keyframes is useful
in that it allows the artist to interactively browse
solutions with various numbers of keyframes and pick
one that provides the best trade-off between fidelity
and editability with respect to their editing task.

The cost of each step is approximately quadratic,
resulting from the search over k, j, and the overall cost
is approximately cubic. In fact, the algorithm only
needs to proceed as far as K keyframes. However
the expected number K generally grows with the
length of the mocap sequence, so it is reasonable to
summarize the algorithm cost as O(N?). Figure 16
of Section 4 provides an illustration.

/ .
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3.2.8 Editable animation from a set of keyframes

Given the range of solutions produced by Salient
Poses, we need only create a new animation from
a particular solution. This process involves first
choosing a particular solution and then building
the new animation in a way that is faithful to the
original.

With the realization that different editing tasks call
for different amounts of control, we entrust the choice
of best solution to the artist. In practice, artists
can choose to identify the most desirable number
of keyframes using a graph that displays the error
corresponding to each solution of m keyframes or by
examining the poses in the selected keyframes.

With a particular solution, a curve fitting scheme
should be applied to recover the new animation.
We apply a variation on the iterative curve fitting
step from Schneider’s well-known algorithm [47],
which first prescribes tangents using a finite-
difference approximation and then solves for CVs
We model the problem as
the need to minimize the distance between the

along tangent vectors.

interpolating spline and the curve, and apply a
least squares solution. Note that our variation does
not ensure geometric continuity through keyframes,
which is desirable for fitting the original animation
more accurately. Despite not enforcing geometric
continuity, the fitted curves tend to pass through
keyframes smoothly. Note that the topic of curve
fitting is extensive and we leave the task of identifying
the best choice for reconstruction of motion to future
work.

3.3 Discussion of choice of approximation

Each node in the graph corresponds to a keyframe.
Each keyframe corresponds to a pose for the animated
character, containing multiple degrees of freedom (50
degrees or more are common in a standard mocap
performance rig).

Geometrically, each node is a point in R” with
the dimension D = From this
geometric perspective the original mocap can be
regarded as a curve in this R” space. The edge
cost e;; measures the approximation error between
the portion of this curve lying between keyframes

50 or more.

1 and j, and the approximated motion. In our
implementation, we approximate the motion using a
piecewise linear interpolation of the high-dimensional

points corresponding to the keyframes of ¢ and j.
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Given the approximation primitive, we define
the approximation error as the high-dimensional
perpendicular distance (i.e., shortest distance) from
the motion to its approximation, aggregated across
frames of the original motion. For the distance we
use || - [|oo. We also experimented with minimizing
the squared error between the high-dimensional curve
and its approximation. That did not give any clear
advantage, and so we selected the infinity norm for its
simplicity and also because it has the interpretation
of minimizing the maximum error.

Our algorithm can straightforwardly employ splines
rather than piecewise linear approximation. While
a high-dimensional spline could also be used as
the approximation primitive, we found that the
KFs selected using a piecewise linear approximation
to the motion are better for editing than those
obtained using spline approximation®. An example
is shown in Fig. 6. Although this observation is
necessarily subjective (recalling the differences of
expert opinion noted in Section 3.1), we came to the
following conclusion after discussion with a number

o

(a) Linear approximation, 5 keypoints

o

(c¢) Linear approximation, 10 keypoints

of artists: keyframes obtained using piecewise linear
approximation tend to correspond with extremes
and inflection points that are important for editing,
whereas those from the spline tend to correspond less
cohesively to distinctive poses.

4 Results

In the following results, except for those presented
in Section 4.1, each frame is represented by a high
dimensional point. The first dimension corresponds to
time, while the other dimensions correspond to joint
positions. We favor positions over rotations since they
enable simple and tractable distance measurements.
Specifically, each frame corresponds to a single point
in a space of 55 dimensions: time in one dimension,
and then three dimensions for each further joint in
the skeleton (a total of 18 joints, with six joints along
the spine and three along each limb).

The mocap clips that we used to create these
results were obtained from Adobe’s Mixamo [48]. The
complete set of results, including playable animation

oA

(b) Spline approximation, 5 keypoints

SRV

(d) Spline approximation, 10 keypoints

Fig. 6 An example of how keypoints selected using a spline approximation function do not always provide useful controls for editing. Notice
how, when using the linear approximation (a, c), the keypoints tend to be located near extrema and inflection points of the curve, at least more
so than in the case of spline approximation (b, d). Although harder to quantify, through informal discussion with artists we theorize that this
effect extends to the problem of selecting keyframes for higher dimensional curves. See Section 3.3 for further discussion.

@ We used Schneider’s technique [47], which fits piecewise cubic Bézier curves, to conduct informal pilot experiments that approximated sets of 2D points
(time and value) derived from one degree of freedom of the motion capture data.
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clips and further auxiliary results can be viewed
through our online portal®. Please also refer to

the video in the Electronic Supplementary Material
(ESM).

4.1 1D comparisons

Our algorithm easily generalizes to different
dimensions simply by adapting the distance function
(see Section 3.3). To visualize the performance of
the optimal approximation in a simple setting, we
have prepared a version of Salient Poses that operates
on digitized one dimensional functions. (Note that
our algorithm normally operates on high-dimensional
curves representing the character motion.)

Figure 7 shows the performance of our Salient
Poses, serving here as an optimal keypoint selection
algorithm, versus a greedy approximation algorithm
(RDP) and also an algorithm that selects key points
based on a form of finite difference [11]. While each
algorithm tends to pick distinctive points, Salient
Poses is able to do so in a way that minimizes error.

4.2 Comparison to greedy algorithm

As a further comparison with existing greedy
algorithms, we apply both the greedy approximation
algorithm [20] and our optimal algorithm to select
5, 10, 15, and 30 KFs from a mocap sequence
of a jumping action spanning 140 frames; Fig. 8
illustrates the result of each selection as a series
of renders presented in a time-lapse image. The
better distribution of KFs provided by our algorithm
is evident in this figure. Figure 9 shows another
example comparing both algorithms in the case of 14
KFs selected from a mocap sequence of an acrobatic
running action spanning 56 frames. The better
distribution of KFs in the optimal case is again evident
in the figure.

Figure 10 presents examples showing the
performance of our algorithm versus the greedy
algorithm [20]. The performance of the greedy
algorithm is sometimes quite good; however, our
algorithm is always at least as good, and often better
when choosing selections with a level of compression
between 85% and 95% (refer to Fig. 11).

While our optimal algorithm is more costly than the
greedy algorithm, the cost is not prohibitive with a
performant implementation run on modern hardware,

as demonstrated in Section 4.4.

@ https://salientposes.com/results/

/ .
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4.3 Error versus compression: Maya, PCA,
ours

Figure 12 presents results that compare the error
against compression for animations reconstructed
using our algorithm, our implementation of a pose-
based PCA reconstruction, and Maya’s “Simplify
Curves” algorithm.

Each algorithm takes a different approach. As
outlined in Section 3.2, our algorithm creates a
new animation by interpolating a set of selected
keyframes. Our PCA approach creates a new
animation summarized by eigenvectors rather than
keyframes, where each frame is a linear combination
of the eigenvectors. Maya’s “Simplify Curves” chooses
a set of keypoints for each degree of freedom
independently, and interpolates those keypoints to
recreate the animation.

Each result presents the error of the animation
as reconstructed by each algorithm over a range of
compression levels. Specifically, we measure overall
error as the mean of errors between each pair of
frames. The error for a given pair of frames is the
average Euclidean distance between corresponding
pairs of joints, in centimetres. Intuitively, this error
value represents the average distance between all pairs
of joints before and after the applying the algorithm.
Compression is measured in terms of the ratio
between the total amount of data required to store
the original mocap sequence and after compression:
for both our algorithm and Maya’s “Simplify Curves”
it consists of both the keypoints and also the tangent
points of the interpolating splines across each degree
of freedom, while for the PCA approach, it comprises
the eigenvectors along with the weights required
to reconstruct each frame from them. Note that
to obtain the results for our algorithm we created
animations using specified numbers of keyframes. For
PCA we created animations using specified numbers
of eigenvectors. For “Simplify Curves” we entered
increasing values for the threshold parameter.

Although our method is not primarily intended
for compression, we can see from Fig. 13 that it
outperforms Maya’s “Simplify Curves” algorithm
and is competitive with our pose-based PCA
implementation.

From these results, we conclude that Salient
Poses can be of secondary benefit to games that
use keyframes for compression, since it eliminates
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Fig. 7 Comparison of how well keypoints selected by three methods approximate a digitized hand-drawn curve. (a)—(c) result from the greedy
approximation (RDP [5]), (d)—(f) result from a finite-differences approach (Short Straw [11]), and (g)—(i) result from our algorithm (Salient
Poses, adjusted to serve as an optimal keypoint selection algorithm). In the graph (j), the horizontal axis plots the number of keypoints and the
vertical axis plots the approximation error of each solution (the maximum perpendicular distance between a linear interpolation of keypoints
and the original curve). The vertical axis units are pixels, obtained from a plotting program used to generate the curves.
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(c) Optimally selected, 10 keyframes

(g) Optimally selected, 30 keyframes (h) Greedily selected, 30 keyframes

Fig. 8 Time-lapse renders comparing keyframes when selected optimally by Salient Poses (left) and greedily by an approximation algorithm
[20] (right). Keyframes of each animation are drawn in red, while the inbetweens are presented in semi-transparent grey. As further keyframes
become available, the optimal algorithm is able to distribute the keyframes to best optimize the objective. The distribution of keyframes given
by the greedy algorithm is less useful for editing in sparse cases: in (a), three keyframes are used to summarize the downward motion after the
jump, while the greedy algorithm selects no keyframes for the prior upward part; as more keyframes become available (c), the greedy algorithm
is able to represent both sides of the jump well, but provides no keyframes for the step before the crouching into the jump. Both greedy and
optimal solutions become more similar as further keyframes are added.

(a) Optimally selected, 14 keyframes (b) Greedily selected, 14 keyframes

Fig. 9 Another time-lapse example. The keyframes are temporally distributed more consistently in the optimal case (a), with respect to the
amount of change between successive frames, than in greedy case (b). The difference can be seen most clearly by focusing on the head of the
character and examining the number of inbetweens (non-keyframes, gray) between each pair of keyframes (red).

the need to maintain a separate compressed algorithm does not find keyframes, but rather finds
representation®. On the other hand, if compression  keypoints independently for each degree of freedom.
is a primary concern, then a separate compression This is actually beneficial in terms of reducing
algorithm should be employed. approximation error, since the keypoints can be

Additionally, note that Maya’s “Simplify Curves’

)

chosen independently for each DOF. However, this
approach is disadvantageous for editing, as artists

@ In games it is generally desirable, or necessary, to compress the motion,

as the expected movement sets of all characters must either be stored prefer to WOI‘k Wlth KFS WheI‘e pOSSible. In any case,
in limited GPU memory (along with the geometry and textures of scene S W . 5 .
objects), or the motion of every character must be streamed to the GPU. In the results from Maya‘ S Slmphfy CHI'VGS algorlthm

cither case the resource (memory for storage or bandwidth for streaming) are not competitive.
is in demand and its usage should be optimized.
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Fig. 10 A comparison between Salient Poses and the greedy approximation algorithm [20]. The horizontal axes present compression. In this
case, compression is measured as the percentage of keyframe reduction: the ratio between the number of selected keyframes and the number of
keyframes in the original mocap sequence. The vertical axes depict approximation error. In this case, error is quantified as the maximum
distance between a piecewise linear interpolation of the selected keyframes and each frame of the original animation. See Section 3.3 for further
detail.
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Fig. 11 To summarize Fig. 10, these box and whisker plots compare the median approximation error of selections from Salient Poses and the
greedy approximation algorithm [20] for all 20 examples together. To combine the errors of all examples, we normalize the error measured for a
given selection by the error measured when using only the start and end frames as keyframes. We then organize the errors into groups based on
the level of compression. Each box presents the one-quartile spread of the data about the median (represented by the horizontal line) for a
range of compression.

Finally, note that other approaches to PCA are
possible. For example an alternative approach would
be to compress the animation curve for each degree of
freedom, rather than the poses. Another alternative

would be to preprocess the mocap into space—time
windows, and then apply the compression. Such
alternatives may enable higher levels of compression
than our pose-based implementation.
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Fig. 12 Comparison between our optimal approximation, our implementation of a pose-based PCA compression algorithm, and Maya’s
“Simplify Curves” algorithm. The horizontal axes correspond to the total amount of compression. The vertical axes depict the distance between
the original animation and that reconstructed from the compressed interpretation. See Section 4.3.
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Fig. 13 To summarize Fig. 12, these box and whisker plots compare the median distance between the original animation and those reconstructed
using our optimal approximation, our implementation of a pose-based PCA compression algorithm, and Maya’s “Simplify Curves” algorithm
for all 20 examples together. We organize the measured distances into groups based on the level of compression. Each box represents the
one-quartile spread of the data about the median (represented by the horizontal line) for a range of compression.

4.4 Run time

Figure 14 shows the time required to build the all
pairs table when executed on a NVIDIA GeForce
GTX 1080. Computing the table for the animation
of around 800 frames took under 1.5 seconds. This
calculation need only be done once per animation

TSINGHUA
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and is a marginal overhead when performed whilst
importing the motion. Smaller animations take a
fraction of this time.

Figure 15 shows the time required, when executed
on an Intel Core i7-8700 @ 3.20 GHz, for Salient
Poses to find all solutions up to K keyframes (given
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Execution time (s)
N

wsee-e-00 e -0
0 300 600 200
Size (frames)
Fig. 14 Time required to build the all pairs table for each of the 20
mocap examples, when executed on a NVIDIA GeForce GTX 1080.
The horizontal axis gives the size of the animation, in frames. The
vertical axis gives execution time, in seconds.

Total execution time (s)
>

o
o

0.0-
0 200 400 600 800
Number of keyframes

Fig. 15 Time required to compose all solutions for the “Standing
With Briefcase” mocap example (837 frames), when executed on an
Intel Core i7-8700 @ 3.20 GHz. The horizontal axis depicts the number
of iterations (i.e., the number of keyframes selected), and the vertical
axis depicts execution time in seconds. After slightly over one second,
Salient Poses has computed all selections that correspond to at least
50% compression (K < 417 keyframes).

the all pairs table) for an animation of 837 frames.
Within one second, this single execution provides all
solutions with at least 50% compression (K < N/2).
The solutions can be stored in an index table and
then browsed interactively.

For comparison, an evolutionary optimization
technique that minimizes a weighted combination
of compression and approximation error requires
execution time of 19 seconds for an animation of

316 frames, and 28 seconds for 481 frames [22].

Importantly, the time is for only one solution and,
consequently, an artist would need to execute the

algorithm repetitively to explore a range of solutions.

The longer time cannot support interactive editing.

4.5 Editing

Unfortunately, analysing the editability afforded by
alternative sets of keyframes is beyond the scope
of the work. Specifically, editing tasks are hard
to quantify due the their subjective nature—the

Execution time for N keyframes (s)

0.
0 300 600 900
Animation of N frames

Fig. 16 Execution time versus the number of frames in the animation.
The horizontal axis gives the number of frames in the animation, while
the vertical axis gives the time required to find all optimal solutions
using an Intel Core i7-8700 @ 3.20 GHz. To generate these results,
we ran Salient Poses on slices of the “Samba Dancing” example. One
slice includes the first three frames, another the first four frames, and
so on, with the last slice containing all 1092 frames. Extrapolating
the graph shows a cubic trend between the number of frames and
execution time, which reflects the O(N?) complexity of our algorithm
described in Section 3.2.2.

editor must make creative decisions with respect to
both pose and timing. Furthermore, as described in
Section 3.1, artists differ in their preferred ways to
work with keyframes. Consequently, further research
that quantifies both editing tasks and keyframe
techniques is required before it is possible to conduct
a formal analysis of keyframe editability. Instead, for
this research, we make the simplifying assumption
that sparsity corresponds to editability: a motion
with fewer keyframes can be edited with fewer
changes.

As the previous results have demonstrated that
Salient Poses provides the best possible trade-
off between sparse keyframe representation and
approximation error, Salient Poses already meets the
goal of providing sparse animations for editing that
faithfully recreate the original motion capture.

While formal analysis is beyond our scope, we
provide a few examples to demonstrate that the sets
of keyframes provided by Salient Poses successfully
enable editing. Figures 1, 17, and 18 present
three examples of mocap animations before and
after editing. In each case, the artist first applied
the Salient Poses algorithm and then identified a
particular set of keyframes suitable for their editing
task. Salient Poses then constructed a new keyframe
animation, which the artist edited using only the
standard keyframing utilities provided by Autodesk’s
Maya. Please refer to the video in the ESM for the
complete examples.
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Fig. 17 Uniformly spaced frames extracted from a “Jumping” motion from Adobe’s Mixamo [48], before (right character in each panel) and
after editing (left character) using our technique. The edits increase the height of the jump and deepen the crouching both before and after the

jump. Also see the video in the ESM.

Fig. 18 Uniformly spaced frames extracted from a “Blocking” motion
from Adobe’s Mixamo [48], before (right character in each panel) and

after editing (left character) using our technique. The edits reposition
the location of the right arm and also adjust the character’s centre of
gravity. Also see the video in the ESM.
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5 Discussion and conclusions

The representations and approaches preferred by
artists can be characterized by a combination
of semantically meaningful parameters, high-level
control, and an aesthetic appeal that may relate
to simplicity and predictability®. The keyframe
representation of motion is one such representation
that has stood the test of time and continues to
be used by artists in both 2D and 3D media and
in multiple communities (animation, visual effects
movies, and games).

In this paper, we have introduced a solution to
the important problem of editing motion capture,
by converting mocap into a keyframe representation
that supports editing using traditional tools and
approaches. Our algorithm is designed to satisfy
artists’ common preference for keypoints aligned
to the same frames, i.e., keyframes. Importantly,
the algorithm produces a range of solutions with
differing numbers of keyframes, allowing the artist
to intuitively and interactively browse the solutions
and pick one that offers the desired trade-off between
detail and control. Finally, the algorithm is optimal,
meaning that each solution features keyframes
distributed to best summarize the motion (in so far
as the chosen error measure describes the notion of
“best”).

® For example, meshes that have a desirable distribution of polygons are
referred to as having “edgeflow”.
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In terms of evaluation, our optimal solution out-
performs competing greedy algorithms by definition.
It also considerably outperforms a leading commercial
tool, even with the handicap that the commercial
tool produces a similar number of keypoints without
grouping them into keyframes.

We have shown our tool to artists at three inter-
nationally known companies from the video game,
cartoon animation, and visual effects industries. Two
animators described a prototype of our algorithm as
“a life changing tool”, and “a thing of beauty”. Another
artist commented that exploring the keyframes for
different levels of compression makes it “a lot easier
to visualize the movement as a series of poses”, while
another said that it would be “ideal for stylizing
motion capture for use in action-focused games”.
Overall, the artists felt that our algorithm reduces
the time and cost required for motion editing and
stylization.

The algorithm is also currently being tested
for adoption at a major entertainment production
company and also by an independent studio.

5.1 Limitations
Our algorithm has two evident limitations.

5.1.1 Asymptotic complezity

Motion pictures are composed of “shots” that
typically last between 4 and 6 seconds [49] or often

x=27

(a) One and two keypoint solutions

T

-

(c¢) Four keypoint solution

less in action-heavy visual effects sequences. While
our method gives interactive performance for a mocap
of this typical length, games and even some movies
can require motion clips that are longer than five
seconds. Due to the cubic computational cost as well
as the quadratic memory needed for the all pairs table,
very long shots must be split before processing. This
can be done automatically by detecting keyframes
using a local heuristic [50], or otherwise manually by
an artist by selecting a small number of keyframes to
serve as split points.

5.1.2 Sweet spots

While any choice of K keyframes resulting from our
algorithm is optimal by definition, our experimental
results show that approximation error does not always
decay smoothly as more keyframes are added. On the
contrary, there are “error cliffs” where the addition
of a single KF produces a disproportionate reduction
in error, followed sometimes by “plateaus” where a
few additional keyframes provide little improvement
(examine the shape of the curves in Fig. 10, c.f.,
95%-99% compression in Fig. 10(g)). While we were
initially surprised by the appearance of these cliffs,
they can be explained intuitively (see Fig. 19).

In terms of quality, the best sets of keyframes
relative to the greedy RDP algorithm occurs at the
base of a cliff, i.e., at an m such that |[E]"y — EI”J‘\*}l
is relatively large. While such cliff locations could

(b) Three keypoint solution

- —

2

(d) Five keypoint solution

Fig. 19 The error between a piecewise linear interpolation of keyframes and the original motion may decrease irregularly as more keyframes
are used. This lack of proportionate error reduction can be explained intuitively using this example of a sinusoid. Take the canonical sinusoid
sin(z) through the interval [0, 27]. First, note that optimal solution for both the one keypoint and two keypoint linear approximation features
the same flat line (a). The optimal three keypoint solution (b) captures both extrema and, consequently, the error reduces significantly. In
contrast to the optimal three keypoint solution, the optimal four (c) and five (d) keypoint solutions reduce error only slightly. From this
example, we can see that error reduces irregularly with increasing numbers of keypoints. Notably, the error cliff phenomenon (see text) occurs
with the three-piece solution. As articulated motion tends to follow smooth trajectories, at least at a coarse scale, it is unsurprising that a
similar error cliff pattern is seen with piecewise linear approximations. Intuitively, an error cliff occurs as enough keyframes become available to
capture all extrema for a given level of detail.
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perhaps be detected automatically, in the absence of
further analysis we prefer to let the artist interactively
browse the solutions for various K and select the best
solution according to their judgement.

5.2 Future work

While we feel that our algorithm provides a good
general solution for converting mocap into an editable
representation, there remains much work to be done
to more fully formalize and support the motion
editor’s craft.

5.2.1 Intent-directed editing

The best set of keyframes depends on the creative
intent. For example, consider a shot in which the actor
stands nearly motionless for a few seconds and then
begins to run. The director may wish to emphasize
the dramatic quality of springing into motion, or, they
may wish to focus on the subtle movements (perhaps
reflecting nervousness, for example) while the person is
standing. Accommodating such “intent” in a computer-
assisted editing framework remains an open problem.

5.2.2  Joint-weighted editing

The importance of accurately capturing the motions
of different body parts can vary depending on the
task. For example, the position of the hand is
important when interacting with a door, or a gun, yet
the hand position during a walking motion may be
more forgiving. Configuring the importance of each
joint can be incorporated by weighting how much
each joint, or perhaps even each degree of freedom,
contributes to the approximation error. Initially, each
joint has a default weight of one, which the animator
can override for particular joints with a time-varying
animation curve.

5.2.8  Animation concepts

A challenging open problem is to more fully express
animation (as opposed to motion editing) concepts
such as “leading part” [51] in a keyframe-based
editing framework. We speculate that this challenging
problem will, at least, require re-thinking the holistic
one-fits-all approximation error we have employed in
this work.

5.2.4  Spline fitting

Another topic for future work is that of curve fitting.
While curve fitting is often considered to be a solved
problem, many published fitting algorithms assume
that parametric continuity is desired across the entire
curve. In the context of our problem continuity is
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not always desirable; for example, the motion of
a fist hitting a wall should introduce a derivative
discontinuity. Curve fitting algorithms also tend to
rely on the ability to add keypoints when faced with
sections of the curve that are hard to approximate
with a spline. In our case, additional keypoints
should not be added, since the desired keypoints are
prescribed by the keyframes. In our experience, in
which we applied a variation of Schneider’s algorithm
(see Section 3.2.3), we were able to obtain clear
improvements with manual adjustments to the curve
tangents.
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