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Multiple A [dog] (watching→playing with) the [red balls] on the road

Dynamic bbox A [tiger] walking on the road

Morphing A [cat→dog] walking on the grass field

Static bbox An [astronaut] walking on the moon

Key-framing A [cat] (sitting→running) on the road

Compositing A [cat] and [dog] playing (on the moon | in the city | in the garden)

{{

Fig. 1. TrailBlazer extends a pre-trained video diffusion model to introduce trajectory control over one or multiple subjects. Its primary contribution lies in
the ability to animate the synthesized subject using a bounding box (bbox), whether it remains static (Top-left) or dynamic in terms of location and bbox
size (Top-right), morphing for subject interpolation (Middle-left), and varied movement speed (Middle-right). The moving subjects fit naturally within an
environment specified by the overall prompt (Bottom-right). Additionally, the speed of the subjects can be controlled through keyframing (Bottom-left).

Large text-to-video (T2V) models such as Sora have the potential to revolu-
tionize visual effects and the creation of some types of movies. Current T2V
models require tedious trial-and-error experimentation to achieve desired
results, however. This motivates the search for methods to directly control
desired attributes. In this work, we take a step toward this goal, introducing
a method for high-level, temporally-coherent control over the basic trajecto-
ries and appearance of objects. Our algorithm, TrailBlazer, allows the general
positions and (optionally) appearance of objects to be controlled simply by
keyframing approximate bounding boxes and (optionally) their correspond-
ing prompts. Importantly, our method does not require a pre-existing control
video signal that already contains an accurate outline of the desired motion,
yet the synthesized motion is surprisingly natural with emergent effects
including perspective and movement toward the virtual camera as the box
size increases. The method is efficient, making use of a pre-trained T2V
model and requiring no training or fine-tuning, with negligible additional
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computation. Specifically, the bounding box controls are used as soft masks
to guide manipulation of the self-attention and cross-attention modules in
the video diffusion model. While our visual results are limited by those of
the underlying model, the algorithm may generalize to future models that
use standard self- and cross-attention components.
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1 INTRODUCTION
Advancements in generative models for text-to-image (T2I) have
been dramatic [2, 35–37]. Recently, text-to-video (T2V) systems such
has Sora [31] have made remarkable strides, enabling the automatic
generation of videos based on textual prompt descriptions [8, 13, 15,
31, 54]. These methods have the potential of revolutionizing visual
effects and certain other aspects of movie making.

On the other hand, T2I methods do not provide full control over
characteristics of the synthesized image, and repeated trial-and-
error experimentation with different prompts and generally needed.
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Unfortunately, this issue is likely to be exacerbated for video synthe-
sis. In one experimental short film made with Sora it was found that
each several-second clip of the movie required about 300 synthesis
attempts, as well as subsequent manual post-processing [40].

Control over position and trajectory of objects is a particular weak
point of T2I and T2V models. Arguably this arises in large part from
the fact that human language often omits descriptions of positions
from the reference point of the viewer. For example, we typically
might say “please put it down over there” [pointing to a location]
rather than saying “please put it in the lower left quadrant of my
field of view”. On the other hand, control over the spatial layout
and trajectories of objects (as seen from the camera viewpoint) is
necessary for understandable narration of a story [1].
Control over location and trajectory can be approached by pro-

viding either low/level or high/level guidance signals, and both
approaches have their advantages. Visual effects artists typically
require precise low-level control, and extensions [16] of the widely
used ControlNet [61] are suitable for this purpose. These methods
fine-tune the base T2I or T2V model to accept conditioning in the
form of edge maps, depth maps, or other signals. On the other hand,
producing such detailed signals for a video may be difficult. For
example, if the prompt describes a large dragon attacking a castle,
it is not possible to obtain the edge maps from an existing video,
and sketching these edges in a temporally consistent way would be
challenging and laborious even for artists.
The complementary approach of high-level control has its uses,

both for casual users, and even for professional use – for exam-
ple an actor might be directed to move from the door to a table
while expressing some emotion, but the actor’s per-frame silhou-
ette edges would not be specified by the director. To address this
need, we introduce a high-level interface for the control of object
trajectories in synthesized videos (Fig. 1). Users simply provide soft
bounding boxes (bboxes) specifying the desired position of an object
at several times (keyframes) in the video, together with optional
text prompt(s) describing the desired object at the corresponding
times. The provided bboxes are interpolated between the keyframes,
resulting in smooth motion and size changes of the object, such as
a cat in Fig. 1 (middle-right) that is initially sitting and then runs to
the right. Note that the bboxes are implemented as soft constraints
in our algorithm. This imprecision is necessary for high-level control
– if the bbox exactly bounds the object it would require the user to
precisely specify the aspect ratio of objects under perspective (a
difficult task). If more than one different text prompt is provided,
embeddings of these prompts are also interpolated, resulting in a
“morphing” effect such as the cat→ dog transformation in Fig. 1.

Our algorithm, TrailBlazer, involves editing both spatial and tem-
poral attention maps for each specific object during the initial de-
noising diffusion steps to concentrate activation at the desired ob-
ject location. Our method builds on previous works. We use the
pre-trained ZeroScope model [6] (a fine-tuned version of [48]), as
our underlying model. A body of previous and concurrent works
have addressed guiding object position in image generation models,
including [2, 3, 21, 25, 45, 55, 59, 62]. TrailBlazer most closely resem-
bles the cross-attention injection used in [25], and we adopt some
notation from that paper, however, our algorithm is both simpler
and addresses a different problem. Specifically we target controlling

trajectories and object attributes in videos, which requires a different
approach to control temporal cross-frame attention. Our work also
does not require any inference-time optimization as we found the
results to be stable without need to optimize weights on individual
cross-attention maps. While the reason our simpler method suc-
ceeds is unknown, we believe that satisfying the soft constraints
over multiple frames may act as a regularizer.

Our contributions include:

• Novelty. We introduce a novel approach employing high-
level bounding boxes to guide the subject in diffusion-based
video synthesis. This approach is suitable for casual users,
as it avoids the need to record or draw a frame-by-frame
positioning control signal. In contrast, low-level guidance
signals such as the widely used edge and depth maps in T2I
models have disadvantages for video: it is difficult for non-
artists to draw these signals in a temporally consistent way,
while obtaining them by processing an existing video limits
the synthesized motion to copies of existing videos.

• Position, size, and prompt trajectory control. Our ap-
proach enables users to position the subject by keyframing
its bounding box. The size of the bbox can also be controlled,
thereby producing perspective effects (Figs. 1, 6). The text
prompt can be similarly keyframed to influence the behavior
and identity of the subject in the synthesized video (see the
sitting→ running and cat → dog examples in Fig. 1).

• Simplicity. Our method operates by directly editing the spa-
tial and temporal attention in the pre-trained denoising UNet.
It requires no training or optimization, and the core algorithm
can be implemented in less than 200 lines of code.

2 RELATED WORK

2.1 Text-to-Image (T2I)
Denoising diffusion models construct a stochastic [14, 42, 44] or de-
terministic [43]mapping between the data space and a corresponding-
dimension multivariate Gaussian. Signals are synthesized by sam-
pling from a normal distribution and performing a sequence of
denoising steps. A number of works [29, 30, 35, 38] have performed
T2I synthesis using images conditioned on the text embedding from
a model such as CLIP [34]. Efficiency is significantly improved in
the Latent Diffusion Model [36] (LDM) by performing the diffusion
computation in the latent space of a carefully trained variational
autoencoder. LDM was trained with a large scale dataset, resulting
in the widely adopted Stable Diffusion (SD) system. We omit the
basic diffusion derivation as tutorials are available, e.g., [52].
Despite the success of image generation using SD, it is widely

acknowledged that SD lacks full controllability. Synthesizing multi-
ple objects is particularly challenging and often results in missing
objects or objects with incorrect attributes. Controllability has been
greatly improved with methods such as ControlNet [61] and others
[27] that introduce additional layers to fine-tune an existing model
to accept various control inputs, as well as methods such as DragDif-
fusion [41] that provide control via inference-time optimization.

The methods of [3, 25, 45, 55, 59, 62] have addressed the layout-to-
image (L2I) issue using few-shot learning. Directed Diffusion [25],
BoxDiff [55], and MultiDiffusion [3] use coarse bboxes to control
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subject position, achieving good results by manipulating the spatial
latent and text embeddings cross attention maps [11].

2.2 Text-to-Video (T2V)
Text-to-video (T2V) synthesis is generally more difficult than T2I
due to the difficulty of ensuring temporal consistency and the re-
quirement for a large paired text and video dataset. A number of T2V
methods [9, 10, 15, 17, 19, 33, 47, 57] are extensions of T2I models
such as SD. Some works [5, 24] also introduce 3D convolutional
layers in the denoising UNet to learn temporal information. Ima-
gen Video [13] achieves higher resolution by computing temporal
and spatial super-resolution on initial low resolution videos. Vide-
oLDM [5] and ModelScope [24] insert a temporal attention layer
by reshaping the latent tensor. Text2Video-Zero [19] and FateZero
[33] investigate how temporal coherence can be improved by cross
frame attention manipulation with pre-trained T2I models. [9] ad-
dresses the same problem by introducing temporal correlation in
the diffusion noise. The advent of Sora [31] demonstrated the re-
markable potential of T2V models and is impacting thinking among
professional movie creators [40].

Recently several works have been proposed to solve the control-
lability in video synthesis problem by using pre-trained models
together with low-level conditioning information such as edge or
depth maps. Control-A-Video [7] and MagicProp [56] use depth
maps with ControlNet to train a temporal-aware network. Text2-
Video-Zero [19] partially achieves controllability by initializing the
latent frames conditioned on the first frame with applied linear
translation. However, the control is indirect and requires two steps.
First, the user first needs to find the subject’s numerical location,
and then adjust a translation offset. Distinct from the methods above,
we use an attention injection method to guide the denoising path
rather than optimization, and in general this is robust to different
random seeds. Peekaboo [18] is a current state-of-the art method for
providing pretrained video models with spatio-temporal location
control. Both Peekaboo and TrailBlazer guide subjects by manipu-
lating attention, however the formulations differ in many details.
Peekaboo’s use of an infinite negative attention injection in the
background regions appears to often result in backgrounds with
missing detail.
Additionally, there are training-based methods like DragNUWA

[60], TrackDiffusion [20], MotionCtrl [51], and VideoComposer
[50] that implement subject controllability with various approaches.
Specifically, MotionCtrl and DragNUWA utilize trajectory paths to
guide the synthesis process instead of bounding boxes.
In Sec. 4, we will provide both quantitative and visual evidence

to demonstrate the better controllability and quality of our results.
Other very recent preprints that address the layout-to-video problem
in differing ways include [22, 49, 58]. We do not compare against
these concurrent works because their source was not available at
the time of writing.

3 METHOD
TrailBlazer is based on the open-source pre-trained model Zero-
Scope [6]. This is a fine-tuned version of ModelScope [24], known
for its ability to generate reasonable quality videos without temporal

flickering. It is noteworthy that TrailBlazer preserves this desirable
temporal coherence. TrailBlazer does not require any training, op-
timization, or low-level control signals such ControlNet’s edge or
depth maps [61]. On the contrary, all that is required from the user is
the prompt and an approximate bounding box (bbox) of the subject.
Bboxes and corresponding prompts can be specified at several points
in the video, and these are treated as keyframes and interpolated to
smoothly control both the motion and prompt content.
We use the following notation conventions: Bold capital letters

(e.g., M) denote a matrix or a tensor depending on the context, vec-
tors are represented with bold lowercase letters (e.g.,m), and scalars
are denoted as lowercase letters (e.g.,𝑚). We use superscripts to
denote an indexed tensor slice (e.g.,M(𝑖 ) ). A synthesized video is
composed of a number of images ordered in time. The individual
images will be referred to as frames, and the collection of corre-
sponding times is the timeline. Spatial or temporal attention will
be informally referred to as correlation. Familiarity with modern
diffusion models and common architecture components such as
attention is assumed.

Our method draws significant inspiration from visual inspection
of cross and self-attention maps in the underlying pre-trained video
model [6, 48]. Consider the video in the upper left of Fig. 2, generated
from the prompt “an [astronaut] walking on themoon”. The prompt
cross-attention for the word “astronaut” at the final denoising step,
denoted as PA-Cross, is highlighted in the left of the second row
and reflects the overall position of the subject. The right side of the
first row displays “self-frame” temporal attention maps, denoted as
TA-Self, which broadly align with PA-Cross.

The right side of the second row of Fig. 2 presents the visualization
of “cross-frame” temporal attentionmaps, denoted as TA-Cross, illus-
trating the attention between the first frame and subsequent frames
in the video. As the distance between frames increases, the attention
becomes less correlated in the subject area but remains strongly
correlated in the background area. This observation aligns with
the video shown in the left of the first row, where the background
remains nearly static while the astronaut’s position varies frame by
frame. TA-Self and TA-Cross are formally defined in Sec. 3.3, where
we will consider temporal attention in more detail.
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Fig. 2. Inspiration for our method. We draw inspiration from inspection
of the prompt cross-attention (PA-Cross), and the attention maps of self-
frame attention (TA-Self) and cross-frame attention (TA-Cross). Each sub-
figure shows frames 1, 4, 16, 24 of a 24-frame video. TA-Cross represents the
“correlation” of these four frames with the first frame of video clip.

3.1 Pipeline
As mentioned above, keyframing [53] is a technique that defines
properties of images at particular frames (keys) in a timeline and
then automatically interpolates these values to achieve a smooth
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Fig. 3. Pipeline Overview. This figure highlights the central components of prompt cross-attention editing (middle, in the blanched almond-colored section)
and temporal attention editing (right, in the blue section). This pipeline is exclusively applied in the initial denoising steps based on a user-provided bbox
sequence for a user-selected subject word (left, green section). The objective is to alter the attention map (e.g., A𝑠 ,A𝑚 ) using a Gaussian weighting within a
user-specified bbox. The example shows guidance from one prompt word attention map and two trailing attention maps as highlighted in red.

transition between the keys. Keyframing is commonly used in movie
animation and visual effects because it eases the artist’s workload
and creates smooth motion that is difficult to achieve with direct
image editing. Our system takes advantage of this principle, and
asks the user to specify several keys, consisting of bboxes and the
associated prompts, describing the subject location and appearance
or behavior at the particular times. For instance, as shown in Fig. 1
(Middle-right), the video of the cat initially sitting on the left, then
running to the right, is achieved simply by placing keys at only three
frames. The sitting cat in the first part is created with two bboxes on
the left at the start and middle of the timeline, both associated with
“sitting.” A third keyframe at the end places a bbox on the right with
the prompt changing to “running.” This results in the cat smoothly
transitioning from sitting to running in the second part of the video.

We use the pre-trained ZeroScopemodel [6] in all our experiments
with no neural network training, finetuning, or optimization at in-
ference time. The prompt cross-attention and the temporal attention
in our pipeline (Fig. 3) are discussed in detail in Sec. 3.2 and Sec. 3.3,
respectively. All prompt and temporal attention editing is performed
in the early steps 𝑡 ∈ {𝑇, ...,𝑇 − 𝑁𝑆 }, and 𝑡 ∈ {𝑇, ...,𝑇 − 𝑁𝑀 } of the
backward denoising process, where 𝑇 is the total number of denois-
ing time steps, and 𝑁𝑆 , and 𝑁𝑀 are hyperparameters specifying
the number of steps of prompt and temporal attention editing. The
parameter settings are detailed in our supplementary material.
In the subsequent sections we describe how our algorithm is

implemented by modifying the prompt and temporal attention in
a pre-trained diffusion model. Please refer to [14, 36, 43, 52] for
background on overall diffusion model architectures.
Our system processes a set of keyframes, consisting of bbox re-

gions R𝑓 and associated prompts P𝑓 at a frame 𝑓 , where 𝑓 denotes
the video frame index 𝑓 ∈ {1, ..., 𝑁𝐹 }. Users are required to specify
a minimum of two keyframes: one at the start and one at the end of
the video sequence. The information in these keyframes is linearly
interpolated, resulting in the bbox B𝑓 and the prompt text embed-
ding 𝑦 (P𝑓 ) at each frame, where 𝑦 (·) denotes the text encoder. To
enhance readability, we omit the subscript 𝑓 when discussing the
core method.

A region R is characterized by a set of parameters R = {B,I,T }:
a set of bbox positions, B, the indices of the subject we would like
to constrain, I, and the indices of the trailing maps T to enhance
controllability as described in the next paragraph. The subject in-
dices I ⊂ {𝑖 |𝑖 ∈ N, 1 ≤ 𝑖 ≤ |P|}, are 1-indexed with the associated
word in the prompt. For example, I = {1, 2} is associated with “a”,
“cat” in the prompt “a cat sitting on the car”.

The trailing attention maps indices T ⊂ {𝑖 |𝑖 ∈ N, |P | < 𝑖 ≤
𝑁𝑃 } is the set of indices corresponding to the cross-attention maps
generated without a prompt word association, where𝑁𝑃 denotes the
maximum prompt length that a tokenizer model can take. 𝑁𝑃 = 77
in the case of CLIP [34]. The trailing attention maps serve as a
means of controlling the spatial location of the synthesized subject
and its attributes. A larger trailing indices set |T | provides greater
controllability but comes with the risk of failed reconstruction [25].
A bbox B =

{
(𝑥,𝑦) | 𝑏left × 𝑤 ≤ 𝑥 ≤ 𝑏right × 𝑤, 𝑏top × ℎ ≤

𝑦 ≤ 𝑏bottom × ℎ
}
, is a set of all pixel coordinates inside the bbox of

resolution𝑤 × ℎ. B is represented as a tuple of the four scalars rep-
resenting the boundary of the bbox b = (𝑏left, 𝑏top, 𝑏right, 𝑏bottom),
where 𝑏left, 𝑏top, 𝑏right, 𝑏bottom ∈ [0, 1] specify the bbox relative to
the synthesis resolution. The height ℎ and width𝑤 , are defined by
the resolution of the UNet intermediate representation [36].

3.2 Prompt cross-attention Guidance
The prompt cross-attention modules are implemented in the de-
noising UNet module of [36]. This module finds the cross-attention
between the query Q𝑠 ∈ R𝑁𝐹 ×𝑑ℎ×𝑑 obtained from the SD latent
z𝑡 , and the key-value pair K𝑠 ,V𝑠 ∈ R𝑁𝐹 ×𝑁𝑃 ×𝑑 of the 𝑁𝑃 prompt
words from the text model, where 𝑑 is the feature dimension of
the keys and queries. The cross-attention map [11] is then defined
as A𝑠 = Softmax(Q𝑠K𝑇𝑠 /

√
𝑑) ∈ R𝑁𝐹 ×𝑑ℎ×𝑁𝑃 ,1 where 𝑑ℎ ≡ 𝑤 × ℎ,

defined by the spatial height and width at the specific layer. We omit
the batch size and the number of attention heads [46] for simplicity.
Given the set of indices of subject prompt words I and trailing

maps T , each cross-activation component at location (𝑥,𝑦) in A𝑠 is
1Note that this is a “batch” matrix multiplication (e.g., the method torch.bmm in PyTorch
[32]), that is C = AB ∈ R𝑏×𝑚×𝑛 , where A ∈ R𝑏×𝑚×𝑝 , and B ∈ R𝑏×𝑝×𝑛 . Similarly,
the transpose operation is A⊤ ∈ R𝑏×𝑝×𝑚 .
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modified as follows,

A(𝑖 )
𝑠 (𝑥,𝑦) := A(𝑖 )

𝑠 (𝑥,𝑦) ⊙ W𝑠 (𝑥,𝑦) + S𝑠 (𝑥,𝑦), ∀𝑖 ∈ I ∪ T , (1)

where 𝑖 is the index of the attention slice corresponding to a prompt
word, and ⊙ denotes the Hadamard (element-wise) product that
scales the 𝑥,𝑦 element of the cross-attention map A𝑠 by the corre-
sponding weight inW𝑠 (·), whereW𝑠 (·) and S𝑠 (·) are,

S𝑠 (𝑥,𝑦) =
{
𝑐𝑠 𝑔(𝑥,𝑦), (𝑥,𝑦) ∈ B

0, otherwise, , W𝑠 (𝑥,𝑦) =
{
𝑐𝑤 , (𝑥,𝑦) ∈ B′

1, otherwise ,

(2)
and 𝑥,𝑦 are are the spatial location indices of the attention map and
B′ is the complement of B. S𝑠 (B) uses a soft window function that
“injects” attention inside B, as illustrated in the gray box in Fig. 3
with 𝑐𝑠 > 0. This is implemented as a Gaussian function 𝑔(·) of size
𝜎𝑥 = 𝑏𝑤/2, 𝜎𝑦 = 𝑏ℎ/2, where 𝑏𝑤 = ceil((𝑏right − 𝑏left) ×𝑤), 𝑏ℎ =

ceil((𝑏top − 𝑏bottom) × ℎ) are the width and the height of B. In
contrast, W𝑠 (·) with 𝑐𝑤 ≤ 1 attenuates the attention outside B.
The bbox B is extended across the entire video sequence through
linear interpolation of the keyframes. For example, B𝑓 = (1 − 𝑎) ×
B𝑏 + 𝑎 × B𝑒 , where 𝑎 = 𝑓 /𝑁𝐹 , and B𝑏 , B𝑒 denote the bboxes for
the beginning and end keyframes of the time interval.

3.3 Temporal Cross-Frame Attention Guidance
To capture the temporal correlation in the video clip during train-
ing, a prevalent approach involves reshaping the latent tensor. This
involves shifting the spatial information to the first dimension, a
technique employed in VideoLDM [5]. The reshaping is done before
passing the hidden activation into the temporal layers, allowing
the model to learn about the “correlation” of spatial components
through the convolutional layers. As shown in Fig. 3 (right), the tem-
poral attention map is obtained by A𝑚 = Softmax(Q𝑚K𝑇𝑚/

√
𝑑) ∈

R𝑑ℎ×𝑁𝐹 ×𝑁𝐹 , where 𝑑ℎ is the spatial dimensions of this tensor,Q𝑚 ∈
R𝑑ℎ×𝑁𝐹 ×𝑑 , and K𝑚 ∈ R𝑑ℎ×𝑁𝐹 ×𝑑 .
What is different from the spatial counterpart is that now A𝑚

learns about the relation between the correlated components across
all frames. For instance, A(𝑥,𝑦,𝑖, 𝑗 )

𝑚 denotes the correlation at location
(𝑥,𝑦) between frame 𝑖 and frame 𝑗 . We denote such tensors as
A(𝑖, 𝑗 )
𝑚 (𝑥,𝑦) to keep the notation consistent. As seen in Fig. 2 (right),

the background attention is higher when the cross frame attention
(i.e., TA-Cross, when 𝑖 ≠ 𝑗 ) compares frames that are temporally far
from each other, and the foreground attention is higher when the
frames are temporally closer in the video sequence. The self frame
attention (TA-Self, when 𝑖 = 𝑗 ) generally aligns spatially with the
prompt cross attention (PA-Cross), as seen in Fig. 2.

To achieve this pattern of activations under user control we design
an approach similar to Eq. 1 but considering the normalized video
timeline distance 𝑑 =

|𝑖− 𝑗 |
𝑁𝐹

, 𝑖, 𝑗 ∈ {1, ..., 𝑁𝐹 }. The temporal injection
function is defined as,

S𝑚 (𝑥,𝑦) =
{
(1 − 𝑑) 𝑔(𝑥,𝑦) − 𝑑 𝑔(𝑥,𝑦), (𝑥,𝑦) ∈ B,

0, otherwise.

Here the normalized video temporal distance 𝑑 determines the level
of the weight injection as a triangular window in time. Values 𝑑 ≈ 0
increase the activation inside the bbox. In contrast, when 𝑑 ≈ 1,

SC

Comp 
Prompt

A [dog] chasing the [red ball] on the grass field

z(dog)
t

z(ball)
t

Fig. 4. Scene Compositing. Given the set of latents generated from our
system using a single bbox denoted as z(ball)𝑡 and z(dog)𝑡 for the case of
prompts related to ball and dog, the scene compositor (SC) produces a
synthesis of multiple subjects with the complete prompt and the single
subject latents. We refer reader to our supplementary video to view the
implemented speed control of the dog.

the activation inside the box is reduced, approximating the tem-
poral “anti-correlation” effect seen in Fig. 2. The editing by S𝑚 (·)
is performed during the initial 𝑁𝑀 steps of the denoising process.
Similarly to Eq. 1, the temporal cross-frame attention map editing
is defined as,

A(𝑖, 𝑗 )
𝑚 (𝑥,𝑦) := A(𝑖, 𝑗 )

𝑚 (𝑥,𝑦) ⊙ W𝑚 (𝑥,𝑦) + S𝑚 (𝑥,𝑦), (3)

where W𝑚 (·) is defined similarly to W𝑠 (·).

3.4 Scene compositing
The problem space becomes more complicated for video synthesis
with more than one moving subject. Although the parameters 𝑐𝑠 , 𝑐𝑤
in Eq. 2 are specific to a particular subject, they indirectly affect
the entire scene through the global denoising. Thus, the choice of
these parameters for different subjects might interact and require a
parameter search in the number of subjects to find the best synthesis.

Considering the reason above, we follow work such as [3, 25] that
combines multiple subjects, each with their own prompt, during
the latent denoising. The latents z(𝑟 )𝑡 for the 𝑟 -th subject are then
composited into an overall image latent z𝑡 under the control of a
“composed” prompt, as illustrated in Fig. 4 and formulated as,

z𝑡 (𝑥,𝑦) :=
1
𝑅

𝑁𝑅∑︁
𝑟=0

(
𝑤 z𝑡 (𝑥,𝑦) + (1−𝑤) z(𝑟 )𝑡 (𝑥,𝑦)

)
, (4)

where ∀𝑡 ∈ {𝑇, ...,𝑇−𝑁𝐶 }, (𝑥,𝑦) ∈ B𝑟 , and 𝑁𝐶 is the number of
editing steps at the beginning of denoising. The weight𝑤 ∈ [0, 1]
determines the weight of linear interpolation between the specific
subject latent z(𝑟 )𝑡 and the composed latent z𝑡 . It is formulated by
considering the ratio of the current denoising timestep between 𝑁𝐶

and 𝑇 , such that 𝑤 = 1 −
(
𝑁𝐶 − (𝑇 − 𝑡)

)
/𝑁𝐶 . At the beginning of

the denoising process (so at 𝑡 = 𝑇 ), the compositing fully prioritizes
the subject latent z(𝑟 )𝑡 in each local region in the associated bbox
B𝑟 . As 𝑡 decreases, 𝑤 gradually increases, giving higher priority
to composed latent z𝑡 . This process concludes when 𝑡 = 𝑇 − 𝑁𝐶 ,
resulting in 𝑤 = 1, thus the remaining denoising steps are global
and ignore the per-subject latents.
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4 EXPERIMENTS
Here we briefly present experiments and quantitative evaluations.
Please see our supplementary materials and the project video for
full experiments, including implementation details, limitations, abla-
tions, and finer details. Except for Fig. 6, the figures show an evenly
spaced temporal sampling of frames from the videos.

4.1 Main results
Fig. 5 and Fig. 6 show our main result on trajectory control of a
single subject. We use the same prompts to compare TrailBlazer to
MotionCtrl [51], Videocomposer [50], and Peekaboo [18], which
are current state-of-the-art approachs for bbox guidance of video
generation. For VideoComposer, their handcrafted motion guidance
was not available in the paper’s repository at the time of writing.2
Instead, we use TrailBlazer’s output as the input for VideoComposer,
with the synthesized video serving as motion guidance and the first
frame as the initial input frame. For MotionCtrl, we calculated the
mean of the bounding box to serve as the trajectory input.
Fig. 5 illustrates motion generated from linearly interpolated

bboxes starting at the left of the image and moving to the right.
The results from TrailBlazer demonstrate anatomically plausible
motion of the subject and a more accurate fitting of the subject
within the bbox. Further, all subjects (e.g., cat, bee, astronaut, and
clown fish) face in the direction that they move. Although the syn-
thesized subject’s motion generally follows the bbox in Peekaboo, it
does not fit the bbox well in our experience. Occasionally, artifacts
may emerge such as a rectangular object following the astronaut.
Moreover, our synthesized background exhibits better visual quality.
The background often appears plain, blurry, or lacks detail behind
the subject in Peekaboo.
Next, as depicted in Fig. 6, TrailBlazer excels in cases where the

synthesized subject’s location, size, and speed are strongly varied.
For example, the tiger walks along the road in a perspective view
induced by the changing bbox size. The whale gracefully descends
into the ocean during the latter part of its jumping motion. The
horse accurately follows a zigzag path, simulating a galloping mo-
tion. Remarkably, the dog seamlessly follows a large number of
keyframes (8 keyframes) within a 24-frame video clip, covering the
distance from one boundary to the opposite in approximately 2
frames. The clownfish fits into a tiny bounding box. These successes
are generally not evident in the other approaches.

TrailBlazer also provides innovative functionality in T2V subject
editing as shown in Fig. 8. Subject morphing (Fig. 8, left) involves
smoothly interpolating the subject identity. Related concepts have
earlier been shown for image generation in MagicMix [23] with,
for example, the “corgi coffee machine”. Morphing [4] has long
been used in the entertainment and VFX industries, for example in
the Hulk movies [39]. Conversely, when the prompt is held fixed
TrailBlazer preserves the identity, while changing bbox locations
and aspect ratios induce realistic perspective effects, as seen (Fig. 8,
Right) where the simulated fish swims respects the bbox size by
swimming toward and away from the virtual camera.

Multi-subject synthesis is generally challenging, particularlywhen
the number of objects exceeds two. We delve into this issue in the

2https://github.com/ali-vilab/videocomposer/issues/24

Method FVD(↓) FID(↓) mIoU(↑) CD(↓) CS(↑)
MotionCtrl 1586.45 150.93 0.15 13.68% 32.28

Videocomposer 1691.86 151.57 0.09 13.69% 31.21
Peekaboo 1788.06 170.33 0.23 8.58% 31.55
TrailBlazer 1596.98 172.72 0.26 7.27% 30.60

Table 1. Quantitative results for static bbox.

supplementary materials. In Fig. 9, we present experiments with
two subjects, a cat and a dog. The synthesis of the cat and dog
in isolation is depicted in the first and second column, serving as
a baseline for comparison. We also show eight results combining
different environments (“... on the moon”, “... in the park”) after the
composed prompt (“A [white cat] and a [yellow dog] running...”).
This experiment demonstrates the flexibility of TrailBlazer in syn-
thesizing subjects under varied environmental conditions. Notably,
the interactions between the background and subjects appear plau-
sible, as seen in the cast shadows, and the reflections and splashes
in the swimming pool case. The results also show some artifacts
such as extra limbs that are inherited from the underlying model.

4.2 Quantitative evaluation
The field of controllability in generative video lacks standardized
quantitative metrics and visual evaluation is essential – please refer
to our video. In particular there are no metrics that reflect depth
and orientation, e.g. the ability to make an object appear to move
in perspective toward the virtual camera and then turn away. Al-
though mean intersection over union (mIoU) is an obvious measure
for bounding box guidance (and our performance exceeds that of
baseline methods), it is not clear if this is the ideal measure for our
intended high-level soft guidance.
Despite these reservations, it is helpful to provide some form

of quantitative evaluation. Here we follow the methodology in [5,
16, 18]. We report Fréchet Inception Distance [12] (FID), Fréchet
Video Distance (FVD), mIoU, centroid distance (CD) [18], and CLIP
similarity (CS) metrics on all image frames of 400 randomly selected
videos from the AnimalKingdom dataset [28]. As described in the
supplementary materials, we evaluate methods using the prompt
set published in [18]. The mIoU evaluation utilizes the OWL-ViT-
large open-vocabulary object detector [26] to obtain the bbox of the
synthesized subject.
For a fair quantitative evaluation, we generated baseline results

using Peekaboo, Videocomposer, and MotionCtrl without additional
conditioning input (e.g., sketch, depth map). The comparisons used
24-frame video sequences. We conducted two experiments with
random keyframing for our work: Static bbox, and Dynamic bbox.

The bboxes in the Static bbox experiments are constant across all
keyframes, where the top left corner is randomly generated in the
second quadrant, and the width and height is randomly selected be-
tween 25% to 50% of the image resolution. This experiments mainly
evaluate the method without considering the bbox motion. The
result is summarized in Table. 1. As observed, our performance is
not far from other approaches across all metrics, while our mIoU,
and CD are superior to that of other approaches.
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Method FVD(↓) FID(↓) mIoU(↑) CD(↓) CS(↑)
MotionCtrl 1938.03 154.62 0.18 12.28% 32.12

Videocomposer 2117.43 134.89 0.17 10.68% 31.40
Peekaboo 1613.27 167.09 0.25 9.18% 31.32
TrailBlazer 1679.94 147.29 0.36 6.83% 30.32

Table 2. Quantitative results for dynamic bbox.

Table. 2 presents the results of the Dynamic bbox experiments to
assess the effectiveness of movement control in each method. The
bboxes were generated by randomly specifying between two and
six keyframes alternately located on the left and right, causing the
subject to run from one side to the other and back as shown in Fig. 6.
The location and size of all bboxes are randomly selected for each
video, with the height and width of each bbox chosen between 10%
and 50% of the image size.

In Table. 2, the notable improvement is our mIoU score compared
to Peekaboo and other methods. This can be attributed to Trail-
Blazer’s proficiency in following complex bbox movement including
generating perspective/depth effects with dynamically changing
bboxes (Fig. 6, 8). For instance, the running dog (Fig. 6) is a clear ex-
ample where the dog generated from other methods failed to follow
fast bbox motion. Additionally, TrailBlazer has the best mIoU/CD,
while its FVD is second-best. This discrepancy might be explained
by the nature of the AnimalKingdom [28] dataset, which mostly
contains actions with relatively limited translation (walking, eat-
ing, grooming, etc.). Running motion such as the dog in Fig. 6 is
generally absent in their dataset, possibly contributing to the lower
FVD score in our case. Comparing to Peekaboo, our better FID score
suggests that the individual frame quality in our video clip is better.

In summary, the objective scores in Tables 1, 2 do not give a clear
ordering of methods. However, recall that our goal is controlling
movement. TrailBlazer achieves this, showing significantly better
mIoU/CD scores. Equally important, TrailBlazer shows improved
subjective movement, with moving objects facing in plausible di-
rections and having realistic motion (please refer to our video).
Lastly, note that Videocomposer and MotionCtrl are training-based
methods, while Peekaboo and TrailBlazer are zero-shot methods.

5 LIMITATIONS
Our method shares and inherits common failure cases of the un-
derlying diffusion model. Notably, at the time of writing, models
based on CLIP and Stable Diffusion sometimes generate deformed
objects and struggle to generate multiple objects and correctly as-
sign attributes (e.g. color) to objects. We show some failures in Fig. 7
(Right-Bottom). For instance, we requested a red jeep driving on the
road but the synthesis shows it sinking into a mud road. The panda
example shows the camera moving instead of the panda itself. The
red car has implausible deformation, and Darth Vader’s light saber
turns into a surf board. The length of the resulting video clips is
restricted to that produced by the pre-trained model, for instance,
the 24 images in the case of ZeroScope. This is not a crucial limita-
tion, as movies are commonly (with some exceptions!) composed
of short “shots” of several seconds each. The bbox guides object

placement without precisely constraining it. This is an advantage as
well, however, since otherwise the user would have to specify the
exact x-y aspect ratio for objects, a complicated task for non-artists.

6 ABLATIONS
We conducted ablation experiments on the number of trailing atten-
tion maps and the number of temporal steps.

Trailing attentionmaps. Fig. 7 (Left) shows an ablation varying
the number of trailing attention maps used in our spatial cross
attention process, from the top row without trailing attention maps
(|T | = 0) to the bottom row with |T | = 30 trailing maps. The
guiding bbox moving from left to right is annotated in green. It is
observed that with no trailing maps the astronaut remains static at
the image center. In contrast, the synthesis with a large number of
trailing attentions can lead to failed results such as a flag rather than
the intended astronaut. A good number of edited trailing attention
maps is between |T | = 10 and |T | = 20.

Temporal attention editing. We further show an ablation test
in Fig. 7 (Top-Right) with a varied number of temporal attention
editing steps. We take the case of the astronaut experiment with
|T | = 10 mentioned above, and set 𝑁𝑀 = 0 (no editing steps), and
𝑁𝑀 = 10. The result with 𝑁𝑀 = 0 shows a red blob moving from
left to right. The value 𝑁𝑀 = 10 gives a satisfactory result for the
astronaut, but the background along the bbox path is missing. From
these results we see that a reasonable balance between spatial and
the temporal attention editing must be maintained, while extreme
values of either produce poor results. An intermediate value such
as 𝑁𝑀 = 5 used in most of our experiments produces the desired
result of an astronaut moving over a moon background.

7 CONCLUSION
We have addressed the problem of controlling the motion of objects
in a diffusion-based text-to-video model. Specifically, we introduced
a combined spatial and temporal attention guidance algorithm, Trail-
Blazer, operating in the pre-trained ZeroScope model. The spatial
location of a subject can be guided through simple bounding boxes.
Bounding boxes and prompts can be animated via keyframes, en-
abling users to alter the trajectory and coarse behavior of the subject
along the timeline. The resulting subject(s) fit seamlessly in the spec-
ified environment, providing a viable approach to video storytelling
by casual users. Our approach requires no model finetuning, train-
ing, or online optimization, ensuring computational efficiency and
a good user experience. Lastly, the results are natural, with desir-
able emergent effects such as perspective, motion with the correct
object orientation, and the interactions (shadows, dust, splashes)
between object and environment arising automatically. While our
visual results inherit the limitations of the underlying open source
T2V model (limited resolution, multiple limbs, etc.), our combined
spatial and temporal attention guidance algorithm may generalize
to future models that use standard self- and cross-attention modules.
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TrailBlazer Peekaboo VideoComposer MotionCtrl

Fig. 5. Baseline Comparison: Rigid bbox moving from left to right. The same prompt is used across each method (from top row): “An [astronaut]
walking on the moon”; “A [cat] walking on the grass field.”; “A macro video of a [bee] pollinating a flower”; “A [clown fish] swimming in a coral reef”.

Tr
ai
lB
la
ze
r

Pe
ek
ab
oo

Vi
de
oC
om
po
se
r

M
ot
io
nC
tr
l

Fig. 6. Baseline Comparison: Dynamic moving bbox. The first column of each block schematically illustrates the bbox keyframes, where the green bbox is
guided by the almond-colored motion vector. For the synthesized sequences with complex motion from 1st to 4th row, the frames shown in the figure are
denoted by the red dots along the trajectory in the first column. The last sequence challenges the methods to fit the subject in an extremely static small bbox.
Prompt used: “The [tiger] walking on the street; A photo realistic [whale] jumping out of water while smoking a cigar”; “A [dog] is running on the grass”; “A
[horse] galloping fast on a street”; “A [clownfish] swimming in a coral reef.”
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Ablation: number of trailing maps
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Fig. 7. Ablations and Limitations. (Left) The rows from top to bottom show the video synthesis with 0 (no trailing maps), 10, 20, and 30 trailing maps. The
number of temporal edit steps is five in all cases. (Top-Right) The first and second rows show the result produced by no temporal attention editing, and 10
editing steps, respectively. The number of trailing maps is 10 for both cases. (Bottom-Right) Failure cases that we discussed. Prompts used for this figure: “An
[astronaut] walking on the moon”, “A [red jeep] driving on the road”, “A [red car] driving on the highway”, “a [panda] eating bamboo”, and “[Darth
Vader] surfing in waves”

PerspectiveMorphing

Fig. 8. Advanced functionality. (Left: Morphing) Each experiment shows a subject linearly interpolated between the first and the last frame. Prompts used
starting from the first row: “A [tiger → elephant] walking in the wild park.”, “A [parrot → king penguin] walking on the beach”, “A [cat → dog] walking
on the grass”, and “A [cat → golden fish] walking on the grass”. (Right: Perspective) Size changes in the bboxes result in movement towards/away from the
virtual camera. Prompt: “A [fish] swimming in the sea”.

…moon …park …forest …playground …city …garden …snow …poolcat dog

Fig. 9. Scene compositing. The two images in each column are the first and end frame of the synthesized video. The first two columns on the left with
annotated bboxes show the video synthesis of the two subjects: “cat” and the “dog” guided by the green bbox. Each subsequent column shows the compositing
result of a varied environment appended to the prompt.
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