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ABSTRACT 
\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a 
trained gradient descent associative learning network. The  paradigm consists of a learning phase, 
in which the networh learns to identify patterns of the desired class, followed by a simple syn- 
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple- 
mentnrg t o  the one used i n  learning. This paradigm is alternative to one in which novel patterns 
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob- 
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple 
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns 
rcyrcwnting musical motifs, and then creates similar motifs. 

INTRODUCTION 

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica- 
t ions are potent i d l y  relcvant to applications including simulation and computer arts which 
require the  grmcrntion of novel patterns having a desired structure. For example, in simulation 
problems h c ~ e  exist ing models are inadequate for simulation, the simulation may be developed 
directly from samplc-s of the da t a  to be modeled. 

The connertionist approarh is particularly appropriate for computer arts applications such as 
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim- 
ited rather than dctermined by physical law in a more direct form. The  problem of generating 
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which 
connect i o n k t  approaches are well suited. 

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with 
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description. 
For exariiplr, in  westcm tonal music a composition is considered to have a fundamental tone 
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the 
ending In some c : w s  a Composition does not end on the tonic however, and occasionally a com- 
position can be undr.rstootl in  terms of more than one tonic. Significantly, the existence of excep- 
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe- 
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this. 

We will consider several approaches to generating novel patterns with neural networks, and 
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non- 
representat.iona1 creative problems such as music composition. 
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ALGORITHMIC APPROACHES T O  CREATMTY 

Algorithms producing ostensibly novel output generally appeal in some way to a random number 
generator as the ultimate source of unpredictability . This statement brings u p  philosophical 
issues, p‘rhaps the most interesting of which (from our viewpoint) is whether the complex ‘emer- 
gent’ behavior of a deterministic system could be considered novel. These issues have been 
tlebated extensively elsewhere (e.g. (31); we will sidestep them by adopting the term ‘artificial 
creativity’ to denote machine generation of ostensibly novel patterns by appeal to randomness 
(the term is somewhat grandiose, but  probably no more so than artificial intelligence is or was 
until recently). 

Several algorithmic approaches to  artificial creativity may be identified. In a creation by fillering 
or stochastic process approach, independent random numbers are filtered to impart a desired joint 
probability distribution (or moments thereof). In a creation by perturbation approach, the param- 
eters of a deterministic system are perturbed by noise to generate novel outputs. In the absence 
of a distinction between a ‘filter’ and a deterministic system the distinction between these 
appro.zchcs is more a matter of viewpoint than definition. 

NEURAL NETWORK APPROACHES T O  C R E A T M T Y  

A neural netwtrk approach reminiscent of ‘creation by filtering’, is to produce novel output by 1 

prr.scntiiig novel input t o  a network trained with a desired mapping. This capability has been 
demonstrated, for example, i n  141. The  evaluation of this approach as an artificial creativity para- 
digm in fact depcantlh on the nature of the inputs. In the case of structured inputs (anything other 
than a random string), creative credit should be assigned to the act  of generating the inputs 
rather t h a n  to  the transformation implemented by the network, and the action of the network is 
properly called gencralization (as in 141) rather than artificial creativity. 

The creation by filtering paradigm calls for strictly unstructured input. In this case however, 
superyiwd learning schemes encounter the following dilemma: For the network to have a soluble 
learning task, the  random input vectors and the desired (training) patterns must be related by 
some fixed transformation. In many applications this transformation will not be known however, 
and i n  f n r t  the motivation for adopting a neural network approach is to discover this transforma- 
t ion. 

’4 w-ond approach, reminiwent of ‘creation by perturbation’, is to generate novel behavior by 
randomly pcrturbing the wf’ights in a trained network. T h e  difficulty with this approach is that  i t  
is being creathf.  with the  problem rather than providing a ‘creative solution’: the weights in a 
trained nt.t\\ork cmrode the structure of the problem domain, and so should not be significantly 
modified, \\liereas the variations in network state allowed by a given set of weights are not 
explored. 

CREATION BY REFINEMENT 

In this paradigm, a supervised learning algorithm is first trained to judge patterns from the space 
of possible creations. Sample ‘creations’ are presented at the input of the network, and a 
corresponding evaluation is provided as the judgement input (desired output). 

Following t,raining the inverse of the judgement function is probabilistically explored by the 
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following procedure: The judgement input is set to a value representing a desirable creation, and 
the creation input is initialized to a random point within the creation space. The creation is then 
refilled by a gradient descent search minimizing the error in judgement with respect to the crea- 
tion. 

This procedure is applicable for all supervised gradient descent learning approaches, since 
knowledge of the error gradient with respect to the weights entails being able to calculate this 
gradient with respect to the inputs: inputs may be considered as weights on ‘virtual inputs’ hav- 
ing a conqtant value. In the back propagation algorithm /5 ,6] ,  the error gradient with respect to 
the inputs is available following the back propagation pass. Using the notation in (51, this is: 

where S is the back-propagated error component, i, is a component of the creation input, and the 
summatlion is over units receiving input from i, . 

We now consider some potential difficulties with this paradigm. The learning task has whatever 
difficulties are associated with the particular learning algorithm (local minima; the network 
configuration required to  learn a particular judgement function may not be known in advance). 
The refinement procedure may also arrive at a local minimum which represents an unsatisfactory 
creation. IJnlike most optimization applications however, (but in common with supervised learn- 
ing applications) the magnitude of the error indicates the quality of a minimum, and so “we know 
if we’re stuck”-- the minimization can be restarted from a different point if the minimum is poor. 

In order for there to be more than one creation, the judgement function learned in training must 
be many-to-one. In fact the preimage of a particular judgement is potentially quite large. In the 
standard back propagation architecture, the space of equivalent inputs accepted by a particular 
network unit satisfies wk ik = c  for a given constant c . This space is a hyperplane of dimen- 
sion n -1 for a unit with n inputs. Similarly holding constant the outputs of all other units with 
thew same inputs reduces the equivalent input space to an intersection of hyperplanes or affine 

1 .o 

Fig. 1. 
Error as a function of input for a back propagation network trained on 

the exclusive-or problem, and expecting a TRUE 
input relation. 
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set of typically much lower dimension, but the arbitrarily fixed outputs represent only one point 
in a hyperplane of inputs accepted by a subsequent network layer. 

The preimage of a particular judgement must also be limited to  acceptable creations. This 
requires that  the training set adequately samples the input space; it must include counterexamples 
as well as examples. For example, in a back propagation network with two hidden units trained 
on the exclusive-or relation, the preimage of TRUE is approximately the the diagonal z + y  = 1 
(Fig. 1). The preimage can be restricted to  the desired points 0,l  and 1,0 by including the addi- 
tional relation 0.5,0.5 -+ 0.5 in the training set. Since in general we do not know how to con- 
struct a training set which “adequately samples” the creation space, the training procedure should 
be amended to include the possibility of adding any undesirable creations to the training set and 
retraining. 

For most applicat,ions the training judgements must be subjectively determined since objective 
knowledge of the judgement function will not be available. I t  is possible that errors in this deter- 
mination could lead to an unstructured learning task in which itemization is the most economical 
description of the training pairs; in this case exploring the inverse of the judgement function will 
not yield new patterns with the desired structure. Refining or expanding the training set may 
solve this problem if i t  is recognized. 

SIMULATION 

T o  illustrate CBR, we chose a toy problem from tonal music composition, specifically, to generate 
short melodic figures which are “well formed” in a rudimentary way. The training da ta  consisted 
of thirty manually generated five-note melodic figures, paired with a corresponding judgement of 
whether the figure was well formed or not (Fig. 2). Figures consisting mostly of intervals of unison 
(repetition), one scale degree (stepwise motion), thirds and fifths were considered well formed, 
while figures containing either excessive motion or excessive repetition were considered poorly 
formed (reflecting the notion that a good melody often describes a curve). Most of the well 
formed figures also used a common beginning and ending note. 

Notes were encoded for a back propagation network using an itemization scheme like that used in 
NETtalk [71 to encode letters and phonemes, rather than by analog activation value. Each note 
was represented by a group of seven network inputs, with the strongest input encoding the note 
value. The network contained two layers of hidden units with 105 and 35 units respectively, and 
one output (judgement) unit. 

The network learned to perform acceptably (maximum absolute error of 0.2) on the training set 
after about 4,700 presentations. The CBR procedure was then used to synthesize a number of 
similar figures (Fig. 2). The synthesized figures show that the network did learn a preference for 
stepwise and triadic motion, though the preference for beginning and ending on the same note 
was not learned. 

(Jnfortunately this example does not demonstrate anything that could not have been achieved by 
an algorithmic (e.g. Markov chain [SI) compositional approach, though of course it was achieved 
without programming. We are exploring some slightly more realistic versions of the problem of 
composing meloclies, although the present simulation suggests that  serious musical composition 
incorporating chromatic scales, meter and rhythm, and harmony is well beyond the practical 
capabilities of a back propagation network implemented on most serial computers. (For com- 
parison, the network used in this example contained about 7,300 weights versus about 10,000 
reported in  NEl’talk 171; we do not know if a smaller network could be used for this problem). 
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Fig. 2. 
Ynrnplcs o f  ‘‘\I e11 formed” melodic figures used in training (left) 

and f iguwh generated by creation by refinement (right). 
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