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Edge-aware inpainting with oriented (bi)harmonic
interpolation

J.P. Lewis and Sebastian Sylwan

Abstract This short paper describes a simple approach

to inpainting of small regions that may contain edges

or other simple structure. Inpainting is commonly re-

quired in visual effect, both in order to remove fiducial

markers that are commonly added for camera tracking

purposes, and to paint out other small undesired ob-

jects. A body of sophisticated research on this subject

has appeared over the last decade. However, few exist-

ing methods are suitable for motion-coherent inpainting

of film or video. Our approach can propagate edges on

the boundary into the interior of a spot in a temporally

coherent way. The approach is also simple, requiring

only the solution of sparse linear systems.

1 Introduction

In visual effects production it is often necessary to “erase”

objects from a sequence of frames [6]. A particularly

common case is the need to remove fiducial markers

that are intentionally inserted to support camera track-

ing from the video. In other cases, it is necessary to

remove wires, various rigs, blemishes, and so on.

A large body of research on this inpainting prob-

lem has developed over the last decade. Sophisticated

methods can inpaint regions that have both structure

and texture [2,5], although subtle artifacts are still vis-

ible in some cases. Inpainting algorithms have not been

adopted in commercial VFX tools, and the industry re-

lies on alternate (and more labour intensive) approaches

such as spatial and temporal cloning.

For visual effects purposes, artifacts may be accept-

able if they can only be identified by careful study of
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an image. A more serious problem is that of temporal

coherence. As noted in [1] many existing methods re-

sult in obvious flickering or popping when applied to a

video sequence, even if the individual frames are nearly

seamless. This is particularly true of texture synthesis

methods that involve selection (even random selection)

of material from surrounding regions. Methods based on

temporal texture synthesis have successfully addressed

this problem, but these approaches can be brittle in

their requirement of very similar image content else-

where in the video and thus are most suited for textural

regions. Other methods [4,7] assume that the region to

be inpainted is isolated to a single or a few frames, as

is the case with various types of noise and degradation.

This paper describes early work and initial results

on a new approach this problem. We target the difficult

case in which the occultation is present in all frames,
as required in the visual effects tasks mentioned above.

Our approach is an oriented extension of harmonic or

biharmonic interpolation that can regenerate some edge

structure in a temporally coherent way. Whereas many

inpainting algorithms involve expensive iterative solu-

tion of a nonlinear PDE, ours involves only a few sparse

linear system solves. The algorithm does not deal with

textured regions, and has additional considerations that

are indicated at the end of the paper.

2 Method

Our method is best introduced with a physical analogy.

We imagine that image luminance is proportional to

height, and a sheet of somewhat stiff material is pinned

to the boundary of the missing region. The sheet will

propagate edges on the boundary into the interior of

the region.
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In a digital simulation the sheet might be imple-

mented by spline interpolation. However spline inter-

polation is defined as minimizing an approximate cur-

vature (subject to constraints). A spline will thus min-

imize both the curvature across the hole (desired) and

the curvature across the interpolated edge (undesired).

Therefore, we seek a form of interpolation that is stiff

only in the direction along the edge, as well as some

way of identifying the edge direction.

The solution involves several simple steps. First, the

hole is filled by spline interpolation. An edge on the

boundary will extend inward, though it will begin to

decay in the center of the region due to the curva-

ture minimizing property just mentioned. However, this

“edge-discovery” interpolation step is enough to esti-

mate local gradient at each point in the interior of the

region, which then gives a local direction for the edge,

as well as a (inaccurate) measure of edge strength.

Using this, the hole is filled again, with an anisotropic

form of harmonic or biharmonic interpolation. This sec-

ond interpolation bends more easily across the edge,

thus propagating the edge into the interior. If needed,

the process can be iterated once or twice more.

These steps will now be described in more detail.

The initial edge-discovery interpolation problem is

min
u

∫∫ (
u2xx + 2u2xy + u2yy

)
dxdy

subject to interpolating the derivative at the boundary.

In concept there are several approaches to solving

this biharmonic scattered interpolation problem. Inter-

polation by radial basis functions is not preferred be-

cause of the very irregular data spacing, with dense

points on the boundary and none in the interior of the

hole. This intuition is made explicit with the notions of

fill distance and separation distance [10]. The separa-

tion distance is related to the minimum eigenvalue of

the RBF matrix and hence its condition number.

Instead, the interpolation is solved as a sparse linear

system Ax = 0 with A containing the stencil [8]
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This can be solved subject to hard constraints by mov-

ing the known values to the right hand side of the

equation. Rather than implementing hard constraints

directly, however, an equation

αx = αvk

is added to the kth row for each constraint element vk,

resulting in the system

(A + αJ)x = b + αw

where w is a vector containing the vk (zero elsewhere)

and J is diagonal matrix containing 1’s in rows cor-

responding to constrained pixels. Taking α to infinity

reproduces the constraint. We use a large, user-chosen

number such as α = 10000. This approach is chosen

for two reasons: first, it simplifies the bookkeeping by

preserving the original matrix dimensions. More impor-

tantly, it can accommodate boundaries larger than two

pixels. This is helpful if we believe that the pixels are

corrupted by noise, since it results in a least squares fit

to the noisy, somewhat conflicting constraints.

The second step is estimation of the edge orienta-

tion at each point in the interpolated region. In concept

this can be approached by estimating the principle cur-

vature. In our experiments this performed unreliably at

the scales of interest. Noting that first derivatives can

be estimated more reliably than second derivatives in

the presence of noise, we use the perpendicular to the

gradient as an indicator of the edge direction.

The gradient direction is estimated using a standard

computer vision approach, using the eigenvectors of the

locally averaged “structure tensor”

∑
j∈N

wj

3∑
k

∇cj,k∇cTj,k

where N is a neighborhood of the current pixel j, wj are

weights of a local mask, and ∇cj,k is the gradient of the

kth color channel at this pixel. The expression ∇ck∇cTk
for a single channel of a single pixel is a 2×2 symmetric

matrix with a single non-zero eigenvalue reflecting the

square of the gradient magnitude. The corresponding

eigenvector is the gradient direction, and is perpendic-

ular to the desired local edge direction. When this ex-

pression is summed over color channels and averaged

over a neighborhood, generally both eigenvalues will

be non-zero. The ratio of the eigenvalues reflects how

“oriented” or edge-like the region is, and the leading

eigenvector is the dominant gradient direction over the

region. With λ0, λ1 being the smaller and larger eigen-

value respectively, the measure e = 1−(λ0 +ε)/(λ1 +ε)

describes orientedness as a number between 0 and 1.

ε is a small regularizing constant. The neighborhood

size is a parameter that should be set by the operator.

It should be as small as possible, but large enough to

get a reliable edge estimate.

Given the edge direction and orientedness e, the last

step is to perform an edge-aware interpolation using a
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locally-varying oriented version of the Laplacian or it-

erated Laplacian. The formulation of this step borrows

from anisotropic diffusion.

Since the Laplacian is the trace of the Hessian

H =

[
∂xx ∂xy
∂xy ∂yy

]
an axis-aligned oriented Laplacian can be produced by

trSTHS where S is a diagonal scaling matrix. The en-

tries in S are 1, e. An arbitrarily oriented and elongated

Laplacian ∇2
O results from applying a rotation Q:

∇2
O = trSTQTHQS

An alternate expression used in the anisotropic litera-

ture [9] generalizes the equality ∇2u = ∇ · ∇u to

∇2
Ou = ∇ ·T∇u

where T = QSSTQT . The equivalence of the two forms

follows from the rule tr abT = aT b.

The resulting oriented Laplacian is

∇2
O = a∂xx + 2b∂xy + c∂yy

where a, b, c are the unique elements of T. Discretizing

this with finite differences results in a per-pixel stencil

that can be plugged into a sparse linear system solve.

The resulting interpolation is often suitable in our

(relatively limited) experience. However, it can be im-

proved in some cases by re-estimating the edge direction

using the result of the oriented interpolation. We have

seen slight improvement with up to three iterations.

Laplacian interpolation can be interpreted as mini-

mizing stretching, whereas biharmonic interpolation can

be interpreted as minimizing an approximate curvature.

Denoting the oriented Laplacian system as

(LO + αJ)x = b + αw,

oriented biharmonic interpolation can be obtained by

replacing the oriented Laplacian matrix LO with LT
OLO.

We believe that the oriented biharmonic solution is

more suitable for our goals, however, it can also amplify

noise in the boundary conditions. In other contexts it

has proven useful to blend these two energies (e.g. [3]),

so this choice is provided to the artist.

As described the algorithm has several operator-

adjusted parameters:

– the data fidelity α,

– the orientation regularizing constant ε. This is cur-

rently set at 1; it may be necessary to increase it if

the edge estimation is unreliable. A situation that

might require this is an image area that is essentially

flat in luminance but corrupted by strong noise, such

as the blue channel of film in a dark region,

– the choice of harmonic or biharmonic interpolation,

– the option of iterating the solution using edges esti-

mated from a previous oriented interpolation step,

– the size of the neighborhood used in estimating the

edge direction and strength. In fact we allow the

operator to select a smaller size for the second it-

eration. The images in this paper were made with

widths between 5 and 30.

3 Results

Fig. 1 Top left: original image. Top right: Laplace interpo-
lation. Bottom left: biharmonic interpolation. Bottom right:
oriented harmonic interpolation.

Fig. 1 shows the result of interpolating an edge us-

ing the oriented Laplacian solve. A slight blurring of

the edge is visible on enlargement, however the result

is significantly better than standard Laplace interpola-

tion.

Fig. 2 shows the result of interpolating part of a

zebra. Here as well, some blurring is visible on enlarge-

ment. Note that the inpainted region here is larger than

that shown in many competing methods.

Fig. 3 shows a frame from a video example in which

a tracking marker has been inpainted. In this section of

the video sequence the marker aligns with a highlight,

requiring the use of oriented inpainting. Although the

algorithm is applied independently at each frame, the

result is temporally coherent. This result is somewhat

intuitive considering the physical analogies for this type

of interpolation (stretched and bent sheets): as long as

the boundary is itself temporally coherent, the interpo-

lation should be as well.

Fig. 4 shows the a more challenging case in which

a portion of an airplane is removed in a video shot.
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Several observers were not able to guess the location

of the inpainted region, although it can be seen under

enlargement once pointed out. The inpainted result is

temporally coherent.

4 Discussion

The method described here requires only linear algebra

and a sparse linear system solver. It is fast, requiring

roughly 0.03 seconds for the zebra example (a video-

resolution image) when run a single core of a current

high-end PC. We use the SuperLU sparse direct solver,

so expect O(n3) performance in the number of filled

pixels n.

The algorithm is limited in that it cannot handle

textured regions, and temporal coherence can be achieved

only if the boundary of the inpainted region is tempo-

rally smooth. It is thus more suited for operation on

man-made objects than on natural scenes. On the other

hand, “texture” involves a concept of scale. Our algo-

rithm would not succeed in inpainting a region of tree

bark, yet it might succeed in inpainting a small marker

that is fixed to the same tree.

A final consideration is that it exposes several pa-

rameters that should be tuned to the particular im-

agery. The algorithm is thus suitable for visual effects

work, where the operators are skilled artists, but less

suitable for casual or automatic applications.
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Fig. 2 Top: original image and mask. Bottom left: Laplace
interpolation. Bottom right: oriented biharmonic interpola-
tion. Please enlarge to see details.
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Fig. 3 Oriented inpainting on a video example. Top left: original image. Top right: marker detected by a semi-automatic
classification process. Bottom left: harmonic interpolation. Bottom right: oriented biharmonic interpolation. Please enlarge to
see details (also please refer to the video accompanying the paper).

Fig. 4 A second video example in which oriented inpainting is required. Top left: original image. Top right: structure detected by
a semi-automatic classification process. Bottom left: biharmonic interpolation. Bottom right: oriented biharmonic interpolation.
The oriented inpainting produces a better result in the region at the right bottom, where the inpainting crosses an occluding
edge. Please enlarge to see details (also please refer to the video accompanying the paper).


