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Abstract

The multivariate normal is widely used as the expected distribution of face
shape. It has been used for face detection and tracking in computer vision, as a
prior for facial animation editing in computer graphics, and as a model in psy-
chological theory. In this contribution we consider the character of the multivari-
ate normal in high dimensions, and show that these applications are not justified.
While we provide limited evidence that facial proportions are not Gaussian, this is
tangential to our conclusion: even if faces are truly “Gaussian”, maximum a poste-
riori and other applications and conclusions that assume that typical faces lie near
the mean are not valid.

1 Introduction
In computer vision and graphics research, facial expression and identity are com-
monly modeled as a high-dimensional vector space, often with a multidimensional
Gaussian density. This choice of representation has associated algorithmic ap-
proaches such as linear interpolation and maximum a posteriori (MAP) solution of
inverse problems.

In this paper we argue several things: 1) the linear and Gaussian assumptions
are not strictly correct. 2) existing research that starts from these assumptions
has implicitly assumed a low dimensional setting. In high dimensions, common
algorithmic approaches such as MAP may not be justified. 3) the problems result-
ing from these assumptions are not just hypothetical, but are visible in a practical
computation, specifically interpolation of faces. Most importantly, we show that
consideration of these factors can result in an algorithm with visibly improved
results.

2 Linear models
The faces of realistic computer characters in movies are most often generated using
the “blendshape” representation [6, 1, 15, 7]. This is a linear representation of the
form f = Bw, where B is a linear but non-orthogonal basis having semantic mean-
ing. In computer vision, approaches such as active appearance models (AAM) [4]
and morphable models [2] use an orthogonal basis generated by principal compo-
nent analysis (PCA), and assume the multidimensional Gaussian prior. Bilinear
(tensor) face models have also been proposed [17]. Psychological research has
also employed such linear models with a multivariate Gaussian prior [16].
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Figure 1: Face proportions are not strictly Gaussian. Kernel density plots of (left) the
distance between the eyes versus the width of the mouth, (right) the width of the mouth
versus the height of the mouth, measured from a database of 359 faces.

PCA assumes that the data is jointly Gaussian, in that the PCA basis vectors
are the eigenvectors of a covariance matrix that does not capture any non-Gaussian
statistics. The Gaussian assumption leads to a frequently employed prior or reg-
ularizer of the form cT ΛΛΛ

−1c where c is the vector of PCA coefficients and ΛΛΛ is
the diagonal matrix of eigenvalues. The eigenvalues are variances of the data in
the directions of the eigenvectors. The Gaussian assumption also naturally leads to
the MAP approach to regularising inverse problems. This approach selects model
parameters M as the mode of the posterior P(D|M)P(M) given data D. With a
Gaussian model the posterior also has a Gaussian form.

The appropriate number of dimensions for a linear facial model of expression
or identity has been variously estimated to be in the range 40–100 [10, 13, 9]. High
quality blendshape facial models used in movie visual effects sometimes have on
the order of 100 dimensions [6]. The main character in the 3D animated movie Toy
Story had 212 parameters controlling the head [5].

In figure 1 we show that the common multidimensional Gaussian assumption
is not strictly accurate. This figure shows a kernel density plot of several simple
measurements of facial proportions measured from 359 selected photographs from
the facial database [14]. It is also somewhat obvious that a linear model is not
entirely appropriate for facial expression. For example, the motion of the jaw has
a clear rotational component. On the other hand, the widespread use of the blend-
shape representation in movies (albeit sometimes with nonlinear correction terms
[15]) is an argument that linear models suffice even if they are not strictly accurate.
It is less clear whether a vector space model of facial identity is appropriate, or if a
(nonlinear) manifold assumption would be more accurate. While these comments
call into question the linear and Gaussian assumptions, existing research does not
indicate whether these objections are important in practical computations.

3 High-dimensional Phenomena
High dimensional data is generally subject to a collection of nonintuitive phenom-
ena collectively known as the “curse of dimensionality” [18]. Examples of such
phenomena are that a) in high dimensions, “all data is far away” with high proba-
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Figure 2: The closest distance to the mean among 1000 unit-variance multidimensional
Gaussian random variables (vertical axis) as a function of the dimension (horizontal
axis). In 100 dimensions every point in this simulation is more than six standard devi-
ations from the mean.

Figure 3: Histogram of the angles between all pairs of 100 randomly chosen isotropic
Gaussian random variables in 100 dimensions. The angles cluster around π/2: in high
dimensions, most data are nearly orthogonal.
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Figure 4: Probability that a sample from a unit variance Gaussian is outside the unit
hypersphere for various dimensions.
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Figure 5: Bottom: schematic one dimensional Gaussian distribution, with the area
between one and two deviations indicated in red. This interval is equal to that of the
unit radius. Top: In two dimensions, the area between one and two standard deviations
(light blue) is relatively larger than the area of the unit standard deviation disc (light
orange). Figure is best viewed in the electronic version of this document.

bility (Figure 2), b) randomly chosen vectors are nearly orthogonal (Figure 3), and
c) the probability mass of the data is overwhelmingly located near the surface of
the hypervolume, with the interior of the volume essentially empty (Figs. 5, 8).

Current face computation approaches generally overlook these phenomena.
A notable exception is [12], who described the following apparent paradox: the
squared Mahalanobis distance cT ΛΛΛ

−1c follows a χ2 distribution with n degrees of
freedom, since it is the sum of independent, identically distributed (i.i.d.) squared
Gaussian variables of variance c2

i
λi

. The expectation of this distribution for d di-
mensions is d, thus we expect the length of the standardized squared coefficient
vector of a typical face to be d. However under the multidimensional Gaussian
model, the face at the origin (the mean face) is the most probable, and the length
of its squared coefficient vector is zero.

[12] also state a hypothesis that faces should lie on the shell of a hyperellipsoid
dictated by the squared coefficient length. The resolution to the apparent paradox
is simply that it is the difference between the variance and mean. A zero-mean
random variable can (and typically does!) have a nonzero variance. Randomly
sampling from a multidimensional Gaussian will generate a sequence of samples
that have both the expected mean and variance of course.

4 The High-Dimensional Gaussian Prior
Next we will verify the statement that high dimensional data is concentrated over-
whelmingly near the surface of the hypervolume. In the case of a uniformly dis-
tributed random variable in a hypercube, this is easy to see. Consider a unit hyper-
cube in d dimensions, that encloses a smaller hypercube of side 1− ε . As d→ ∞,
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Figure 6: The radially integrated Gaussian N(0,In) in various dimensions. Each sub-
figure shows the radially integrated Gaussian profile Sd−1(r)G(r) (vertical axis) plotted
in units of

√
d (horizontal axis). From left to right: 1, 2, 10, and 100 dimensions. In

high dimensions the probability concentrates in a shell centered at radius
√

d.

the volume of the enclosed hypercube is (1− ε)d → 0.
The fact that the multivariate Gaussian is a heavy tailed distribution in high

dimensions is less obvious. For example, [16] states, “even for a face space of
high dimensionality, the assumption of a multivariate normal distribution means
that... There will be many typical faces that will be located relatively close to the
center”. However this phenomenon is at least intuitively suggested by comparing
the one- and two-dimensional Gaussian distributions (Figure 5). In one dimension,
the “volume” of the interval between one and two standard deviations is equal to
the radius of the unit interval. In two dimensions the area of the annulus between
one and two standard deviations is relatively larger than the area of the unit disc. In
higher dimensions the trend continues, with the available volume overwhelmingly
concentrated near the outside.

Discussion of the multivariate Gaussian is simplified by a “whitening” trans-
formation ci → ci/

√
λi from the original hyperellipsoidal density to an isotropic

density. We can also consider a unit-variance density without loss of general-
ity. In this case the probability that a point is within a hypersphere of radius r is
proportional to ∫ r

0
Sd−1(r)G(r) =

2πd/2

Γ(d/2)

∫ r

0
rd−1G(r)dr

where d is the dimension, G(r) = 1√
(2π)d

exp−r2/2 is the isotropic unit variance

Gaussian density function, Sd−1(r) = 2πd/2rd−1

Γ(d/2) is the “surface area” of the d-
hypersphere, and Γ is the Gamma function. This can be used to plot the tail
probability that a point lies outside the unit hypersphere in various dimensions
(Figure 4). While in one dimension the majority of the probability mass is within
the unit interval, in 100 dimensions the probability that a point is outside the unit
hypersphere is 1. to within machine precision! It may be worth contrasting the
mode of the high-dimensional Gaussian with the Dirac delta generalised function
familiar in signal processing [3]. The delta function has zero width but unit vol-
ume when integrated over. In contrast, the high-dimensional Gaussian has nonzero
width near the origin, but negligible volume.

High dimensional data can also be tightly concentrated in a shell of relatively
narrow thickness. In the case of the multi-dimensional Gaussian, the majority
of its mass is concentrated within a shell centered at radius

√
d. Figure 6 plots

the radially integrated unit variance Gaussian profile Sd−1(r)G(r) relative to the
distance

√
d (i.e. with a change of variable r→ r

√
d). The data is concentrated

increasingly around
√

d (relative to the distance
√

d itself) in high dimensions.
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Figure 7: Interpolating between a randomly chosen face (left column) and a second
face (right column) nearly on the opposite side of the hyperellipse of coefficients. Top
row of each image: linear interpolation of coefficients. The middle images lack distinc-
tiveness. Bottom row of each image: interpolating “around the hyperellipse”. Detail is
preserved throughout the interpolation. Please enlarge to see details.

The observations collected above lead to the remarkable conclusion that algo-
rithms such as MAP may be nonsensical in high dimensions! This conclusion is
not widely known in the computer vision and graphics community, where MAP
is commonly used for face computations with models having 10-100 dimensions.1

However, our conclusion is supported in [8], where Mackay states “probability
density maxima often have very little associated probability mass even though the
value of the probability density there may be immense, because they have so little
associated volume... the locations of probability density maxima in many dimen-
sions are generally misleading and irrelevant. Probability densities should only
be maximized if there is good reason to believe that the location of the maximum
conveys useful information about the whole distribution.”

1In fact many results in statistics focus on the case where increasing amounts of data are available,
i.e. n/d→ ∞ with n the number of data points. In our problem we may have n/d finite and small, as in the
case of a face model with several hundred training examples, each with 100 degrees of freedom.
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Figure 8: In this schematic illustration the point along the constraint (dark line) that
has the highest probability is the red point. In high dimensions however, the interior of
the Gaussian is empty and the probability mass is concentrated toward the outside.

5 Example Computation: Interpolating in Face
Space
Figure 7 contrasts two approaches to interpolating facial identity. The images are
not photographs but are synthesized with an AAM [11]. The face on the far left is
generated from a coefficient vector cl sampled from a multivariate Gaussian with
the appropriate variances (eigenvalues). The face on the far right is also randomly
chosen, but its coefficient vector cr is modified to constrain it to having a speci-
fied inner product 〈cl ,cr〉ΛΛΛ−1 = −0.8 so as to place it on the opposite side of the
coefficient volume. The inner product uses the inverse eigenvalue-weighted norm
〈cl ,cr〉ΛΛΛ−1 = cT

l ΛΛΛ
−1cr. The dimensionality of the space (length of the coefficient

vector) is 181.
The top rows in figure 7 shows linear interpolation through the Gaussian coef-

ficient space. The midpoint of this interpolation passes closer to the center (mean)
face than either end. This results in a somewhat “ghostly” face that lacks detail.
The linear interpolation also has the undesired result that (for example) interpolat-
ing from a person of age 40 to a person of age 45 might pass through an interme-
diate face of apparent age 25, if that is the mean age of the database underlying the
AAM.

In the lower panels of figure 7 we interpolate “around” a hyperellipsoidal shell
in the coefficient space rather than across the volume. Given initial and final co-
efficient vectors cl ,cr, at each step a coefficient vector is generated that interpo-
lates the norm of these vectors (although in fact the difference in norm is expected
to be small due to phenomena mentioned above). This interpolation remains in-
side the high probability shell of the hyperGaussian and generates distinctive faces
throughout the interpolation.
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6 Conclusion
This paper describes known high-dimensional phenomena that call into question
common assumptions underlying much computer vision, graphics, and psycho-
logical research on face computation. In particular, we question approaches that
assume that typical faces lie in the interior of a high-dimensional Gaussian density
(Figure 8). The issue is not due to a bi- or multimodal distribution (as with a com-
bined distribution containing both women and men) but rather is a consequence of
high dimensionality. These objections are not merely hypothetical, but are visible
in a simple face computation. Our conclusion highlights the need to develop new
algorithms that address the intrinsically high-dimensional nature of facial identity
and expression.

Appendix: Hyperellipsoidal Angle Calculation
The interpolations in Figure 7 start with a randomly chosen coefficient vector y
with yi ∼ N(0,

√
λi). This produces the first face. For the second face, we select a

coefficient vector x that has a specified Mahalanobis inner product with that of the
first face, xΛΛΛ

−1y = c with c =−0.8 for example. To find x we solve a sequence of
problems

x← argmin
x

(x− r)T
ΛΛΛ
−1(x− r) + λ (xT

ΛΛΛ
−1y− c)

r← x
xT ΛΛΛ

−1x

with r initialized to a random vector, in other words, find the vector that is closest
to r and has the desired Mahalanobis angle with y.
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