
TrailBlazer : Trajectory Control for Diffusion-Based Video Generation Supplementary Material

1 IMPLEMENTATION
In this section we describe details of our implementation, includ-
ing the core library, hyperparameters, and other pertinent infor-
mation. Our method is developed using PyTorch 2.01 [5] and the
Diffusers library version 0.21.4 from Huggingface [2]. We over-
ride the Diffusers pipeline TextToVideoSDPipeline to produce
our implementation.

Parameters are selected as follows: We use classifier-free guid-
ance with a strength of 9, conduct 40 denoising steps, and use a
video resolution of 512x512 for the conventional stable diffusion
backward denoising process. For all the comparisons with Peeka-
boo [3] we use their official repository1 at the commit 6564274 (12
Feb 2024). In our comparisions we utilize a resolution of 576x320
as employed in the Peekaboo code to ensure fair assessment.

In addition, We use MotionCtrl’s [8] official repository2 at the
commit 3d0ec04 (20 Jul 2024), and VideoComposer [7] repository3
at the commit 490ed21 (11 Nov 2023) for baseline comparisons in
the paper. Please refer to Sec 4.1 of the main text for detailed infor-
mation on the experiment setup. MotionCtrl and VideoComposer
employ different backbone diffusion models, each with unique in-
ference parameters such as video length and aspect ratios. However,
we adjust our bounding box configuration to accommodate their
specific requirements.

Regarding the parameters specific to our proposed method, the
majority of our results are generated using the default values out-
lined as follows: We execute 5 editing steps for both prompt and
temporal attention, denoted as 𝑁𝑆 ≡ 𝑁𝑀 ≡ 5. The editing coef-
ficients 𝑐𝑤 ≡ 0.001 and 𝑐𝑠 ≡ 0.1 are used in both prompt and
temporal attention in most cases. The number of trailing attention
maps |T | is the only parameter that needs to be tuned. Generally,
10 ≤ |T | ≤ 20 yields satisfactory results in practice and we set
|T | ≡ 15 for our paper results.

As highlighted in Sec 1. in the main text, we adapt the pre-trained
ZeroScope4 [1] T2V model. This model is fine-tuned from the initial
weights of ModelScope5 [4] utilizing nearly ten thousand clips, each
comprising 24 frames as training data. Consequently, we adhere to
the recommended practice of setting the length of the synthesized
sequence to 24 frames, drawing insights from user experiences
shared in relevant blogs.6

Prompt cross-attention editing is performed at several resolu-
tions with a module with the following architecture:

transformer_in.transformer_blocks.0.attn2
down_blocks.0.attentions.0.transformer_blocks.0.attn2
down_blocks.0.attentions.1.transformer_blocks.0.attn2
down_blocks.1.attentions.0.transformer_blocks.0.attn2
down_blocks.1.attentions.1.transformer_blocks.0.attn2
down_blocks.2.attentions.0.transformer_blocks.0.attn2
down_blocks.2.attentions.1.transformer_blocks.0.attn2
up_blocks.1.attentions.0.transformer_blocks.0.attn2

1https://github.com/microsoft/Peekaboo
2https://github.com/TencentARC/MotionCtrl
3https://github.com/ali-vilab/videocomposer
4[2]:cerspense/zeroscope_v2_576w
5[2]:damo-vilab/modelscope-damo-text-to-video-synthesis
6https://zeroscope.replicate.dev/

up_blocks.1.attentions.1.transformer_blocks.0.attn2
up_blocks.1.attentions.2.transformer_blocks.0.attn2
up_blocks.2.attentions.0.transformer_blocks.0.attn2
up_blocks.2.attentions.1.transformer_blocks.0.attn2
up_blocks.2.attentions.2.transformer_blocks.0.attn2
up_blocks.3.attentions.0.transformer_blocks.0.attn2
up_blocks.3.attentions.1.transformer_blocks.0.attn2
up_blocks.3.attentions.2.transformer_blocks.0.attn2

For temporal attention editing, we found that amultiple-resolution
approach was not necessary and produced unpredictable results.
Instead, temporal attention editing uses a single layer:

mid_block.attentions.0.transformer_blocks.0.attn2

2 FURTHER ABLATIONS
Given the limited space in the primary text, here we describe addi-
tional ablation tests to substantiate our proposed approach. Broadly,
we illustrate the impact of the spatial and temporal placement of
guidance bounding boxes (bboxes) on the overall result quality, ex-
ploring the effect of various bbox speed and size choices directed by
user keyframing. To see details, please zoom in to the experiment
images, and especially refer to our supplementary video. Note
that the animated green bboxes in our supplementary video are
manually annotated to visualize the type of intended motion and
do not exactly reflect the motion derived from true bbox keyframes.
This was done because we do not have a tool to automatically add
such “bbox animations” to videos. The identical green bbox anima-
tion is added for both our method and the baseline. The quantitative
measures (e.g. mIoU) reported in the paper use the true interpolated
bboxes rather than these video annotations.

Fig. 1 illustrates video synthesis using the pre-trained ZeroScope
modelwithout applying our approach. Broadly, all the synthesized
results exhibit fine details with plausible temporal coherence as
would be seen in a real video featuring relatively slow motion.
However, several undesirable effects may be introduced alongside
this realism. For example, the synthesized subject is often positioned
in the same general area near the center of the images regardless
of portrayed motion, and subjects like a galloping horse do not
conveying the notion of speed. Additionally, artifacts such as extra
ormissing limbs (e.g., the cat in the second row) or other implausible
results occasionally occur.

2.1 Exploration and Ablation: Varied static bbox
sizes

Fig. 2 shows the effect of the size of the bbox without considering
motion. The results indicate that the bbox size significantly influ-
ences the outcome. In extreme cases, the top row illustrates that a
smaller bbox may yield unexpected entities in the area (e.g., white
smoke next to the horse) or information leakage to the neighboring
area (e.g., the blue attribute affecting the road). In contrast, the bot-
tom row demonstrates that a overly large bbox can lead to broken
results in general (e.g., the fish disappearing into the coral reef,
and the strange blue pattern in place of the expected blue car). We
expect this may be in large part due to the centered-object bias [6]
in the pre-trained model’s training data.

https://github.com/microsoft/Peekaboo
https://github.com/TencentARC/MotionCtrl
https://github.com/ali-vilab/videocomposer
https://zeroscope.replicate.dev/

Zeroscope, no DD

Figure 1: Baseline results. Each row shows equally-spaced frames sampled from a video generated using ZeroScope without
applying our trajectory control approach. The prompts used starting from the first row: “A [fish] swimming in the sea”, “The
[cat] running on the grass field”, “The [horse] galloping on the road”, and “An [astronaut] walking on the moon”. These prompts
are reused in subsequent examples in these supplementary results.

Our recommended bbox size falls within the range of 30% to 60%
for optimal reconstruction quality. Note that very small- or large-
sized bboxes can still be employed in our approach, but they are
best specified for a particular frame rather than the entire sequence.
This is demonstrated, for example, in Fig. 3 guiding the swimming
fish.

2.2 Exploration and Ablation: Varied dynamic
bbox sizes

Fig. 3 demonstrates video synthesis with a dynamically changing
bbox size. In the top-left example, the bbox grows larger and then
shrinks, resulting in a perspective effect where the fish swims to-
wards the camera and then away from it. The frame highlighted in
red indicates the middle keyframe with a large bbox. This aligns
with our main text results in Fig. 6, showcasing that the animated
tiger respect the bbox size and its trajectory. The top-right example
is a comparison to the top-left, portraying the fish only swimming
toward the camera.

The second and the third rows show a comparison of the same
bbox condition with the prompt words “fish” (second row), and “sar-
dine” (third row), respectively. This experiment aims to assess how
well our method adapts to large bbox size variations, represented by
the short/wide target bbox on the left and tall/thin target bbox on
the right. The result on the left indicates that the output from the
“fish” prompt does not adequately conform to the short-wide aspect
ratio of the bounding box, whereas the result from the “sardine”
prompt can more closely adjust to the desired bbox thanks to the
elongated shape of the sardine. Conversely, in the experiment on
the right, both “fish” and “sardine” perform well with the tall/thin
bounding box, since the tall aspect ratio can be satisfied by a fish

facing directly toward or away from the camera. In general we
expect that the obtained results will mimic the situations found in
ZeroScope’s training data, while views that are outside the typical
data (such as a fish swimming vertically, or a horse at the top of
the image) will be difficult to synthesize.

As with all our results, we see that the guided subject approxi-
mately follows the specified bounding box, but does not exactly lie
within the bbox. While this is a disadvantage for some purposes,
we argue that it is also an advantage for casual users – if the subject
exactly fit the bounding box it would require the user to imagine
the correct aspect ratio of the subject under perspective (a difficult
task for a non-artists) as well as do per-frame animation of the bbox
to produce the oscillating motion of the swimming fish seen here.

2.3 Exploration and Ablation: Speed control
with multiple keys

Fig. 4 demonstrates controlling the subject’s speed through vary-
ing the number of keyframes in the video synthesis. Given the
recommended sequence length 𝑁𝑓 = 24 for ZeroScope, we show
the result of adding different keyframes in between the start and
end keyframes at the left/right image boundary, simulating the cat
running back and forth on the grass field. It is clear that the cat
moves relatively naturally according to the motion flow indicated
by the yellow arrows. For instance, the cat looks back first before
turning around, rather than showing an unnatural motion where
the position of the head and tail is instantaneously swapped. As
the cat moves faster, motion blur also introduced in the result. We
found that this motion blur is hard to eliminate using negative
prompts.

TrailBlazer : Trajectory Control for Diffusion-Based Video Generation Supplementary Material

Statc Bbox: Prompt and size

Figure 2: Static bbox sizes. Each row shows the result of a static square bbox positioned at the center, where the width and
height are 25%, 50%, and 90% of the original image size (represented by the the green square on the left). The prompts used in
the three sets of the experiments are: “The [white horse] standing on the street”, “The [fish] swimming in the sea”, and “The
[blue car] running on the road”.

Figure 3: Dynamic bbox sizes. The result showcases six synthesized video sequences with the subject directed by the yellow
arrow starting at the position indicated by green bbox. The number of the bboxes (corresponding to the number of keyframes
used in the experiment) is, clockwise from top-left, |K | = 3, 2, 2, 2, 2, and 2, respectively. The prompt used in each result: “The
[X] swimming in the sea”, where “[X]” denotes the “fish” for the first and second rows, and “sardine” for the third row.

Varied speed: multiple keys

Figure 4: Speed Test: number of keyframes. This result shows four synthesized video sequences with the cat’s motion directed
according to the yellow arrows starting from the position indicated by green bbox. The number of the arrows denotes the
number of keyframes (excluding the start/end keyframes) used in each experiment. Specifically, starting from the top-left and
proceeding in left/right top/down (English reading) order, there are |K | = 2, 3, 4, and 5, keyframes, respectively. The frames
highlighted with red correspond to the user-specified keyframes, excluding the start and end keyframes. The prompt used for
all experiments is “A [cat] running on the grass field”. The red arrows in the bottom-right example highlight the motion blur
introduced by the fast movement.

2.4 Exploration and Ablation: Controlling speed
with different placement of a single
keyframe

Fig. 5 shows the results of moving the subject with increasing
speeds. The first row shows the astronaut moving with constant
speed obtained by the linearly interpolating bboxes at the left and
right of the image. Starting from the second row, the astronaut
holds the position of the first bbox on the left side of the image for
some period of time, then moves more rapidly to the right side of
the image, as illustrated in the second column of the figure. This is
obtained by changing the timing of a single “middle” keyframeK𝑓1 ,
where the first keyframe and the middle keyframe have the same
bbox location (e.g., B𝑓0 ≡ B𝑓1). Similar to the results in Fig. 4, the
synthesis may generate motion blur and artifacts when the speed
is high (e.g., last row).

2.5 Exploration and Ablation: Irregular
trajectory

We illustrate irregular trajectories determined by varied keyframes
in Fig. 6. The four experiments involve a zigzag trajectory (top-left),
a triangle trajectory (top-right), a discontinuous trajectory (bottom-
left), and a down-pointing triangle trajectory (bottom-right). In
every result the horse shows high-speed running with motion blur.
However, the results with turning points show limitations in de-
picting the horse quickly turning around and may show artifacts.
For example, in the third frame of the down-pointing triangle case,
the horse appears to swap its head and tail. Difficulty portraying

this turn is somewhat expected, as horses cannot naturally execute
tight high-speed turns, unlike cats or dogs. On the other hand, the
down-pointing triangle video naturally introduces a perspective-
like size change as the horse moves higher in the image, similar
to the previous results in Fig. 3, and also the tiger example Fig. 6
in our main text. In summary, maintaining consistency between
the prompt and the timing and location of the keyframed bounding
boxes is crucial for producing realistic results.

3 CODE
The core of TrailBlazer is the attention processor, whose implemen-
tation is shown in Sec. 3.2 below.7 In addition, subject morphing is
achieved by modifying the forward function to allow interpolated
prompt embeddings as conditioning. We omit irrelevant code in
order to simplify this section.8

7diffusers.models.attention_processor.AttnProcessor
8diffusers.models.unet_3d_condition.UNet3DConditionModel

TrailBlazer : Trajectory Control for Diffusion-Based Video Generation Supplementary Material

L

R

L

R

L

R

L

R

Varied speed: key timing

Figure 5: Speed Test: the timing of a keyframe. The result shows four synthesized video sequences with the subject directed
according to the yellow arrow starting at the position indicated by green bbox, as illustrated in the first column. All experiments
except the first use three keyframes (|K | = 3), where the timing of the internal keyframe (e.g., K𝑓1) controls the duration of a
stationary phase and the speed of the subsequent motion, as illustrated in the second column. The vertical and horizontal axis
in the second column represent the left/right position and timing, respectively. The frame outlined in red indicates the frame
controlled by K𝑓1 , corresponding to the time when the astronaut starts to move. The prompt used for all experiments: “The
[astronaut] walking on the moon”.

Figure 6: Irregular trajectory. The figure shows four synthesized video sequences with the horse subject directed according to
the yellow arrows starting from the position indicated by green bbox. The frames highlighted in red correspond to keyframes.
The start and end keyframes are not indicated. The prompt used for all examples: “A [horse] galloping on the road”.

3.1 Attention manipulation functions
The code snippets in this section illustrate how TrailBlazer employs
2D Gaussian weights to generate the injection attention in the
spatial and temporal attention editing steps.

def get_weight_map(
res: int, bbox_ratios: List[float], attention_probs: torch.tensor

) -> (torch.tensor, BoundingBox):
"""To get Gaussian weight map associated to specific dimension, normalized
by the maximum of the current cross attention map

Args:
res(int): the resolution of this weight map
bbox_ratios(List[float]): a list of four numbers for bbox
attention_probs(torch.tensor): the cross attention map from the base class

Returns:
(torch.tensor, BoundingBox): the gaussian patch for injection and its bbox

"""
bbox = BoundingBox(res, bbox_ratios)
x = torch.linspace(0, bbox.height, bbox.height)
y = torch.linspace(0, bbox.width, bbox.width)
x, y = torch.meshgrid(x, y, indexing="ij")
noise_patch = gaussian_2d(

x,
y,
mx=int(bbox.height / 2.),
my=int(bbox.width / 2.),
sx=float(bbox.height),
sy=float(bbox.width),

)
noise_patch.mul_(attention_probs.max())
return noise_patch, bbox

def localized_spatial_weight_map(
attention_probs_4d: torch.tensor, token_inds, bboxes_per_frame: List[List[float]]

):
"""Using Gaussian 2d distribution to generate weight patch as described in
equation (1), (2) in our main text.

Args:
attention_probs_4d(torch.tensor):

the cross attention in the shape of (#heads, height, width, 77)
token_inds(List[int]):

the set of prompt word and trailing indices from user
bboxes_per_frame(List[float]):

a list of bbox ratios at frame
Returns:

(torch.tensor): the weight map for spatial injection

"""
dim = int(attention_probs_4d.size()[1])
weight_map = torch.zeros_like(attention_probs_4d).half()
attn_head_size = attention_probs_4d.shape[0] // len(bboxes_per_frame)
for i in range(len(bboxes_per_frame)):

weight_patch = (
get_weight_map(

res=dim,
bbox_ratios=bboxes_per_frame[i],
attention_probs=attention_probs_4d,

)
to match dimension
.unsqueeze(0)
.unsqueeze(-1)
.repeat(attn_head_size, 1, 1, len(token_inds))

)
b_idx = attn_head_size * i
e_idx = attn_head_size * (i + 1)
bbox.sliced_tensor_in_bbox(weight_map)[

b_idx:e_idx, ..., token_inds
] = weight_patch

return weight_map

def localized_temporal_weight_map(
attention_probs_5d: torch.tensor, bboxes_per_frame: List[List[float]]

):
"""To generate the Gaussian weight map matching the temporal attention
dimensions. See Sm(x,y) in equation (3) in TrailBlazer main text.

Args:
attention_probs_5d(torch.tensor):

the cross attention in the shape of (
#heads, height, width, #frames, #frames)

bboxes_per_frame(List[float]):
a list of four numbers determining the bbox corners

"""
dim = int(attention_probs_5d.size()[1])
f = attention_probs_5d.shape[-1]
max_val = attention_probs_5d.max()
weight_map = torch.zeros_like(attention_probs_5d).half()
def get_patch(

i: int, j: int, bbox_at_frame: List[float], bboxes_per_frame: List[List[float]]
):

"""To calculate the weight patch with distance function described in
Sm(x,y) in the paper
Args:

i(int): frame index
j(int): frame index
bbox_at_frame(List[float]): list of four numbers for bbox
bboxes_per_frame(List[List[float]]): all bboxes per frame

Returns:
(torch.tensor): the weight map for temporal injection

"""
weight_map = (

get_weight_map(
res=dim,
bbox_ratios=bboxes_per_frame,
attention_probs=attention_probs_5d,

)
NOTE: to match dimension at layer
.unsqueeze(0).repeat(attention_probs_5d.shape[0], 1, 1)

)
noise_patch.mul_(attention_probs_5d.max())
inv_noise_patch = noise_patch - noise_patch.max()
NOTE: distance is large when
dist = (float(abs(j - i))) / len(bboxes_per_frame)
final_patch = inv_noise_patch * dist + noise_patch * (1.0 - dist)
return final_patch, bbox

NOTE: To form the weight patch for each pair of bboxes of frames
for j in range(len(bboxes_per_frame)):

for i in range(len(bboxes_per_frame)):
patch_i, bbox_i = get_patch(bboxes_per_frame[i], i, j, bboxes_per_frame)
patch_j, bbox_j = get_patch(bboxes_per_frame[j], i, j, bboxes_per_frame)
bbox_i.sliced_tensor_in_bbox(weight_map)[..., i, j] = patch_i
bbox_j.sliced_tensor_in_bbox(weight_map)[..., i, j] = patch_j

return weight_map

3.2 Main routine

class InjecterProcessor():
"""Implementation similar to
diffusers.models.attention_processor.AttnProcessor from the open source
project diffusers

"""
def __init__(

self,
bundle: BundleType,
bbox_per_frame: List[BoundingBox],
strengthen_scale: float = 0.0,
weaken_scale: float = 1.0,

):
super().__init__(bundle)
self.strengthen_scale = strengthen_scale
self.weaken_scale = weaken_scale
self.bundle = bundle
self.bbox_per_frame = bbox_per_frame

def __call__(
self,
attn: diffusers.models.attention_processor.Attention,
hidden_states: torch.tensor,
encoder_hidden_states: torch.tensor,

):
""" The caller of attention processor
Args:

attn(Attention): the attention with
hidden_states(torch.tensor): the latents from previous layer
encoder_hidden_states(torch.tensor): text condition embeddings

Returns:
"""
batch_size, sequence_length, _ = hidden_states.shape
NOTE: To Q,K,V from latent and embeddings
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key)

NOTE: To modify the spatial cross attention
if (

attention_probs.shape[-1] == CrossAttnProcessorBase.MAX_LEN_CLIP_TOKENS
and self.use_spatial_editing

):
dim = int(np.sqrt(attention_probs.shape[1]))
attention_probs_4d = attention_probs.view(

attention_probs.shape[0], dim, dim, attention_probs.shape[-1]
)
#
attention_probs_4d = self.dd_core(attention_probs_4d)
attention_probs = attention_probs_4d.reshape(

attention_probs_4d.shape[0], dim * dim, attention_probs_4d.shape[-1]
)

NOTE: To modify temporal cross frame attention
elif attention_probs.shape[-1] == self.num_frames and (self.use_temporal_editing):

dim = int(np.sqrt(attention_probs.shape[0] // attn.heads))
attention_probs_5d = attention_probs.view(

attn.heads, dim, dim, self.num_frames, self.num_frames,
)
attention_probs_5d = self.dd_core(attention_probs_5d)
attention_probs = attention_probs_5d.view(

(attn.heads * dim * dim, self.num_frames, self.num_frames),

TrailBlazer : Trajectory Control for Diffusion-Based Video Generation Supplementary Material

)

hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
linear projection
hidden_states = attn.to_out[0](hidden_states)
dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states

def dd_core(self, attention_probs: torch.Tensor):
"""
Args:

attention_probs(torch.tensor): A tensor either in 4d or 5d to
trigger spatial or temporal attention editing, respectively.

Returns:
(torch.tensor): modified attention map

"""
attention_probs_modified = attention_probs.detach().clone()

NOTE: Spatial cross attention editing
if len(attention_probs.size()) == 4:

NOTE: token_inds is for specific prompt word
token_inds = self.bundle.get("token_inds")
NOTE: trailing_inds is generated by the length determined by user
trailing_length = self.bundle.get("trailing_length")
trailing_inds = list(

range(self.len_prompt + 1, self.len_prompt + trailing_length + 1)
)
all_tokens_inds = list(set(token_inds).union(set(trailing_inds)))
NOTE: To generate stengthen mask Ss(x,y) in Equation (1)
strengthen_map = localized_weight_map(

attention_probs_modified,
token_inds=all_tokens_inds,
bbox_per_frame=self.bbox_per_frame,

)
NOTE: To generate weakening mask Ws(x,y) in Equation (1)
weaken_map = torch.ones_like(strengthen_map)
zero_indices = torch.where(strengthen_map == 0)
weaken_map[zero_indices] = self.weaken_scale
NOTE: weakening in Equation (2)
attention_probs_modified[..., all_tokens_inds] *= weaken_map[

..., all_tokens_inds
]
NOTE: strengthen in Equation (2)
attention_probs_modified[..., all_tokens_inds] += (

self.strengthen_scale * strengthen_map[..., all_tokens_inds]
)

NOTE: Temporal cross attention editing
elif len(attention_probs.size()) == 5:

NOTE: To generate stengthen mask in Equation (3)
strengthen_map = localized_temporal_weight_map(

attention_probs_modified,
bbox_per_frame=self.bbox_per_frame,

)
NOTE: To generate weakening mask as in spatial attention
weaken_map = torch.ones_like(strengthen_map)
zero_indices = torch.where(strengthen_map == 0)
weaken_map[zero_indices] = self.weaken_scale
NOTE: weakening in Equation (3)
attention_probs_modified *= weaken_map
NOTE: strengthen in Equation (3)
attention_probs_modified += self.strengthen_scale * strengthen_map

return attention_probs_modified

REFERENCES
[1] cerspense. 2023. zeroscope-v2-576w. https://huggingface.co/cerspense/zeroscope-

v2-576w Accessed: 2023-10-01.
[2] Huggingface. 2023. Stable Diffusion 1 Demo. https://huggingface.co/spaces/

stabilityai/stable-diffusion-1 Accessed: 2023-01-01.
[3] Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. 2023. PEEKABOO:

Interactive Video Generation via Masked-Diffusion. arXiv:2312.07509 [cs.CV]
[4] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun

Shen, Deli Zhao, Jingren Zhou, and Tieniu Tan. 2023. VideoFusion: Decomposed
Diffusion Models for High-Quality Video Generation. arXiv:2303.08320 [cs.CV]

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[6] Gergely Szabó and András Horváth. 2021. Mitigating the Bias of Centered Objects
in Common Datasets. CoRR abs/2112.09195 (2021). arXiv:2112.09195 https:
//arxiv.org/abs/2112.09195

[7] Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya
Zhang, Yujun Shen, Deli Zhao, and Jingren Zhou. 2023. VideoComposer:
Compositional Video Synthesis with Motion Controllability. In Advances
in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 7594–7611. https://proceedings.neurips.cc/paper_files/paper/2023/file/

180f6184a3458fa19c28c5483bc61877-Paper-Conference.pdf
[8] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan

Xia, Ping Luo, and Ying Shan. 2024. MotionCtrl: A Unified and Flexible Motion
Controller for Video Generation. In ACM SIGGRAPH 2024 Conference Papers
(Denver, CO, USA) (SIGGRAPH ’24). Association for Computing Machinery, New
York, NY, USA, Article 114, 11 pages. https://doi.org/10.1145/3641519.3657518

https://huggingface.co/cerspense/zeroscope-v2-576w
https://huggingface.co/cerspense/zeroscope-v2-576w
https://huggingface.co/spaces/stabilityai/stable-diffusion-1
https://huggingface.co/spaces/stabilityai/stable-diffusion-1
https://arxiv.org/abs/2312.07509
https://arxiv.org/abs/2303.08320
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2112.09195
https://arxiv.org/abs/2112.09195
https://arxiv.org/abs/2112.09195
https://proceedings.neurips.cc/paper_files/paper/2023/file/180f6184a3458fa19c28c5483bc61877-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/180f6184a3458fa19c28c5483bc61877-Paper-Conference.pdf
https://doi.org/10.1145/3641519.3657518

	1 Implementation
	2 Further ablations
	2.1 Exploration and Ablation: Varied static bbox sizes
	2.2 Exploration and Ablation: Varied dynamic bbox sizes
	2.3 Exploration and Ablation: Speed control with multiple keys
	2.4 Exploration and Ablation: Controlling speed with different placement of a single keyframe
	2.5 Exploration and Ablation: Irregular trajectory

	3 Code
	3.1 Attention manipulation functions
	3.2 Main routine

	References

