

Universal Capture: Image-based Facial Animation and Rendering for The Matrix sequels George Borshukov, Dan Piponi, Oystein Larsen, J.P. Lewis, Christina Tempelaar-Lietz

ESC Entertainment

The Challenge

- Our task was to produce photorealistic animated renditions of known actors:
 - Keanu Reeves, Laurence
 Fishburne, Hugo Weaving
- The synthetic reproductions needed to intercut seamlessly with footage of the real actor

A Daunting Task

- Photorealistic human faces are the ultimate challenge for computer graphics
- Faces are particularly scrutinized by human observers
 - We grow up and then spend most of our lives looking at faces
 - Incredible variety, richness & subtlety of human facial movement
 - Human viewer's extreme sensitivity to facial nuances
- No examples of believable human face at the time

Motivation

- Traditional facial animation (blendshapes, muscle deformers) would not produce realistic results re-creating a real actor
- Believable facial rendering requires textures that change over time
 - Color changes due to blood flow, skin strain
 - Fine wrinkles form and disappear
 - Microscopic self-shadowing effects

Universal Capture

- Our previous experience with image-based and computer vision approaches (*What Dreams May Come, Matrix I*) suggested a "non-traditional" approach
- Capture a 3-D recording of an actor's performance
- Play it back with different camera and lighting
- Combine two powerful vision techniques: optical flow and photogrammetry

Hi-Definition Capture

- Five synchronized cameras capture the actor's performance in ambient lighting
- Sony/Panavision HDW-F900 cameras
 - Portrait mode 1080x1920 resolution
 - 60i for maximal temporal information
 - 1/500th sec shutter to minimize motion blur
- Real-time capture/storage
 - Computer workstations with HD capture boards
 - 21 terabyte disk arrays
 - Tape robot for overnight data backup

- Optical flow in each camera view
- Photogrammetric reconstruction of camera locations
- Core algorithm "warps" a neutral face model:
 - Project vertices into each camera
 - Find 2-D motion of each vertex
 - Project back into 3-D
 - Triangulate to obtain 3-D motion

Optical Flow "drift"

- Optical flow errors accumulate over time
- Partially address by reverse optical flow
- After a visible error has accumulated
 - Manually correct using keyshapes
 - Algorithmically interpolate and propagate the correction back through the performance

- Underlying rigid (skull) transformation
- Recovered curves estimated using a least squares procedure
- Can apply signal processing to preserve nuance

Subtracting • the rigidly transformed neutral face from the 3-D reconstruction (left) gives the animated facial deformation (right)

Subtracting • the rigidly transformed neutral face from the 3-D reconstruction (left) gives the animated facial deformation (right)

Animated Texture Map Extraction

- Image re-projection
- Merge ambient images from multiple
 camera views
 over time to
 produce
 seamless
 animated UV
 color maps

Animated Texture Map Extraction

• Image re-projection and blend regions

Animated Texture Map Extraction

• Regions of seamless blend in UV space

Early Observations – Winter/Spring 2000

- Surface detail on the face (of human skin)
 - Unique: pores, wrinkles, moles, scars, etc.
 - Highly variable spatially
 - Very small scale ~100 micron features
 - Has extremely complex pattern
 - Hard to paint
 - Even harder to generate procedurally
- Color texture detail also unique and complex
 - We knew we can address that thanks to our photogrammetry and image-based rendering

Early Observations – Winter/Spring 2000

- Reflectance is BRDF enough or ...
- Skin is *translucent*; conventional shaders will not work
- Lighting is just as important
 - Area lights with ray traced shadows
 - Lights from every direction of the environment
 - Does "global illumination" play a role?

BRDF Capture

- Marschner et. al. Image-based BRDF measurement
- Had lots of cameras lying around from the Bullet Time rig and a way to trigger them simultaneously
- Capture actor illuminated from various lighting directions with 30 cameras around the head

BRDF Image Alignment

- Photogrammetry used to reconstruct the camera positions
- Color calibrated, image space aligned images from each camera brought into a common UV space by projection onto cyberscan model
- The registered images implicitly contain skin reflectance for various incoming and outgoing light directions

Data-Derived Analytical BRDF

- Due to imperfections in our color calibration, image alignment, and cyberscan it was hard to fit a model automatically
- Parameters for an approximate analytical BRDF are derived from this data:
 - Lambert-like diffuse component
 - Phong-like specular with Fresnel effect (acknowledgement: Matthew Landauer)

Surface Detail

- Applying BRDF to existing model without bump map detail
 - Images were disturbingly fake
 - Tried procedural cellular texture approach dismal failure
 - Tried extracting bump detail from color map (already had access to UCap color texture maps) – better result but hardly photorealistic
- Convinced that we had to scan the real actor's facial detail somehow

Raw Facial Geometry

- Plaster casts of the actors
 - Acquired through the movie production
- Aruis3d scanning technology
 - ~\$20 million of government funding over 10+ years
 - Service provided by XYZRGB
 - 100-micron scan of actors' faces
 - Highest resolution model: 10 million triangles
 - Provided multiple resolutions

Agent Smith Cast/Scan

Morpheus Cast/Scan

Detail Extraction Approach

- Base resolution quad mesh (constructed with Paraform)
- Use as subdivision surface
- Residual displacement obtained with mental ray lightmapping and custom shader
 - Ray trace from the subdivision surface to the raw scan
 - Store distance to intersection in a UV map

Agent Smith Detail Extraction

Agent Smith Bump

Neo Cast/Bump

Subsurface Scattering

- We were very close but the renders looked more like granite than skin – Henrik was right!
 - Existing subsurface models: complex, also not 100% convincing
- Instead, approximately simulate light diffusion in the image map domain
 - Different diffusion length for different colors
 - Heavily translucent areas (ears) handled by ray tracing

Rendering

- Lighting Reconstruction Toolkit
 - image-based lighting
 approach gave us the
 realistic lighting from an
 environment

- Renderer: mental ray
 - Lightmapping
 - Ray traced shadows
- Reference photo shoot with the actors to verify our results

Measured Surface Reflectance(BRDF) in Film Production – Realistic Cloth Appearance for The Matrix Reloaded

Motivation

- Plastic look of computer graphics
- Analytical reflectance models few and limited
- Had to exactly match the actors' costumes – full CG images needed to inter-cut with live action

Cloth Samples

Measurement Device

- SOC-200 Bidirectional Reflectometer (6' x 10' base, 7' height)
- Price tag \$700,000, operating cost \$250/ hour
- Designed for Lockheed Martin to be used in development of Stealth aircraft (B2, F16, F22)
- Able to get access only because designers' children loved *The Matrix*

Rendering

- Efficient implementation
- mental ray material shader
 - Argument: a resampled csv file
 - Color/Bump from photos of ambient texture swatches

Rendering

 Photographic reference shoot with the actors to verify the accuracy of our results

Real-world Lighting Reconstruction

