Julia language

outline

- Faster
- Much less code (sometimes)

- Creativity

+ Generic programming

- Composable

2 apologies

Question 1: where does ML-in-Julia shine?

(A) Runtime speed.

Standard Julia story there, really. This is most noticable compared to PyTorch, at least when
doing operations that aren’t just BLAS/cuDNN/etc.-dominated. (JAX is generally faster in my
experience.)

(B) Compilation speed.

No, really! Julia is substantially faster than JAX on this front. (It really doesn’t help that JAX is
essentially a compiler written in Python. JAX is a lovely framework, but IMO it would have been
better to handle its program transformations in another language.)

It's been great watching the recent progress here in Julia.
(C) Introspection.

Julia offers tools like @code_warntype, @code_native etc. Meanwhile JAX offers almost
nothing. (Once you hit the XLA backend, it becomes inscrutable.) For example I've recently had
to navigate some serious performance bugs in the XLA compiler, essentially by trial-and-error.

(D) Julia is a programming language, not a DSL.

JAX/XLA have limitations like not being able to backpropagate while loops, or being able to
specify when to modify a buffer in-place. As a “full” programming language, Julia doesn’t share
these limitations.

Julia offers native syntax, over e.g. jax.lax.fori_loop(...).

(PyTorch does just fine on this front, though.)

Imagine working in an environment that has both the elegance of JAX (Julia has arrays, a jit
compiler, and vmap all built-in to the language!) and the usability of PyTorch (Julia is a language,
not a DSL!) Julia still has issues to fix, but come and help pitch in if this is a dream you want to
see become reality.

https://discourse.julialang.org/t/state-of-machine-learning-in-julia/74385/4

Introduction: autodiff, adoption

- 2010: "Matlab has a huge number of libraries for

numerics/machine learning. Python will never catch up."

- 2020: "Python has a huge numlber of libraries for

numerics/machine learning. Julia will never catch up."

hold rebuttals till end?

Not Secure — yxliu.group &

ABv Deepv Blogv Codev w Studyv Hwv Hv Vicv cvpapers gs gbk gcite vrv jp+ mend Planev citu wl w2 mdicg gamespc s

Why Julia

| ran into Julia about five years ago. Back to those days, | was in love with Python which greatly increased my
coding productivity. However, | was suffering from its slowness. Before Python, | developed scientific software
using C++ which is fast but it is too complicated and sometimes it made me crazy to implement a specific
there was a programming language which combines the performance of C++ and productivity of Python. | tried to
search terms like “speed and scripting programming language” in Google and | found Julia, which was in its very
early stage but showed its great potential. After that, | payed special attention on it. Now Julia is in version 1.3.
After ten years intensive developing, it matures into a stable language. Therefore | decide to give it a try.
Scattering.jl is my first package written in Julia.

what attracts me most are listed below:

e The syntax is even more clean and concise than Python.

e Julia's mathematical syntax makes it an ideal way to express algorithms just as they are written in papers,
owing to the support of Unicode characters and other syntax sugar added by the language. This drastically
increase the readability and maintainability of the code.

e Multiple dispatch mechanism (allowing multiple functions to have the same name) allows you to write
reusable codes more easily. And the functionality is smooth to be extended by others.

e High level support for GPU computing and parallel programming.

e Production ready numerical and machine learning packages: the state-of-the-art differential equations
ecosystem (DifferentialEquations.jl), optimization tools (JuMP.jl and Optim.jl), iterative linear solvers
(IterativeSolvers.jl), a robust framework for Fourier transforms (AbstractFFTs.jl), and powerful tools for
deep learning with automatic differentiation and GPU acceleration (Flux.jl).

Nature published an article to promote Julia: Julia: come for the syntax, stay for the speed.

Let’s get a little bit of taste of Julia:

Usage

Here is a simple example to call Python's math.sin function:

using PyCall
math = pyimport("math")
math.sin(math.pi / 4) # returns =~ 1/V2 = 0.70710678...

Type conversions are automatically performed for numeric, boolean, string, 10 stream,
date/period, and function types, along with tuples, arrays/lists, and dictionaries of these
types. (Python functions can be converted/passed to Julia functions and vice versa!) Other
types are supported via the generic PyObject type, below.

Multidimensional arrays exploit the NumPy array interface for conversions between Python
and Julia. By default, they are passed from Julia to Python without making a copy, but from
Python to Julia a copy is made; no-copy conversion of Python to Julia arrays can be
achieved with the PyArray type below.

Keyword arguments can also be passed. For example, matplotlib's uses keyword
arguments to specify plot options, and this functionality is accessed from Julia by:

plt = pyimport("matplotlib.pyplot")

X = range(0;stop=2%pi,length=1000); y = sin.(3%x + 4%cos.(2%x));
plt.plot(x, y, color="red", linewidth=2.0, linestyle="--")
plt.show()

function mysum(A)

thesum = 0
for i=1:1length(A)
thesum += A[1i]

return thesum

tensorflow: tf.reduce_sum(tf.multiply(tf.expand_dims(a,-1), w), axis=0)

N a'a W]

Bg1

T T T W b Ll b bR L D g

—p~ . .
1 / ((1/(1-A)) + (yo' * Bgo * yo)) # gradient scaling

A)

= A-(1-A)*nN*A*A/(1+(1l-A)*n*tr(A)) # updated inverse covariance matrix

56 CHAPTER 4.LOCALDESCENT

with € [0,1] often set to B = 1 x 10~*. Figure 4.1 illustrates this condition. If
B = 0, then any decrease is acceptable. If p = 1, then the decrease has to be at
least as much as what would be predicted by a first-order approximation.

A

%WX) f(x + ad)

“Vaf(x)

v

If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition. We can thus start with a large
step size and decrease it by a constant reduction factor until the sufficient decrease
condition is satisfied. This algorithm is known as backtracking line search® because
of how it backtracks along the descent direction. Backtracking line search is shown
in figure 4.2 and implemented in algorithm 4.2. We walk through the procedure
in example 4.2.

function backtracking line search(f, Vf, x, d, a; p=0.5, B=le-4)
y, 9 = f(x), Vf(x)
while f(x + a*d) > y + B*a*(g-d)
a ‘=p
end
a
end

The first condition is insufficient to guarantee convergence to a local minimum.

Very small step sizes will satisfy the first condition but can prematurely converge.
Raclktraclkling line coarch avaide mrematiire convercence bv accentine the larecest

Figure 4.1. The sufficient decrease
condition, the first Wolfe condition,
can always be satisfied by a suffi-
ciently small step size along a de-
scent direction.

* Also known as Armijo line search,
L. Armijo, “Minimization of Func-
tions Having Lipschitz Continu-
ous First Partial Derivatives,” Pa-
cific Journal of Mathematics, vol. 16,

no. 1, pp. 1-3, 1966.

Algorithm 4.2. The backtracking
line search algorithm, which takes
objective function f, its gradient
vf, the current design point x, a
descent direction d, and the maxi-
mum step size a. We can optionally
specify the reduction factor p and
the first Wolfe condition parameter
B.

Note that the cdot character -
aliases to the dot function such that
a-b is equivalent to dot (a,b). The
symbol can be created by typing
\cdot and hitting tab.

function backtracking line search(f, Vf, x, d, a; p=0.5, B=le-4)
Y, § = f(x), Vf(x)
while f(x + a*d) > y + B*a*(g-d)
a *=p
end
Qa
end

latex/unicode variable names

In [6]: function discriminantregularizer(y,labels,m; A=LAMBDA, N=ETA, update=UPDATE)

y = vec(y)

M = size(m.l,2)

B labels[1] # B(n) class label for the nth sample

Mgo = m.u[:,B] # U[B(n)](n-1) exponentially weighted mean of class f(n) before the nth sam
ple

Bgo = m.B[:,:,B] # B[B(n)](n-1) exponentially weighted inverse covariance matrix of class P(
n) before the nth sample

Mgt = A * Hgo + (1-A) * y

yo =y = Hpo # ybar[L-1](n) the centralized feature vector
z = Bgo * yo # unscaled gradient
€ =1/ ((1/(1-N)) + (yo' * Bgo * yo)) # gradient scaling

A = (1/N)*(Bgo - z*z'*g)
Bg1 = A-(1-A)*n*A*A/(1l+(1-A)*n*tr(A)) # updated inverse covariance matrix

Vg=0*y # 0*y matches y's array type, zeros(size(y)) may not.
g = m.g[1]
for j=1:M

if (j!=B)

Mj=m.u[:,]]
Bj=m.B[:,:,]]
Apjo=pgo-p;
Ap;i=pg1-y;
(on=(A|Jjo '*BBO*AIJJ-O)
O(j1=(A|Jj1 '*BBI*AIJJ'I)
Cj0=(Auj0 '*Bj*Aujo)
CJ'1=(AL|j1 '*Bj*Aujl)
g=g-log(&;1)+log(&;o)-1log(T;1)+1log(T;jo)
qj=BBl*Auj1
Vg+=Bj*AHJ'1/(Auj1 '*Bj*Aujl)+qj*(l—qj' *(y-Hp1))/(le
end
end

if training() # Store Vg if differentiating
m.Vg .= =2%(1-A)*Vg

end

if update # Update state if specified
m.g[l] =g
m.B[:,:,B] .= Bg:

m.u[:,B] .= M1
end

Symbolic derivative in 2D

Let's see what happens when we perturb by small amounts § in the x direction and € in the y direction
around the point (a, b):

p=" 0.07

’[as bs 6) 6]

@variables a, b, &, €
image = » [a+5+0070b+°, b+e+007(atd)]

image = expand.(T(p)([(a + 8), (b +€)]))

2x2 Matrix{Text{Num}}:
1.0 0.14b
0.14a 1.0

jacobian(T(p), [a, b]) .|> Text
» [§ + 0.14be, €+ 0.14ad]

jacobian(T(p), [a, b]) * [5, €]

wSymbolics.Num[

§ — 0.076* + 0.07(b + ¢€)°

e —0.07a® + 0.07(a + §)°
image - T(p)([a, b])
> [0.07 + 0.07(b + ¢)* ot o 0.07a® +0.07(a + 8)° Olhm]

simplify. (expand. (image - T(p)([a, b]) - jacobian(T(p), [a, b]) * [5, €]))

Tools of the trade:
Julia and Python

e Julia: Simple, unified interface with autodiff.

Decent error messages. ju Ii..a

* More support from course materials.

* Python: Allowed, but initially can't use
frameworks' network layers, initializers, or
optimizers.

A

e Suggested: Jax, PyTorch

« Gotchas: need to learn both Python and a
framework on top. Bad error messages.

function (a::Dense)(x::AbstractVecOrMat)

W, b, a.weight, a.bias, a.o

return o.(Wkx .+ b)

end

Question about source code of pytorch

linyu Aug '18

Where can | find the source code of torch.mm?

created last reply e
| 2 348 2 2 1 . 9y
Aug 18 Aug 18 replies views users likes link -
5% SimonW ¢ Simon Wang Aug '18

It eventually dispatches to

https://github.com/pytorch/pytorch/blob/2e0dd8690320fb1a7ecd548730824c1610207179/aten/src/ATen/
native/LinearAlgebra.cpp#L136-L148 58 , which calls blas gemm.

struct Dense{F,S,T}
W::S
b::T
o::F

end

Dense(W, b) = Dense(W, b, identity)

function Dense(in::Integer, out::Integer, o = identity;
initW = glorot_uniform, initb = zeros)
return Dense(initW(out, in), initb(out), o)
end

@functor Dense

function (a::Dense)(x::AbstractArray)
W, b, 0o =a.W, a.b, a.o
o.(Wsx .+ b)

end

mutable struct ADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict

end

ADAM(n = 0.001, B = (0.9, 0.999)) = ADAM(n, B, IdDict())

function apply!(o::ADAM, x, A)
n, B = o.eta, o.beta
mt, vt, Bp = get!(o.state, x, (zero(x), zero(x), B))
@ mt = B[1] = mt + (1 - B[1]) * A
@ vt = B[2] % vt + (1 - B[2]) = A™2
@ A= mt/ (1 -Bpl1l]) /7 (V(vt /7 (1 - Bpl[2])) + €) = n
o.state[x] = (mt, vt, Bp .* B)
return A
end

Flux: The Julia Machine Learning Library

Fluxis a library for machine learning. It comes "batteries-included" with many useful tools built in, but
also lets you use the full power of the Julia language where you need it. We follow a few key principles:

e Doing the obvious thing. Flux has relatively few explicit APIs for features like regularisation or
embeddings. Instead, writing down the mathematical form will work - and be fast.

¢ You could have written Flux. All of it, from LSTMs to GPU kernels, is straightforward Julia code.
When in doubt, it's well worth looking at the source. If you need something different, you can easily roll
your own.

¢ Play nicely with others. Flux works well with Julia libraries from data frames and images to
differential equation solvers, so you can easily build complex data processing pipelines that integrate
Flux models.

computing more
accessible and fun.

Simple, reactive programming environment for Julia

REACTIVITY

Interactivity as a
fundamental principle

Just like a spreadsheet, Pluto understands variable links
between code cells, and will re-run a cell when a dependency

changes.

Reactivity means interactivity

Select All N N .
Your programming environment becomes interactive by splitting your
\. ear code into multiple cells! Changing one cell instantly shows effects on
u n all other cells, giving you a fast and fun way to experiment with your

u quadrat model.

D no\"\’\\n In this example, changing the parameter A and running the first cell will
directly re-evaluate the second cell and display the new plot.

2x2 Array{Float64,2}:

-0.4 -1.8
1.8 8.41
A=1[-.4- T
1 .42
3

e

Sliders, buttons and more!

Pluto lets you bind a Julia variable to an GUI element. Moving a slider
from O to 100 will actually change one of your variables from @ to 100!
Combined with reactivity, this is a very powerful tool!

@bi x html"<input type=range>"

» [35, 70, 350]
[x, x%2, x%10]

It's that simple to make your Julia code come to life! That's because
reactivity and widget interactivity are the same concept! Less to learn,
more to discover.

5,

The package PlutoULjl contains lots of common widgets like sliders,
textfields and buttons. Need something different? PlutoULjl was made by
us, but anyone can create their own special widgets! We give you full

The unreasonable effectiveness of the
Julia programming language

Fortran has ruled scientific computing, but Julia emerged for large-scale numerical work.

LEE PHILLIPS - 10/9/2020, 4:15 AM

Q JuliaCon 2020 | Keynote: Scientific Machine Learning | Prof Karen Will... Y ~»
Watch later ~ Share

juliacon Keynote: Karen
2020 Willcox

Kare » illcox

computing

@Pumas O JUSPAY - MyEm

JEFFREY SARNOFF

|l e
A Vercel

R =~

sticker

Watch on 3 YouTube

Ain't no party like a programming language virtual conference party

I've been running into a lot of happy and excited scientists lately. “Running into” in the virtual
sense, of course, as conferences and other opportunities to collide with scientists in meatspace
have been all but eliminated. Most scientists believe in the germ theory of disease.

Anyway, these scientists and mathematicians are excited about a new tool. It's not a new particle
accelerator nor a supercomputer. Instead, this exciting new tool for scientific research is... a
computer language.

ArFS TECHNICA

The Expression Problem, via extended analogy

The concept of the “expression problem” arises in the study of the design of computer languages.
It is part of the domain of computer science, and so the existing explanations of its meaning,
implications, and the various ways around the problem tend to be abstract and rely on a
specialized terminology. But we can do better. It's possible to describe all the issues involved by
using an analogy to cooking.

The computer science terms that we would like to analogize are functions/programs, data types,
and libraries/modules/packages. Briefly, functions or programs are procedures for taking some
input, doing something to it, and producing some output. Data types are collections of numbers
or other information, which may have various kinds of structure, that the functions operate on.
Libraries, etc., are collections of functions, along with descriptions of the data types that they
work with, bundled together to perform a set of related tasks. An example of a library would be a
set of functions for drawing graphs. The individual functions in the library might be for drawing
different types of graphs, like pie charts and histograms. The data type for a pie chart, for
example, would be a list of pairs of elements, with the first being a word or phrase and the
second a percentage.

For anyone who has spent time in the kitchen creating dishes from recipes, this analogy will be
fairly direct and natural. The library or package becomes the recipe book; imagine a somewhat
focused book about making desserts, or soups, for example. The functions or programs can be
thought of either as complete recipes for making a dish or as techniques or procedures, such as
how to sauté. We can visualize them as gears, as they are the machinery for processing raw
ingredients. The data types are the raw ingredients in this exercise.

Imagine our recipe book is organized in such a way that recipes only work with certain
ingredients. For example, you can look up “how to sauté” and find the procedure, the set of steps,
for sautéing onions or sautéing shrimp. All these procedures are different, as they use different
ingredients. If recipes work like a computer language, the ingredient lists are part of, in fact
enclosed within, the recipes.

O]
Recipes that only work with specified ingredients.

A new ingredient

There is more than one way to organize a recipe book, however. What if it were organized arot
ingredients, rather than around methods of cooking? For each ingredient, there would be a se
techniques or methods that go with it. Continuing with our iconography, this could be
represented with this picture:

adoption

The rapid adoption of Julia, the open source, high level programing language with roots at
MIT, shows no sign of slowing according to data from Julialang.org. In 2020, the number of
downloads jumped 87 percent to more than 24 million (2020 v. 2019) and the number of
available packages rose 73 percent to roughly 4800. Jan 13, 2021

Julia Update: Adoption Keeps Climbing; Is It a

Python Challenger?

By John Russell

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language
with roots at MIT, shows no sign of slowing according to data from
Julialang.org. In 2020, the number of downloads jumped 87 percent to more
than 24 million (2020 v. 2019) and the number of available packages rose 73
percent to roughly 4800. Last year (2019 v. 2018) the number of downloads
jumped 77 percent. In the most recent TIOBE index, Julia jumped from #47 to
#23 and TIOBE CEO Paul Jansen said Julia is the top candidate to jump into
the top 20 (used languages) next year.

Julia is hot.

(1

That's one of the things that makes Julia so powerful in the solution of these problems
[...] This integration gives Julia an advantage over other languages [...] we have been able
to develop these solutions in a very short period of time:

Ledn Alday, molecular modeling

(1

Julia is really the language that allows such a project to exist:

George Datseris, Dr. Watson, a scientific assistant

(1
Julia is a joy to program in:

Mauro Werder, Glacier ice thickness

(19

The Julia language [...] is a particularly agile tool:

Valeri Vasquez, Disease vector dynamics

(1

Julia was the obvious choice:

Rafael Schouten, Spatial simulations

(19

[Julia allows] me to harness tools from across disciplines to advance cancer research:

Meghan Ferrall-Fairbanks, Tumor dynamics

(19

This work has been very nice to do in Julia because of the nice abstractions that allow
very general code:

Vilim Stih, Zebrafish brain dynamics

({4

SemiseparableMatrices.|l

A Julia package to represent semiseparable and almost banded matrices

build 'passing
codecov | 92%

SemiseparableMatrix

A semiseparable matrix of semiseparability rank r has the form
tril(A,-1-1) + triu(B,u+1)

2 can construct a semiseparable matrix as follows:

HierarchicalMatrices.jl

FillArrays

This package provides a flexible framework for hierarchical data types in Julia.

Create your own hierarchical matrix as simply as:

julia> using HierarchicalMatrices

julia> @hierarchical MyHierarchicalMatrix LowRankMatrix Matrix
The invocation of the @hierarchical macro creates an abstract supertype AbstractMyHic¢
AbstractMatrix{T} and the immutable type MyHierarchicalMatrix , endowing it with fiel

HierarchicalMatrixblocks , LowRankMatrixblocks , Matrixblocks , and a matrix of intec
which type of block is active. The package comes pre-loaded with a HierarchicalMatrix .

See the example on speeding up the matrix-vector product with Cauchy matrices.

o
PaddedMatrices

Usage

This library provides a few array types, as well as pure-Julia matrix multiplication.

The native types are optionally statically sized, and optionally given padding to ensure that all col
following chart shows benchmarks on a 10980XE CPU, comparing:

e SMatrix and MMatrix multiplication from StaticArrays.jl.

e FixedSizeArray from this library without any padding.
e FixedSizeArray from this library with padding, named PaddedArray in the legend.

e The base Matrix{Float64} type, using the PaddedMatrices.jmul! method.

130-

BlockDiagonals.jl

Functionality for working efficiently with block diagonal matrices.

BlockDiagonals.BlockDiagonal — Type.

BlockDiagonal{T, V<:AbstractMatrix{T}} <: AbstractMatrix{T}

A matrix with matrices on the diagonal, and zeros off the diagonal.

LazyBandedMatrices.jl

A Julia package for lazy banded matrices

build ' passing
codecov 67%

This package supports lazy banded and bl~r~l-handad matricae far avam:

BlockBandedMatrices.jl

julia> using LazyBandedMatrices, La

julia> A = brand(10,10,1,1); A Julia package for representing block-block-banded matrices and banded-block-banded matrices

julia> ApplyMatrix(x, A, A)
10x10 ApplyArray{Float64,2,typeof(x*
0.191109 0.379118 0.318899 g
0.329746 0.728074 1.12126 0.
0.0341854 0.138194 0.95911 0. This package supports representing block-banded and banded-block-banded matrices by only storing |
0.0561613 0.823235 1.

non-zero bands.

A BlockBandedMatrix is a subtype of BlockMatrix of BlockArrays.jl whose non-zero blocks are bandi
construct a BlockBandedMatrix as follows:

1 # block bandwidths
4 # number of row/column blocks
cols = rows = 1:N # block sizes

BlockBandedMatrix(Zeros(sum(rows),sum(cols)), rows,cols, (l,u)) # creates a block-banded

BlockBandedMatrix(Ones(sum(rows),sum(cols)), rows,cols, (l,u)) # creates a block-banded
BlockBandedMatrix(I, rows,cols, (1,u)) # creates a block-banded

A RandedR1nckRandedMatrix has the added striictiire that the hlacks themselves are handed and cond

StaticArrays

Statically sized arrays for Julia

StaticArrays provides a frameworl|
StaticArray{Size,T,N} <: Abst Searchdocs
common array and linear algebra ¢

the type, and "static" does not nec Home

stable v

The package also provides some ¢

(or else embedded in your own tyg
SizedArray for annotating stand: Accessing banded matrices

Creating banded matrices
to make fast StaticVector s out«

Creating symmetric banded m
Speed Banded matrix interface

i
The speed of small SVector s, SM Eigenvalues

microbenchmark showing some ¢¢ |mplementation

Benchmarks for 3x3 Float

Matrix multiplication == 5.0x% speedup
Matrix multiplication (mutating) -> 1.8x speedup

BandedMatrices.jl

» Home

BandedMatrices.jl Documer

ToeplitzMatrices. |l

build passing coverage 74%

Fast matrix multiplication and division for Toeplitz and Hankel matrices in Julia

ToeplitzMatrix

A Toeplitz matrix has constant diagonals. It can be constructed using
Toeplitz(vc,vr)

where vc are the entries in the first column and vr are the entries in the first roy
example.

Toeplitz([1.,2.,3.]1,[1.,4.,5.])

is a sparse representation of the matrix

Il chriselrod / StructuredMatrices.|l Owatch~ 2 Hstar 1 YFork 0

<> Code (1) Issues 0) Pull requests o O Actions . .
TriangularMatrices
Provides support for structured matrices. My primary intere
matrices. build “unknown

coverage ' unknown

©- 100 commits ¥ 1branch £ 0 packat

codecov | unknown

Branch: master ~ New null raauast
ulia 0.6 and 0.7, but it is dramatically (>2x) faster or
.} sbadrian / CirculantMatrices. | ® watch - ¢add a few basic LAPACK type functions. | should als
h a lot of matrix operations. They take some time ¢
ion, but I'm sure it could be improved.
<> Code (1) Issues 0 i) Pull requests o O Actions |"l Projects o Wiki 1 Security 0o :

after a while, and | am not sure why. Could | be filli

No description, website, or topics provided. t of things that are parametrically typed.

©- 2 commits ¥ 1 branch ™ 0 packages © O releases 22 1 contrib
tend to add Cholesky decompositions, triangular m.

B il s Create new file | Upload files original name of this library (TriangularMatrices). T

e e e e e Latesth * it is optimized fairly well for A having a multiple o

M src Standard circulant algebra e AT e el

NSE lnitial ~ommit

’ ’

d8:4 = randmat(8,4);
TriangularMatrices.mul!(d8_4, a8, x8_4)

using BenchmarkTools

e e I Ll e e e | e e e el e e i e] B B R =l E ™] dud AN

HMatrices.jl

A package for assembling and factoring hierarchical matrices

docs stable docs dev () CI m codecov |72 %1 lifecycle experimental

Installation

Install from the Pkg REPL.:

pkg> add HMatrices 1=

Overview

This package provides some functionality for assembling as well as for doing linear algebra with
with a strong focus in applications arising in boundary integral equation methods.

For the purpose of illustration, let us consider an abstract matrix K with entry i,3j given by the evaluation of
some kernel function G on points X[i] and Y[jl, where X and Y are vector of points (in 3D here); that is,
K[i,j1=6(X[i]l,Y[j1) . This object can be constructed as follows:

using HMatrices, LinearAlgebra, StaticArrays 1=
const Point3D = SVector{3,Floaté4}
sample some points on a sphere
m = 100_000
X =Y = [Point3D(sin(8)cos(¢),sin(B)*sin(d),cos(8)) for (0,¢) in zip(mxrand(m),2mkrand(m))]
function G(x,y)
d = norm(x-y) + 1e-8
1/ (4mxd)
end
K = KernelMatrix(G,X,Y)

where we took G to be the free-space Greens function of Laplace's equation in 3D (to avoid division-by-zero we
added 1e-8 to the distance between points).

struct AutoregressiveMatrixAdjoint{T,V <: AbstractVector} <: AbstractAutoregressiveMatrixAdjoint{T,V}
p::T

pt::TV

invOmp2t::TV
rinvOmp2t::TV

T::V

end

function AutoregressiveMatrixLowerCholeskyInverse(p::T, t::AbstractUnitRange) where {T}
invOmp2t =1 / (1 - p*p)
rinvOmp?t = sqrt(invOmp?*t)
AutoregressiveMatrixLowerCholeskyInverse(
p, T, EvenSpacing(nothing, invOmpZt, rinvOmp?t)#, - p * rinvOmp?t)

end
function AutoregressiveMatrixLowerCholeskyInverse(p::T, t::AbstractRange) where {T}
pt = copysign(abs(p)~(step(x)), p)
invOmp2t =1 / (1 - pt=p*)
rinvOmp?t = sqrt(invOmp?*)
AutoregressiveMatrixLowerCholeskyInverse(
p, T, EvenSpacing(pt, invOmp2t, rinvOmpZt)#, - p' * rinvOmp?*t)

end

function lmul!(S::Adjoint{T,SplitCholesky{T,Symmetric{T,M}}}, B::AbstractVecOrMat{T}) where {T,M<:BandedMatrix{T}}
require_one_based_indexing(B)
n, nrhs = size(B, 1), size(B, 2)
if size(S, 1) !=n
throw(DimensionMismatch("Matrix has dimensions $(size(S)) but right hand side has first dimension $n"))
end
A = S.parent.factors
b = bandwidth(A, 1)
m = (n+b)+2
@inbounds for 1 = 1:nrhs
for j = m:-1:1
t = zero(T)
@simd for k = max(1,j-b):j
t += Alk,jl=Blk,]

end
Blj,l =t
end
for j = m-b+1:m
t = zero(T)
@simd for k = m+1:j+b
t += Alk,jl=Blk,]

end
Blj,U += t
end
for j = m+#l:n
t = zero(T)
@simd for k = j:min(j+b,n)
t += Alk,jl=Blk,]

end
B[j,l =t

Introduction to Applied Linear Algebra
Vectors, Matrices, and Least Squares

Julia Language Companion

Stephen Boyd and Lieven Vandenberghe

DRAFT August 26, 2018

19.3 Augmented Lagrangian algorithm 163

10' |
—@— Feasibility
o @ Opt. cond.
10
° I
—
[e
10-1 - o o
1
o o
S ot L
2 10 “—t
(7] —e
(0]
m 3 oo
10 — o—9
o9
o9
4 | o9
10 ° 8 8o "t 9
o o9
o9
_5 o—o ®
10° -
oo
o o
1 1 1 1 1 1 1
0 20 40 60 80 100 120

Cumulative Levenberg- Marquardt iterations

Figure 19.1 Feasibility and optimality condition errors versus the cumulative
number of Levenberg—Marquardt iterations in the penalty algorithm.

[r;r] for r in hist["oc_res"][1l:end-1]]...,
hist["oc_res"] [end]);
julia> plot(itr, feas_res, shape=:circle, label = "Feasibility")
julia> plot!(itr, oc_res, shape=:circle, label = "Opt. cond.")

julia> plot!(yscale = :1loglO0,
xlabel = "Cumulative Levenberg--Marquardt iterations",
ylabel = "Residual")

19.3 Augmented Lagrangian algorithm

i function auec lac method(f Df. o Do. x1. lambdal: kmax = 100 .

Huchette article receives Beale-
Orchard-Hays Prize from MOS

JuMP: A Modeling Language for Mathematical Optimization' was published in
the SIAM Review in 2017.

An article co-authored by Joey Huchette, an adjunct faculty member in computational and applied mathematics

at Rice University, has received the Beale-Orchard-Hays Prize from the Mathematical Optimization Society
(MOS).

“JuMP: A Modeling Language for Mathematical Optimization” was published in the SIAM (Society for Industrial
and Applied Mathematics) Review in 2017. Huchette’s co-authors are lain Dunning, team lead and researcher
with Hudson River Trading, and Miles Lubin, research scientist in the algorithms and optimization team at

Google.

ocw.mit.edu » 18-06-linear-algebra-spring-2010

Linear Algebra | Mathematics | MIT OpenCourseWare
Used with permission.) Instructor(s). Prof. Gilbert Strang. MIT Course Number. 18.06. As Taught

In.
Video Lectures - Introduction to Linear Algebra - Syllabus - Readings

L) mitmath /1806

<> Code Issues 0 Pull requests 1 Actions Projects o Wiki

Branch: master~ 1806 / lectures /

. alanedelman syllabus

[£) 18060verview.pdf

[=) 18060verview.pptx

) Chutes-and-Ladders.ipynb
[£) Circulant-Matrices.ipynb
£ Complexity.ipynb

[£) Conditioning.ipynb

[£) Dense-and-Sparse.ipynb
[£) Determinants.ipynb

[=) Diagonalization.ipynb

[£) Eigenvalue-Intro.ipynb

[£) Eigenvalue-Polynomials.ipynb
[£) Elimination-matrices.ipynb

) Fibonacci.ipynb

lecture 1 updates
lecture 1 updates
lecture updates
typos

lecture updates
typos

lecture updates
lecture updates
updates

updates from lecture
lecture updates
class

updates

® Watch~ 95 ¥ Star

Security 0 Insights

Create new file = Upload fil

v Latest comm

stanford.edu > class » julia ~

EE103: Software - Stanford University

Julia. In this course we will be using the relatively new language Julia. Keep in mind that you
are not expected to have a strong background in programming ...

ee104.stanford.edu» julia ~

Julia - EE104 - Stanford University

EE104/CME107: Introduction to Machine Learning. Stanford University, Spring Quarter 2020. In
this course, you will use the Julia language to create short ...

web.stanford.edu » class » cgi-bin» julia «

Julia | AA228/CS238 - Stanford University

Although this course is language agnostic, we will use Julia to demonstrate various algorithms.
It is a high-level language for scientific computing that provides ...

ee103.stanford.edu ~
EE103/CME103: Introduction to Matrix Methods - Stanford ...

In this course, students use a relatively new language called Julia to do computations with
vectors and matrices. The course is suitable for any undergraduate with ...

explorecourses.stanford.edu » search » q=CME 257: Ad... ~

CME 257: Advanced Topics in Scientific Computing with Julia

CME 257: Advanced Topics in Scientific Computing with Julia. This course will rapidly introduce
students to the Julia programming language, with the goal of ...

stanford.edu » class » courseinfo ~

EE103: Course Information - Stanford University

Sections will be 2 hours long, with the first hour spent on problem solving and Julia
programming, and the remaining time used as office hours. Mark Nishimura: ...

explorecourses.stanford.edu » search » q=CME 257: Ad... ~

CME 257: Advanced Topics in Scientific Computing with Julia

Several MIT courses involving numerical computation, including 18.06, 18.303, 18.330, 18.335/6.337, 18.337/6.338, and
18.338, are beginning to use Julia, a fairly new language for technical computing. This page is intended to supplement the

LI mitmath /1806 ® Watch~ 95 % Star 922 ¥ Fork 370
<> Code Issues 0 Pull requests 1 Actions Projects o Wiki Security o Insights

Branch: master v = 1806 / lectures / Circulant-Matrices.ipynb Find file = Copy path

stevengj typos 686e4c@ on Apr 25, 2018

1 contributor

870 lines (870 sloc) 64.4 KB <> | B | Raw Blame | History [#° 0

©

In [1]: using PyPlot, Interact

INFO: Interact.jl: using new nbwidgetsextension protocol

Circulant Matrices

In this lecture, | want to introduce you to a new type of matrix: circulant matrices. Like Hermitian matrices, they have orthonormal
eigenvectors, but unlike Hermitian matrices we know exactly what their eigenvectors are! Moreover, their eigenvectors are closely
related to the famous Fourier transform and Fourier series. Even more importantly, it turns out that circulant matrices and the
eigenvectors lend themselves to incredibly efficient algorithms called FFTs, that play a central role in much of computational

science and engineering.

Now we'll compute a few of the smallest-|A| eigenvectors using eigs. We'll use the Interact package to interactively decide which
eigenvalue to plot.

In [13]: u = zeros(N,N)
@time A, X = eigs(A, nev=20, which=:SM);

f = figure()
@manipulate for which_eig in slider(1:20, value=1)
withfig(f) do
u[i] = X[:,which_eig]
umax = maximum(abs, u)
imshow(u, extent=[-1,1,-1,1], vmin=-umax,vmax=+umax, cmap="RdBu")
end
end

3.791509 seconds (1.65 M allocations: 313.391 MiB, 3.50% gc time)

Out[1l3]: 1.00

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

_1.00 ! 1 1 ! ! 1 L)
-1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Notice that it took less than two seconds to solve for 20 eigenvectors and eigenvalues!
This is because eigs is essentially using an algorithm like the power method, that only uses repeated multiplication by A.

Or, sometimes, particularly to find the smallest || eigenvectors, it might repeatedly divide by A, i.e. solve Ax = p for
b = A-1x. But it can't actually compute the inverse matrix, and | said that LU factorization was ~ p3 in general. So, what is
happening?

Sparse-direct solvers for Ax=b

Even if A is a sparse matrix, A-1 is generally not sparse. However, if you arrange things cleverly, often the L and U
factors are still sparse!

This leads to something called sparse-direct solvers: they solve Ax = b by ordinary Gaussian elimination to find A = LU,
but they take advantage of sparse A to avoid computing with zeros. Moreover, they first re-order the rows and columns

Y Y T T L O Y T O R D T T Y T T D T Y T Y T T T T T T T T

In the Classroom

Julia is ready for the classroom. We encourage instructors to participate in the Julia community for questions about Julia or specific packages.
This page puts together various resources that instructors and students alike may find useful. See where Julia is being taught today.

- Stanford

University

BROWN

UNIVERSITE
PAUL
SABATIER

UNIVERSITY
of
GLASGOW

A
RE L
.,=:::]llllllllll - A‘! m'..llllllll‘

MUEGYETEM

THE CITY) N .
UNIVERSITY I I

=)

AGH

TOKYO METROPOLITAN UNIVERSITY

B # K FERA

NEWYORK ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Julia in the classroom

Julia is now being used in several universities and onlin

e AGH University of Science and Technology, Polan

o Signal processing in medical diagnostic syst
e Arizona State University

o MAT 423, Numerical Analysis (Prof. Clemen
e Azad University, Science and Research Branch

o CE 3820, Modeling and Evaluation (Dr. Armi
e Brown University

o CSCI 1810, Computational Molecular Biolog
e Budapest University of Technology and Economic

o Applications of Differential Equations and Vi
e City University of New York

o MTH 229, Calculus Computer Laboratory (F
e Cornell University

o CS 5220, Applications of Parallel Computer:
e Ecole Polytechnique Fédérale de Lausanne

o [CIVIL 557] Decision-aid methodologies in t
e Einaudi Institute for Economics and Finance, Rom

o Econometrics of DSGE Models (Giuseppe R
e Emory University

o MATH 3486, Introduction to Optimization Thi

o MATH 516, Numerical Analysis Il (Prof. Lars
e Federal Rural University of Rio de Janeiro (UFRRJ

o TM429, Introduction to Recommender Syst:
e Federal University of Alagoas (Universidade Fede

o COMP272, Distributed Systems (Prof. Andre
e Federal University of Parana (Universidade Feder

o CM103, Laboratério de Matematica Aplicad:

o CMMO014, Calculo Numérico (Prof. Abel Soa

o CM106/CMI043/CMM204/MNUM7079, Otin
e Federal University of Uberlandia, Institute of Phys

o GFMO050, Fisica Computacional (Prof. Gersc
¢ Hadsel High School, Stokmarknes, Nordland, Nor

o AnsattOversikt, [REA3034] Programmering

Olav A Marschall, M.sc. Computer Science)

e |IT Indore

o AppINLA, Modern Applications of Numerica
* |owa State University

o STAT 590F, Topics in Statistical Computing:
e Luiss University Rome, Department of Economics

o Econometric Theory (Giuseppe Ragusa)
¢ Lund University, Sweden, Department of Automa

o Julia for Scientific Computing

o Optimization for Learning
e Massachusetts Institute of Technology (MIT)

o 6.251/15.081, Introduction to Mathematical

o 18.06, Linear Algebra: Fall 2015, Dr. Alex To\

o 18.303, Linear Partial Differential Equations:

o 18.337/6.338, Numerical Computing with «

o 18.085 [/ 0851, Computational Science And |

o 18.330, Introduction to Numerical Analysis (

Northeastern University, Fall 2016

o MTH3300: Applied Probability & Statistics
Obuda University, John von Neumann Faculty of Inf

o [Intelligent Development Tools (Hungarian)]

o [Intelligent Development Tools (English)]

o [Fundamental Mathematical Methods (English
Pennsylvania State University

o ASTRO 585, Seminar: High-Performance Scie

github repo

o ASTRO 528, High-Performance Scientific Con
Politecnico di Torino (Torino, Italy)

o Algorithms for Optimization, Inference and Le:

o Inference in Biological Systems, (Prof. A. Gam

o Stochastic Simulation Methods In Physics, (Pr
Polytech Nice Sophia

o Mathematics for the engineer (Prof. J.-B. Caill
Pontifical Catholic University of Rio de Janeiro (PUC

o Programming in Julia (Prof. Thuener Silva), Su

o Linear Optimization (Prof. Alexandre Street), S

o Decision and Risk Analysis (Prof. Davi Valladac
Purdue University

o (CS51400, Numerical Analysis (Prof. David Gle
Royal Military Academy (Brussels)

o ES123, Computer Algorithms and Programmin

o ES313, Mathematical modelling and Computel
"Sapienza” University of Rome, Italy

o Operations Research (Giampaolo Liuzzi), Spril

o Optimization for Complex Systems (Giampaoli
Sciences Po Paris, Department of Economics, Sprin

o Computational Economics for PhDs (Florian O
SGH Warsaw School of Economics, Poland

o 223490-0286, Statistical Learning Methods (|

o 234900-0286, Agent-Based Modeling (Bogur

o 239420-0553, Introduction to Deep Learning
Southcentral Kentucky Community and Technical C

o CIT 120 Computational Thinking (Inst. Bryan K
Stanford University

o AA222, Introduction to Multidisciplinary Desig
AA228/CS238, Decision Making under Uncert
EE103, Introduction to Matrix Methods (Prof. ¢
CME 257, Advanced Topics in Scientific Comg
EE266, Stochastic Control (Prof. Sanjay Lall), !
Tec de Monterrey, Santa Fe Campus, Mexico City

o IN2022, Modelos de Optimizacion (Prof. Marz
Tokyo Metropolitan University, Tokyo, Japan

o L0407, Exercises in Programming | for Mechar

(scheduled), in Japanese

TU Dortmund / SFB 823, Germany

o One week introductory course into Julia with ¢
Universidad Adolfo Ibafiez, Chile

o ING747, Integer programming, Fall 2018-2019

o DIIIO06, Advanced linear optimization, Spring
Universidad del Norte, Barranquilla, Colombia

o ELP 4076, Ingenieria de Rios y Costas (Prof. G

PR TR . Tatle Lo I B 1PN LN LY I . YR S R A o 1] | PR

o

[e]

[e]

o

Universidad Nacional Auténoma de México

o Fisica computacional (Prof. David P. Sanders), Fall 2014

o Métodos numéricos para sistemas dinamicos (Prof. Luis Benet), Fall 2014
Métodos numéricos avanzados (Prof. David P. Sanders and Prof. Luis Benet), Spring 2015

o Métodos computacionales para la fisica estadistica (Prof. David P. Sanders), Spring 2015
Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru

o Julia: el lenguaje del futuro, Semana de Integracion de Ingenieria Electrénica, (Oscar William N
Universidad Veracruzana, México

o Algoritmos Evolutivos y de Inteligencia Colectiva (Jesus A. Mejia-de-Dios), Fall 2019
University at Buffalo

o |E 572 Linear Programming (Prof. Changhyun Kwon), Fall 2014
University of Antwerp, Faculty of Pharmaceutical, Biomedical, Veterinary Sciences, October 2016

o Computational Neuroscience (2070FBDBMW), Master of Biomedical Sciences, of Biochemistr
University of Basel, Department of Physics

o Classical Mechanics (Prof. Christoph Bruder), Fall 2020
University of California, Los Angeles (UCLA)

o Biostat 257, Computational Methods for Biostatistical Research, Spring 2021 (Prof. Hua Zhou)
University of Cologne, Institute for Theoretical Physics

o Computational Physics (Prof. Simon Trebst), Summer 2016

o Computational Physics (Prof. Ralf Bulla), Summer 2017

o Statistical Physics (Prof. Simon Trebst), Winter 2017

o Computational Many-Body Physics (Prof. Simon Trebst), Summer 2018

o Advanced Julia Workshop (MSc. Carsten Bauer), Fall 2018

o Computational Physics (Prof. Simon Trebst), Summer 2019

o Advanced Julia Workshop (MSc. Carsten Bauer), Fall 2019
University of Connecticut, Storrs

o CHEG 5395, Metaheuristic and Heuristic Methods in Chemical Engineering (Prof. Ranjan Sriva
University of Edinburgh

o Spring 2017, MATH11146, Modern optimization methods for big data problems (Prof. Peter Ric

o Spring 2016, MATH11146, Modern optimization methods for big data problems (Prof. Peter Ric
University of Glasgow, School of Mathematics and Statistics

o An Introduction to Julia, course of Online Master of Science (MSc) in Data Analytics (Theodor
University of Oulu

o Invited Advanced Julia Workshop (MSc. Carsten Bauer, University of Cologne), Spring 2020
University of South Florida

o ESI 4312, Deterministic Operations Research (Prof. Changhyun Kwon), Fall 2017-Fall 2020

o ESI 6410, Optimization in O.R. (Prof. Changhyun Kwon), Spring 2021

o ESI 6491, Linear Programming and Network Optimization (Prof. Changhyun Kwon), Fall 2015-F

o EIN 6945, Nonlinear Optimization and Game Theory (Prof. Changhyun Kwon), Spring 2016, 20
University of Sydney

o MATH3076/3976, Mathematical Computing (Assoc. Prof. Sheehan Olver), Fall 2016
Université Paul Sabatier, Toulouse

o Optimization in Machine Learning, (Prof. Peter Richtarik), Fall 2015
Université de Liege

o MATHO0462, Discrete Optimization (Prof. Quentin Louveaux), Fall 2016

o MATHO0461, Introduction to Numerical Optimization (Prof. Quentin Louveaux), Fall 2016

o MATHO0462, Discrete Optimization (Prof. Quentin Louveaux), Fall 2015
Université de Montréal

o |FT1575, Modéles de recherche opérationnelle (Prof. Bernard Gendron), Fall 2017

o |FT3245, Simulation et modéles (Prof. Fabian Bastin), Fall 2017

o |[FT3515, Optimisation non linéaire (Prof. Fabian Bastin), Winter 2017-2018

o IFT6512, Programmation stochastique (Prof. Fabian Bastin), Winter 2018
University of Washington

o AMATH 586, Numerical analysis of time-dependent problems (Prof. Tom Trogdon), Spring 20:
Western University Canada

o

The Big List

This is a big list of Julia Automatic Differentiation (AD) packages and related
tooling. As you can see there is a lot going on here. As with any such big lists it
rapidly becomes out-dated. When you notice something that is out of date, or
just plain wrong, please submit a PR.

This list aims to be comprehensive in coverage. By necessity, this means it is
not comprehensive in detail. It is worth investigating each package yourself to
really understand its ins and outs, and pros and cons of its competitors.

Reverse-mode

Symbolic:

o Symbolicsjl: A pure Julia computer algebra system. While its docs focus

on some particular domain use-case it is a fully general purpose system.

Exotic

o TaylorSeries jl: Computes polynomial expansions; which is the
generalization of forward-mode AD to nth-order derivatives.

 NiLangjl: Reversible computing DSL, where everything is differentiable

by reversing.

o TaylorDiff jl: an efficient, linear-scaling implementation for higher-order

ReverseDiff jl: Operator overloading reverse-mode AD. Very well-
established.

Nablajl: Operator overloading reverse-mode AD. Used in (its

maintainer) Invenia's systems.

Tracker jl: Operator overloading reverse-mode AD. Most well-known
for having been the AD used in earlier versions of the machine learning
package Flux jl. No longer used by Flux jl, but still used in several places
in the Julia ecosystem.

AutoGrad jl: Operator overloading reverse-mode AD. Originally a port
of the Python Autograd package. Primarily used in Knet jl.

Zygotejl: IR-level source to source reverse-mode AD. Very widely used.
Particularly notable for being the AD used by Fluxjl. Also features a
secret experimental source to source forward-mode AD.

Yota jl: IR-level source to source reverse-mode AD.

XGrad jl: AST-level source to source reverse-mode AD. Not currently in
active development.

ReversePropagation jl: Scalar, tracing-based source to source reverse-

directional derivatives, implemented with operator-overloading on
statically-typed Taylor polynomials. In development.

Finite Differencing

Yes, we said at the start to stop approximating derivatives, but these packages
are faster and more accurate than you would expect finite differencing to ever
achieve. If you really need finite differencing, use these packages rather than
implementing your own.

o FiniteDifferencesjl: High-accuracy finite differencing with support for

almost any type (not just arrays and numbers).

o FiniteDiff jl: High-accuracy finite differencing with support for efficient

calculation of sparse Jacobians via coloring vectors.

* Calculusjl: Largely deprecated, legacy package. New users should look to
FiniteDifferencesjl and FiniteDiff;l instead.

Rulesets

Packages providing collections of derivatives of functions which can be used in
AD packages.

mode AD.

e Enzymejl: Scalar, LLVM source to source reverse-mode AD.
Experimental.

o Diffractorjl: Next-gen IR-level source to source reverse-mode (and
forward-mode) AD. In development.

Forward-mode

o ForwardDiff jl: Scalar, operator overloading forward-mode AD. Very
stable. Very well-established.

o ForwardDiff2: Experimental, non-scalar hybrid operator-
overloading/source-to-source forward-mode AD. Not currently in
development.

« Diffractorjl: Next-gen IR-level source to source forward-mode (and
reverse-mode) AD. In development.

¢ ChainRules: Extensible, AD-independent rules.

o ChainRulesCore jl: Core API for user to extend to add rules to their
package.

o ChainRules,jl: Rules for Julia Base and standard libraries.

o ChainRulesTestUtils jl: Tools for testing rules defined with
ChainRulesCore jl.

o DiffRulesjl: An earlier set of AD-independent rules, for scalar functions.
Used as the primary source for ForwardDiff}jl, and in part by other
packages.

 ZygoteRules jl: Lightweight package for defining rules for Zygotejl.
Largely deprecated in favour of the AD-independent ChainRulesCore jl.

Sparsity

o SparsityDetection jl: Automatic Jacobian and Hessian sparsity pattern

speed

Speed Gotchas

- JIT and "time to first plot”

- Only functions are compiled REPL code is NOT
compiled

- type stability

»vS hand-coded fused cuda kernels (pytorch)

TYPE STA

SILITY

+ @code_warntype

function bad(i)
=1+ 1
| = “bad”
end

Julia Joins the Petaflop Club: Celeste joins the rarified list of applications to

exceed 1 petaflop per second performance, and is the first to do so in a dynamic
high-level language. The Celeste research team processed 55 terabytes of visual
data and classified 188 million astronomical objects in just 15 minutes, resulting in
the first comprehensive catalog of all visible objects from the Sloan Digital Sky
Survey. This is one of the largest problems in mathematical optimization ever
solved. The Celeste team, which includes researchers from UC Berkeley, Lawrence
Berkeley National Laboratory, National Energy Research Supercomputing Center,
Intel, Julia Computing and the Julia Lab at MIT, used 9,300 Knights Landing (KNL)

nodes on the NERSC Cori Phase II supercomputer to execute 1.3 million threads on
650,000 KNL cores.

104

10°

10°

10°

<
®
[s)
L J
o ¢ benchmark
) e ® iteration_pi_sum
@ a @ matrix_multiply
® . ® ® matrix_statistics
© B N ® parse_integers
o - ® ® print_to_file
e ¢ ® recursion_fibonacci
R @ recursion_quicksort
° & 2 - ® userfunc_mandelbrot
o 3
o
=) o
@ 0 P a
° °)
o : .
; o
B ©
. s . o " o o
b4 a -4 ® a ° = o = o a
o L J : a L J = L J
o o g a

Julia LualJIT Rust Go Fortran Java JavaScript Matlab Mathematica Python R Octave

Averaged Benchmark Time

Normalized amount of lines of code

language

HcC
fortran
W go
M java
javascript
M julia
W lua
B mathematica
m matlab
W octave
W python
Hmr

w
o
o

-
o
o

W
o o

-
o

w U

program busy time / least busy

=t

How many times slower?

+ O £ c 0 - O T Y o © 9 O A &
(O — = — O
o

. ¢ o

.
L T

R Iy O A e
benchmarks game 02 Jun 2020 u64q

Including it time

https://benchmarksgame-team.pages.debian.net/

< M CLtGCDG”U > Tutorials Blog About

Python, Julia, Fortran

Testing Julia: Fast as Fortran, Versatile
as Python

by Martin D. Maas, Ph.D

@MartinDMaas
Last updated: 2021-09-21 n n m

I'm super enthusiastic about Julia after running this comparison of Julia vs Numpy vs Fortran,
for performance and code simplicity.

NVIDIA. DEVELOPER Q Login

NVIDIA Developer Blog DEVELOPER NEWS % SUBSCRIBE W FOLLOW US

Al / DEEP LEARNING AUTONOMOUS MACHINES AUTONOMOUS VEHICLES DATASCIENCE GRAPHICS /SIMULATION HPC IVA/IOT

45

jares

ACCELERATED COMPUTING

High-Performance GPU Computing in the Julia Programming Language

By Tim Besard | October 25, 2017 W Tags: Compilation, Julia, Programming Languages and Compilers

Juliais a high-level programming language for mathematical computing that is as easy to use as Python, but as fast as C. The
language has been created with performance in mind, and combines careful language design with a sophisticated LLVM-based
compiler [Bezanson et al. 2017].

Julia is already well regarded for programming multicore CPUs and large parallel computing systems, but recent developments
make the language suited for GPU computing as well. The performance possibilities of GPUs can be democratized by providing more

high-level tools that are easy to L3 g ing CUDAdrv, CUDAnative)ing programmers. In this
blog post, | will focus on native G r with native PTX code

generation capabilities: CUDAnat
function kernel vadd(a, b, c¢)

i = threadIdx().x
c[i] = a[i] + b[i]
return

end

The chart in Figure 3 compares the performance of the original CUDA C++ implementations of these benchmarks against our Julia
ports. The Julia versions are almost verbatim ports, that is, with no algorithmic changes and not introducing high-level concepts, in
order to assess compiler performance differences as exactly as possible. As you can see, using Julia for GPU computing doesn't
suffer from any broad performance penalty. The only outlier is the nn benchmark, which performs significantly better with
CUDAnNative.jl due to slightly better register usage. On average, the CUDAnative.jl ports perform identical to statically compiled

CUDA C++ (the difference is ~2% in favor of CUDAnative.jl, excluding nn). This is in part because of the work by Google on the NVPTX
LLVM back-end.

7 2 S 7

performance difference (%)

o

benchmark

It is comparing Finite Element solver, which is an often used algorithm in material research and
therefore represents a relevant use case for Julia.

N JULIA FENICS(PYTHON + C++) FREEFEM++(C++)
121 0.99 0.67 0.01
2601 1.07 0.76 0.05
10201 1.37 1.00 0.23
40401 2.63 2.09 1.05
123201 6.29 5.88 4.03
251001 12.28 12.16 9.09

(taken from codeproject.)

These are remarkable results, considering that the author states it was not a big effort to
achieve this. After all, the other libraries are established FEM solvers written in C++, which
should not be easy to compete with.

Torchdiffeq vs DifferentialEquations.jl (/ DiffEqFlux.jl)
Benchmarks

Benchmark: Solve the Lorenz equations from 0 to 100 with abstol=reltol=1e-8

Absolute Timings

e DifferentialEquations.jl: 1.675 ms

o diffeqpy (DifferentialEquations.jl called from Python): 3.473 ms
¢ SciPy+Numba: 50.99 ms

e SciPy: 110.6 ms

e torchdiffeq: 48 seconds

e torchscript torchdiffeq: 48 seconds

Timings Relative to DifferentialEquations.jl

e DifferentialEquations.jl: 1x

o diffeqpy (DifferentialEquations.jl called from Python): 2.07x Slower
e SciPy+Numba: 30x Slower

e SciPy: 66x Slower

e torchdiffeq: 30,000x Slower

e torchscript torchdiffeq: 30,000x Slower

The torchscript versions are kept as separate scripts to allow for the JITing process to occur, and are called
before timing to exclude JIT timing, as per the PyTorch documentation suggestions. Python results were scaled

by the number of times ran in timeit. https://gist.github.com/ChrisRackauckas/cc6ac746e2dfd285¢c28e0584a2bfd320

© 0 O

Deep Learning: Exploring High Level APIs of Knet.jl and Flux.jl in
comparison to Tensorflow-Keras

Jun 20, 2019 by Al-Ahmadgaid B. Asaad

Training CNN (VGG-style) on CIFAR-10 - Image Recognition

DL Library Test Accuracy (%) Training Time (s)

MXNet 77 145

Caffe2 79 148

Gluon 76 152

Knet(Julia) 78 159

Chainer 79 162

CNTK 78 163

PyTorch 78 169

Tensorflow 78 173

Keras(CNTK) 77 194

Keras(TF) 77 241

Lasagne(Theano) 77 253

Keras(Theano) 78 269
model dataset epochs | batch || Knet | Theano | Torch | Caffe | TFlow
LinReg | Housing | 10K 506 2.85 | 1.88 2.66 | 237 | 5.92
Softmax | MNIST 10 100 2.35 | 140 2.88 | 2.82 | 5.57
MLP MNIST 10 100 3.68 | 2.31 403 | 3.75 | 6.94
LeNet MNIST 1 100 3.59 | 3.03 1.69 | 3.54 | 8.77
CharLM | Hiawatha | 1 128 2.25 | 4.57 223 | - 2.86

© 0 O

Deep Learning: Exploring High Level APIs of Knet.jl and Flux.jl in
comparison to Tensorflow-Keras

Jun 20, 2019 by Al-Ahmadgaid B. Asaad

An Open Source Machine Learning Framework for Everyone https://tensorflow.org

tensorflow machine-learning python deep-learning deep-neural-networks neural-network mi distributed

O C++53.0% ® Python 38.4% ® HTML 3.7% ® Jupyter Notebook 1.3% ® Go 1.3% ® Java 0.7% Other 1.6%
]) S 1 1 1

Kog University deep learning framework.

knet deep-learning yulia machine-learning neural-networks data-science

® Julia 50.6% ® Jupyter Notebook 41.4% ® Cuda 5.1% ®C0.9% ® Makefile 0.9% ® MATLAB 0.9% Other 0.2%
sl I I 1

Relax! Flux is the ML library that doesn't make you tensor https://fluxml.ai/

flux machine-learning neural-networks the-human-brian deep-learning data-science

® Julia 99.2% ®TeX 0.8%
D]

© 0 O

Deep Learning: Exploring High Level APIs of Knet.jl and Flux.jlin
comparison to Tensorflow-Keras

Jun 20, 2019 by Al-Ahmadgaid B. Asaad

An Open Source Machine Learning Framework for Everyone https://tensorflow.org

tensorflow machine-learning python deep-learning deep-neural-networks neural-network ml distributed

O C++ 53.0% ® Python 38.4% ® HTML 3.7% ® Jupyter Notebook 1.3% ® Go1.3% ® Java 0.7% Other 1.6%
1 S I O

Kog¢ University deep learning framework.

knet deep-learning ulia machine-learning neural-networks data-science

® Julia 99.2% ®TeX 0. m
N

N b a6
!‘Tt"'.". N

denizyuret

Benchmark

Scatter operations are fundamental to GeometricFlux.jl and they are implemented in CPU and CUDA version. Benchmarks

of scatter operations are done with scripts in benchmark folder. Statistics, includes max, min and mean, are shown in the
following plots.

Scatter add performance on GPU

10°
10*
f‘.

10°
3 framework
L ® geometricflux
g ¥ pytorch-scatter

.
10
10}
i -.".
.
10°

Matrix Size

but be careful of benchmarks!

Java Vs C . 'FFT'

220 T
200 T
180 T
IBM
160 T

140 T

120 T

100 T 1 base-C

80T

; t t f f ; ;
10 12 13 14 15 16 Ave

T 5 . . :
Array size (log2)

speed how? by type annotation?

function mysum(A)
thesum = 0
for i=1:1length(A)
thesum += A[il

return thesum

function (a::Dense)(x::AbstractVecOrMat)
W, b, o = a.weight, a.blas, a.o
return o.(Wxx .+ b)

end

- mantra: strictly type your types,

loosely type your functions.

speed how? by type annotation?

primitive type Float16 <: AbstractFloat 16 end

T:ur1(:t;1()r1 (ﬂ)/SlJﬂ](/\) pr?m?t?ve type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

thesum = 0

primitive type Bool <: Integer 8 end

for 1=1: length (A) primitive type Char 32 end

A

thesum += A [l] primitive type Int8

primitive type UInt8
primitive type Int16
l”@tU rn thesum primitive type UInt16
primitive type Int32
primitive type UInt32
primitive type Int64
primitive type UInt64 : Unsigned 64 end
primitive type Int128 : Signed 128 end
primitive type UInt128 <: Unsigned 128 end

: Signed 8 end

: Unsigned 8 end

: Signed 16 end
: Unsigned 16 end
: Signed 32 end
: Unsigned 32 end
: Signed 64 end

A

A

A

A

A

A

A

A

(a::Dense{<:Any,W}) (x::AbstractArray{<:AbstractFloat}) where {T <: Union{Float32,Float6d}, W <: AbstractArray{T}} =
a(T.(x))

speed how"?

- compile, on the fly, for every encountered type

Stochastic Lifestyle A Random Blog About Math and Life

Home Current Projects Personal Website RSS

p ' . . e (// “
Type-Dispatch Design: Post Object-Oriented Programming for (ategories
J I. Mathematics
U Ia Differential Equations
May 29 2017 in Julia, Programming | Tags: | Author: Christopher Rackauckas Stochastics
In thic nnect | am anina tn trve ta avnlain in datail the tunoa.dicenatrh doacian whirh ic 1iced in huilian Programmmg

my_square(x) = x*2

then we see that this function will be efficient for the types that we give it. Looking at the generated
code:

@code_llvm my_square(l)
define i64 @julia_my_square_72669(i64) #0 {

top:
%1 = mul i64 %0, %@
ret i64 ¥1

}

speed how

my_square(x) = x*2

Thus we don't need to restrict the types we allow in functions in order to get performance. That
means that

my_restricted_square(x::Int) = x*2

is no more efficient than the version above, and actually generates the same exact compiled code:

@code_llvm my_restricted_square(1)

define i64 @julia_my_restricted_square_72686(i64) #0 {

top:
#1 = mul i64 %0, %@
ret i64 ¥1

@code_llvm my_square(1)
define i64 @julia_my_square_72669(i64) #0 {
top:

%1 = mul i64 %0, %@

ret i64 %1

@code_llvm my_square(1.0)
define double @julia_my_square_72684(double) #8 {
top:

%1 = fmul double %@, %o

ret double %1

iction m
thesum
for 1=1:N

thesum

eturn thesum

less code

function (a::Dense)(x::AbstractVecOrMat)

W, b, a.weight, a.bias, a.o

return o.(Wkx .+ b)

end

Question about source code of pytorch

linyu Aug '18

Where can | find the source code of torch.mm?

created last reply e
| 2 348 2 2 1 . 9y
Aug 18 Aug 18 replies views users likes link -
5% SimonW ¢ Simon Wang Aug '18

It eventually dispatches to

https://github.com/pytorch/pytorch/blob/2e0dd8690320fb1a7ecd548730824c1610207179/aten/src/ATen/
native/LinearAlgebra.cpp#L136-L148 58 , which calls blas gemm.

metaprogramming

the only feature a language needs

“homoiconic”, vs. C++ metaprogramming

program Is a convenient data structure, available for
manipulation at compile time

metaprogramming

julia>ex = :(a + b)
(a+ b)

julia> typeof(ex)
Expr

julia> ex.head
:call

julia> ex.args
3-element Array{Any,1}:
T+
.a
10

metaprogramming

julia>ex = :(a + b)
(a+ b)

julia> ex.args|2],ex.args|3] = ex.args[3],ex.args|2]
(:b,:a)

julia> ex.args[1] = :*

julia> ex
(b ™ a)

metaprogramming No More copy/paste/bug

Typical example: need nearly parallel code for data structure with . X, .Y, .Z fields
Loop over X,Y,Z fields, generate 3 functions at compile time
each of which sums or averages one of the coordinates.

type Point{T <: Number}
X T
YT
Z: T

end

Pts = Array{Point{Float32}}(3)
Pts[1] = Point{Float32}(1,2,3) # etc

for (name,field) in ((:sumX, :X), (:sumY, :Y), (:sum/Z, :2))
@eval begin

function $name(ptarr) # note $name
thesum =0
for i = 1:length(ptarr)
printin(ptarr(i]. $fieldname)
thesum += ptarr[i].$fieldname # note $fieldname
end
thesum
end

end
end

example: metaprogramming vs 0-0

- no O-O? metaprogram it in an afternoon
(example: Paul Graham lbook)

+ O-0 but no metaprogramming? oh well

Paul Graham example

Inheritance in 6 lines of code

extend to before/after methods,
method combination,
appropriate syntax

... In an afternoon

(defmacro defmeth ((name &optional (type :primary))
obj parms &body body)
(let ((gobj (gensym)))
“(let ((,gobj ,0bj))
(defprop ,name t)
(unless (meth-p (gethash ’,name ,gobj))
(setf (gethash ’,name ,gobj) (make-meth)))
(setf (,(symb ’meth- type) (gethash ’,name ,gobj))
, (build-meth name type gobj parms body)))))

(defun build-meth (name type gobj parms body)
(let ((gargs (gensym)))
‘#’ (lambda (&rest ,gargs)
(labels
((call-next ()
, (if (or (eq type :primary)
(eq type :around))
‘(cnm ,gobj ’,name (cdr ,gargs) ,type)
>(error "Illegal call-next.")))
(next-p ()
, (case type
(:around
‘(or (rget ,gobj ’,name :around 1)
(rget ,gobj ’,name :primary)))
(:primary
‘(rget ,gobj ’,name :primary 1))
(t nil))))
(apply #’ (lambda ,parms ,@body) ,gargs)))))

(defun cnm (obj name args type)
(case type
(:around (let ((ar (rget obj name :around 1)))
(if ar
(annlyv ar obhi arce)

metaprogramming

Because @def works at compile-time, there is no cost associated with this. Similar metaprogramming
can be used to build an "inheritance feature” for Julia. One package which does this is
ConcreteAbstractions.jl which allows you to add fields to abstract types and make the child types
inherit the fields:

The abstract type
@base type AbstractFoo{T}
a
b::Int
A b
d::Vector{T}

end

Inheritance

@extend type Foo <: AbstractFoo
e::T

end

type Foo{T} <: AbstractFoo

:Int

JEU
::Vector{T}
JEU

T Q N O w

end

Imagine that we want following JSON notation to build a nested
dictionary/list(vector).

@json {

a: 1,

b: [2, 3 * 3],

c : A
d: "doubly-quoted string",
-

}.

f: g

¥

The implementation is:

using MLStyle
json(node) =
@match node begin
({ $(kvs...) }) =>
let f =
@\ (k :: Symbol &% Do(v = k) ||
c($k : $v)) -> Expr(:call, =>, strii
Expr(:call, Dict, (f(kv) for kv in kvs .
end
:[$(elts...)] => Expr(:vect, map(json, elts)...)
a => a
end

macro json(expr)
json(expr) |> esc
end

Transducers.|l: Efficient transducers for Julia

Transducers.|l provides composable algorithms on "sequence"” of inputs. They are called transducers, first introduced in

Clojure language by Rich Hickey.

Using transducers is quite straightforward, especially if you already know similar concepts in iterator libraries:

using Transducers
xf = Partition(7) |> Filter(x -> prod(x) % 11 == @) |> Cat() |> Scan(+)

foldl(+, xf, 1:40)

However, the protocol used for the transducers is quite different from iterators and results in a better performance for
complex compositions. Furthermore, some transducers support parallel execution. If a transducer is composed of such
transducers, it can be automatically re-used both in sequential (foldl etc.) and parallel (reduce etc.) contexts.

Vectorized Constraints and Objective

We can also add constraints and objective to JUMP using vectorized linear algebra. We'll illustrate this by solving an LP in standard
form i.e.

min c'x
s.t. Ax=b
x>0

xeR"

In [32]: vector model = Model (GLPK.Optimizer)
A= [119

350

2 06

b =[7; 3; 5]

c =[1; 3; 5; 2]

fvariable(vector model, x[1:4] >= 0)

fconstraint(vector model, A * x .== b)

fobjective(vector model, Min, c¢' * x)

optimize! (vector model)

a
!
@show objective va jUIlé

objective value(ve

What package[s] are state-of-the art OR attract you to Julia, ar

B Usage

e ExpandingMan 3 4 May '18

Definitely JuMP. The Python equivalents are a joke.

| think some of the simple stuff is really underrated. | can’t express to you how strongly | prefer Julia
DataFrames over pandas. They are so lightweight in simple, it’s so easy to work on them just using
functions from Base. As I've said elsewhere, for the most part the only really specialized functions | use

752 Stars - 110 Forks

Turing.jl - Get Started Documentation Tutorials News (’ TuringLang/Turing.jl

Turing.jl

Bayesian inference with probabilistic programming.

@model gdemo(x, y) = begin

Intuitive # Assumptions ar
Turing models are easy to read an o ~ I NVETrS eGamma (2 ’ 3) nodular, written fully in
write — models work the way you “ ~ NO rma 1 (@ - S q rt (0))) can be modified to suit

write them. S.

Observations
X ~ Normal(u, sqrt(o))
y ~ Normal(y, sqrt(oc))
end
Hello World in ;,(1: y) = begin

Gamma(2,3)
- 9,sqrt(o))
Observations
X ~ Normal(u, sqrt(o))
y ~ Normal(u, sqrt(o))
end

Turing's modelling <, ” . ” - ; ”
Straightforward models can be expressed in the same way as complex, hierarchical
models with stochastic control flow.

Quick Start

domain-specific minicompilers

Loop unroll
* memory padding

+conv kernel edge conditions

function A_mul_B!(C, A, B)
@avx for m € 1:size(A,1),

zero(eltype(C))

for k € 1:size(A,2)

C =

n € 1:size(B,2)

LoopVectorization.|l

C += A[m,k] * B[k,n]
end Method
C[m,n] = _grlaon:-omm
end | |) | | | v
end) I | = LoopVeckorczaton
www»www~~~ o,
"‘Mm«*m. TRIA NI IE ==
90 - VH Al ‘ "‘ "b‘r
\ ‘w ‘ “
-
§ .
|
50 l I l f N A ' |
\W“\“*'“*'flﬂwnm'"“”“““w
N Y Nt O T
o Vo | " AL
- u&unﬂ&umﬂﬁknwkkwﬁﬂhﬂwﬁ%

0O 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260
Size

This is classic GEMM, C = A * B. GFortran's intrinsic matmul function does fairly well, as does Clang-Polly, because
Polly is designed to specfically recognize GEMM-like loops and optimize them. But all the compilers are well behind
LoopVectorization here, which falls behind MKLs gemm beyond 56 x 56.The problem imposed by alignment is also

Generic GPU Kernels in Julia

Julia has a library called CUDAnative, which hacks the compiler to run your
code on GPUs.

using CuArrays, CUDAnative
XS, ysS, zs = CuArray(rand(1024)), CuArray(rand(1024)), CuArray(zeros(19024))

function kernel_vadd(out, a, b)
i = (blockIdx().x-1) * blockDim().x + threadIdx().x
out[i] = a[i] + b[i]
return

end
@cuda (1, length(xs)) kernel vadd(zs, xs, ys)

@assert zs == Xs + ys

Is this better than writing CUDA C? At first, it’s easy to mistake this for simple
syntactic convenience, but I'm convinced that it brings something
fundamentally new to the table. Julia’s powerful array abstractions turn out to
be a great fit for GPU programming, and it should be of interest to GPGPU

hackers regardless of whether they use the language already.
http://mikeinnes.qgithub.io/2017/08/24/cudanative.html

http://mikeinnes.github.io/2017/08/24/cudanative.html

For example, take a CPU kernel that adds two 2D arrays:

function add!(out, a, b)
for i = 1:size(a, 1)
for j = 1:size(a, 2)
out[i,j] = a[i,j] + b[i,]]
end
end

end

This kernel is fast, but hard to generalise across different numbers of
dimensions. The change needed to support 3D arrays, for example, is small and
mechanical (add an extra inner loop), but we can’t write it using normal
functions.

Julia’s code generation enables an elegant, if slightly arcane, solution:

http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

Julia’s code generation enables an elegant, if slightly arcane, solution:

using Base.Cartesian

@generated function add!(out, a, b)
N = ndims(out)
quote
@nloops $N i out begin
@nref($N, out, i) = @nref($N, a, i) + @nref($N, b, i)
end
end

end

The egenerated annotation allows us to hook into Julia’s code specialisation;
when the function receives matrices as input, our custom code generation will
create and run a twice-nested loop. This will behave the same as our add!

function above, but for arrays of any dimension. If you remove @generated you

can see the internals.
http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

If you try it with, say, a seven dimensional input, you’ll be glad you didn’t have

to write the code yourself.

for i_7 = indices(out, 7)

for i 6 = indices(out, 6)

for i 5 =
for i 4

for i

indices(out, 5)

3

indices(out, 4)

= indices(out, 3)

for i 2 = indices(out, 2)

for i_1 = indices(out, 1)

out[i 1, i 2, i 3, i 4, i 5, i6, i 7] = a[i 1, i 2, i 3, i 4, i 5, i 6, i 7] +

http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

Functions for Nothing

Julia has more tricks up its sleeve. It automatically specialises higher-order

functions, which means that if we write:
function kernel_zip2(f, out, a, b)
i = (blockIdx().x-1) * blockDim().x + threadIdx().x
out[i] = f(a[i], b[i])
return

end

@cuda (1, length(xs)) kernel_zip2(+, zs, xs, ys)

It behaves and performs exactly like kernel vadd ; but we can use any binary

function without extra code. For example, we can now subtract two arrays:

@cuda (1, length(xs)) kernel zip2(-, zs, xs, ys)

http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

There’s no hint of it in our code, but Julia will compile a custom GPU kernel to
run this high-level expression. Julia will also fuse multiple broadcasts together,
so if we write an expression like

y .= 0.(Wx .+ b)

This creates a single kernel call, with no memory allocation or temporary arrays
required. Pretty cool — and well out of the reach any other system I know of.

http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

& Derivatives for Free

If you look at the original kernel vadd above, you’'ll notice that there are no
types mentioned. Julia is duck typed, even on the GPU, and this kernel will work
for anything that supports the right operations.

For example, the inputs don’t have to be cuarrays, as long as they look like
arrays and can be transferred to the GPU. If we add a range of numbers to a

CuArray like so:

@cuda (1, length(xs)) kernel_vadd(xs, xs, 1:1024)

The range 1:1024 is never actually allocated in memory; the elements (1, 2,
.., 10241 are computed on-the-fly as needed on the GPU. The element type of
the array is also generic, and only needs to support +; so Int + Float64 works,

as above, but we can also use user-defined number types.

A powerful example is the dual number. A dual number is really a pair of
numbers, like a complex number; it’s a value that carries around its own

derivative.
http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

The full broadcasting machinery in CuArrays is 60 lines long. While not
completely trivial, this is an incredible amount of functionality to get from this
much code. CuArrays itself is under 400 source lines, while providing almost all
general array operations (indexing, concatenation, permutedims etc) in a
similarly generic way.

http://mikeinnes.github.io/2017/08/24/cudanative.htm!

http://mikeinnes.github.io/2017/08/24/cudanative.html

deep learning / differentiation for free

differentiable code for free

* NO need to write with special data types or restricted
operations

Researchers, users, and developers of Flux
H
A

::J u:l-ia Thl-?lan Turing

computing Institute

relational Al WASHINGTON

BEACO:lrL'III““‘h7
BIOSIGNALS

= INVENIA

AMD .1

Carnegie
Mellon

University

Convolutional Conditional Neural Processes

2

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard

E Turner

25 Sep 2019 (modified: 11 Mar 2020) ICLR 2020 Conference Blind Submission Readers: A

Everyone Show Bibtex Show Revisions

Original Pdf: ¥ pdf

TL;DR: We extend deep sets to functional embeddings and Neural Processes to include translation equivariant members
Abstract: We introduce the Convolutional Conditional Neural Process (ConvCNP), a new member of the Neural Process family
that models translation equivariance in the data. Translation equivariance is an important inductive bias for many learning
problems including time series modelling, spatial data, and images. The model embeds data sets into an infinite-dimensional
function space, as opposed to finite-dimensional vector spaces. To formalize this notion, we extend the theory of neural
representations of sets to include functional representations, and demonstrate that any translation-equivariant embedding can
be represented using a convolutional deep-set. We evaluate ConvCNPs in several settings, demonstrating that they achieve
state-of-the-art performance compared to existing NPs. We demonstrate that building in translation equivariance enables zero-
shot generalization to challenging, out-of-domain tasks.

Keywords: Neural Processes, Deep Sets, Translation Equivariance

Code: https://github.com/cambridge-mig/convcnp

11 Replies LGGE Public Comment

Show | all v | from | everybody Vv

- Paper Decision
ICLR 2020 Conference Program Chairs
19 Dec 2019 (modified: 19 Dec 2019) ICLR 2020 Conference Paper2232
Decision Readers: (A Everyone
Decision: Accept (Talk)
Comment: This paper presents Convolutional Conditional Neural Process (ConvCNP), a new member of the neural

Using the Hello World guide, you'll start a branch, write comments, and ope

Wessel wesselb .
- Read the guide
Hey, - /!l am a PhD student at the

Machine Learning Group at the
University of Cambridge, supervised
by Dr Richard Turner.

wesselb / ConvCNPs.jl ® Watch

<> Code ! lssues 0 1) Pull requests 0 Actions 1"l Projects 0 Wiki | | Security

Implementation of the ConvCNP in Julia

- 141 commits ¥ 3 branches (™ 0 packages © 0 releases 22 2cc
e

Tree: f5b0061a34 ~ New pull request Create new file Upload

[oX

W.P. Bruinsma Adjust experiment and add model

s src Revert "Automatically calibrate BayesianConvCNP" sawtooth
i test Add Sawtooth and change construtor of DataGenerator

£ .gitignore Add checkpoints and swap files to gitignore

[E) LICENSE Files generated by PkgTemplates

WA VWA

ConvCNPs.jl

Implementation of the Convolutional Conditional Neural Process.

13¢

13 ¢

17 ¢

13 ¢

13¢

14c

Generative Ratio Matching Networks

Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton

25 Sep 2019 (modified: 11 Mar 2020) ICLR 2020 Conference Blind Submission Readers: (3 Everyone Show Bibtex Show Revisions
Original Pdf: % pdf

Keywords: deep generative model, deep learning, maximum mean discrepancy, density ratio estimation

Abstract: Deep generative models can learn to generate realistic-looking images, but many of the most effective methods are adversarial and involve a saddlepoint optimiza
careful balancing of training between a generator network and a critic network. Maximum mean discrepancy networks (MMD-nets) avoid this issue by using kernel as a fixed :
unfortunately, they have not on their own been able to match the generative quality of adversarial training. In this work, we take their insight of using kernels as fixed adversa
novel method for training deep generative models that does not involve saddlepoint optimization. We call our method generative ratio matching or GRAM for short. In GRAM,
networks do not play a zero-sum game against each other, instead, they do so against a fixed kernel. Thus GRAM networks are not only stable to train like MMD-nets but they
generative quality of adversarially trained generative networks.

Code: https://github.com/GRAM-nets

TL;DR: MMD-based, saddle-point optimisation free, stable-to-train generative model that beats GAN on generative quality without playing any zero-sum games.

14 Replies

Figure 4: Nearest training images to samples from a GRAM-net trained on Cifar10. In each column,
the top image 1s a sample from the generator, and the images below it are the nearest neighbors.

Il GRAM-nets / JuliaGRAM ®Owatch~ 1 Hstar 0 YFork 1

<> Code (1) Issues 0 i) Pull requests o O Actions |"l Projects o Wiki 1) Security o 11 Insights

Offical Julia implementation of GRAM-nets

©- 28 commits ¥ 1 branch ™ 0 packages © 0 releases 42 1 contributor

Branch: master ~ New pull request Create new file Upload files = Find file
. xukai92 add pretrained cifar10 model Latest commit 8d85513 on Feb 19
s demo add pretrained cifar10 model 3 months ago
e images add pretrained cifar10 model 3 months ago
i scripts CIFAR10 compatible 3 months ago
i src CIFAR10 compatible 3 months ago
[=) .gitignore gan works 3 months ago
[=] Manifest.toml| CIFAR10 compatible 3 months ago
[=) Project.toml update MLT that fixes msg error 3 months ago
[README.md add pretrained cifar10 model 3 months ago

README.md

JuliaGRAM: Julia implementation of GRAM-nets

This is the source code for the paper Generative Ratio Matching Networks.

https://forums.fast.ai » ann-announcing-fastai-jl-fastai-f...

[ANN] Announcing FastAl jl: fastai for Julia - fast.ai Forum

Jul 27, 2021 — jl, a fastai-like library for deep learning in Julia. Features include high-level
training loops with hyperparameter scheduling and callbacks, a ...

Julia ML Community Call and FastAl jl - fast.ai Forum Sep 6, 2020
Why swift instead of Julia - San Francisco - fast.ai Forum Mar 6, 2019
Any thoughts on fast.ai architecture vs. MLJ or Flux (Julia)? Sep 12, 2020
More results from forums.fast.ai

Flux: The Julia Machine Learning Library

Fluxis a library for machine learning. It comes "batteries-included" with many useful tools built in, but
also lets you use the full power of the Julia language where you need it. We follow a few key principles:

e Doing the obvious thing. Flux has relatively few explicit APIs for features like regularisation or
embeddings. Instead, writing down the mathematical form will work - and be fast.

¢ You could have written Flux. All of it, from LSTMs to GPU kernels, is straightforward Julia code.
When in doubt, it's well worth looking at the source. If you need something different, you can easily roll
your own.

¢ Play nicely with others. Flux works well with Julia libraries from data frames and images to
differential equation solvers, so you can easily build complex data processing pipelines that integrate
Flux models.

struct Dense{F,S,T}
W::S
b::T
o::F

end

Dense(W, b) = Dense(W, b, identity)

function Dense(in::Integer, out::Integer, o = identity;
initW = glorot_uniform, initb = zeros)
return Dense(initW(out, in), initb(out), o)
end

@functor Dense

function (a::Dense)(x::AbstractArray)
W, b, o=a.W, a.b, a.o
o.(Wsx .+ b)

end

mutable struct ADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict

end

ADAM(n = 0.001, B = (0.9, 0.999)) = ADAM(n, B, IdDict())

function apply!(o::ADAM, x, A)
n, B = o.eta, o.beta
mt, vt, Bp = get!(o.state, x, (zero(x), zero(x), B))
@ mt = B[1] = mt + (1 - B[1]) * A
@ vt = B[2] % vt + (1 - B[2]) = A™2
@ A= mt/ (1 -Bpl1l]) /7 (V(vt /7 (1 - Bpl[2])) + €) = n
o.state[x] = (mt, vt, Bp .* B)
return A
end

mutable struct Nesterov
eta::Float64
rho: :Float64
velocity::IdDict

end

Nesterov(n = 0.001, p = 0.9) = Nesterov(n, p, IdDict())

function apply!(o::Nesterov, x, A)
n, p = o.eta, o.rho
v = get!(o.velocity, x, zero(x))::typeof(x)
d=@. p*2 *x v - (1+p) * n = A
@. vV = pkv - nxl
@ A= -d
end

DON’T UNROLL ADJOINT: DIFFERENTIATING SSA-FORM PROGRAMS

Michael J Innes !

ABSTRACT
This paper presents reverse-mode algorithmic differentiation (AD) based on source code transformation, in par-
ticular of the Static Single Assignment (SSA) form used by modern compilers. The approach can support control
flow, nesting, mutation, recursion, data structures, higher-order functions, and other language constructs, and the
output is given to an existing compiler to produce highly efficient differentiated code. Our implementation is a
new AD tool for the Julia language, called Zygote, which presents high-level dynamic semantics while transpar-

ently compiling adjoint code under the hood. We discuss the benefits of this approach to both the usability and
performance of AD tools.

INTRODUCTION We additionally introduce Zygote, a working implementa-

In the Flux paper, we demonstrate the ease with which one is able to take advantage of the
underlying ecosystem to express ideas and complicated thoughts. One example is how Flux
models can be learned with custom training loops that can house arbitrary logic, including
more complex gradient flows than a typical machine learning framework might support.

for x, ¢, d in training set
c _hat, d hat = model(x)
c loss = loss(c_hat, y) + A*loss(d hat, 1 - d)
d loss = loss(d hat, d)
back! (c_loss)
back! (d_loss)
opt()
end

Flux.jl has been shown to run on par with contemporary deep learning libraries while being
dramatically simpler, providing intelligent abstractions and maintaining a minimalist APL.

>>> @code_llvm derivative(x -> 5x+3, 1)
define i64 @"julia #625 38792"(i64)
{ top:

ret 164 5

TENSORFLOW EAGER: A MULTI-STAGE, PYTHON-EMBEDDED DSL FOR
MACHINE LEARNING

Akshay Agrawal ' Akshay Naresh Modi ' Alexandre Passos ' Allen Lavoie' Ashish Agarwal' Asim Shankar'
Igor Ganichev' Josh Levenberg' Mingsheng Hong' Rajat Monga' Shanging Cai'

ABSTRACT
TensorFlow Eager is a mult-stage, Python-embedded domain-specific language for hardware-accelerated machine
leaming, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends,
requires users to represent computations as dataflow graphs: this permits compiler optimizations and simplifies

The paperon TF 2.0 49, which shares many ideas with Jax, discusses this a bit as well:

In TensorFlow Eager, users must manually stage computations, which might require refactoring
code. An ideal framework for differentiable programming would automatically stage computations,
without programmer intervention. One way to accomplish this is to embed the framework in a
compiled procedural language and implement graph extraction and automatic differentiation as
compiler rewrites; this is what, e.g., DLVM, Swift for TensorFlow, and Zygote do. Python’s flexibility
makes it difficult for DSLs embedded in it to use such an approach.

In TensorFlow Eager, users must manually stage computa- tions, which might require refactoring code (see §4.1). An ideal framework for differentiable programm
stage computations, without programmer interven- tion. One way to accomplish this is to embed the framework in a compiled procedural language and implement
automatic differentiation as compiler rewrites; this is what, e.g., DLVM, Swift for TensorFlow, and Zygote do (Wei et al., 2017; Lattner & the Swift for TensorFloy
2019). Python’s flexibility makes it diffi- cult for DSLs embedded in it to use such an approach.

differentiable code for free

* NO need to write with special data types (tf.*, torch.”) or
restricted operations (jax)

Forward-mode

o ForwardDiffjl: Scalar, operator overloading forward-mode AD. Very
stable. Very well-established.

C O m p O S a b | e o ForwardDiff2: Experimental, non-scalar hybrid operator-

Reverse-mode

overloading/source-to-source forward-mode AD. Not currently in

development.

ReverseDiffjl: Operator overloading reverse-mode AD. Very well- e Diffractorjl: Next-gen IR-level source to source forward-mode (and

established.

reverse-mode) AD. In development.

Nabla jl: Operator overloading reverse-mode AD. Used in (its Symbolic:

maintainer) Invenia's systems.

e Symbolics,jl: A pure Julia computer algebra system. While its docs focus

Tracker jl: Operator overloading reverse-mode AD. Most well-known . . b
on some particular domain use-case it is a fully general purpose system.

for having been the AD used in earlier versions of the machine learning
package Flux.jl. No longer used by Flux l, but still used in several place:

) i Exotic
in the Julia ecosystem.

AutoGrad,jl: Operator overloading reverse-mode AD. Originally a port ~ ® TaylorSeries jl: Computes polynomial expansions; which is the
of the Python Autograd package. Primarily used in Knetjl. generalization of forward-mode AD to nth-order derivatives.

Zygotejl: IR-level source to source reverse-mode AD. Very widely use e NiLang;jl: Reversible computing DSL, where everything is differentiable

Particularly notable for being the AD used by Fluxjl. Also features a by reversing.

secret experimental source to source forward-mode AD.

Yota jl: IR-level source to source reverse-mode AD.

XGrad jl: AST-level source to source reverse-mode AD. Not currently in ~ SP4rsity

active development. e SparsityDetection jl: Automatic Jacobian and Hessian sparsity pattern

ReversePropagation jl: Scalar, tracing-based source to source reverse- detection.

mode AD. o SparseDiffTools jl: Exploiting sparsity to speed up FiniteDiff,jl and
Enzymejl: Scalar, LLVM source to source reverse-mode AD. ForwardDift jl, as well as other algorithms.

Experimental.

Diffractor jl: Next-gen IR-level source to source reverse-mode (and
forward-mode) AD. In development.

https://juliadiff.org

e ChainRules: Extensible, AD-independent rules.

o ChainRulesCore jl: Core API for user to extend to add rules to their

package.

o ChainRules,jl: Rules for Julia Base and standard libraries.

o ChainRulesTestUtils.jl: Tools for testing rules defined with
ChainRulesCore jl.

HHH#H##H
#it### dot’
HHH#H#H

function frule((_, Ax, Ay), ::typeof(dot), x, y)
return dot(x, y), dot(Ax, y) + dot(x, Ay)
end

function rrule(::typeof(dot), x::AbstractArray, y::AbstractArray)

project_x = ProjectTo(x)
project_y = ProjectTo(y)
function dot_pullback(Q)
AQ = unthunk(Q)
@thunk(project_x(reshape(y .x AQ', axes(x))))
@thunk(project_y(reshape(x .x AQ, axes(y))))
return (NoTangent(), X, V)
end

return dot(x, y), dot_pullback

creativity

Programming languages teach you not to want
what they don’t provide.

Paul Graham

what Is art, and why does It exist

of the visual cortex. Specifically, we propose that a broad subset of visual art
can be defined as patterns that are exciting to a visual brain. Resting on the
finding that artificial neural networks trained on visual tasks can provide predictive
models of processing in the visual cortex, our definition is operationalized by using
a trained deep net as a surrogate “visual brain”, where ‘“exciting” is defined as
the activation energy of particular layers of this net. We find that this definition

Our methodology rests on the recent discovery that artificial deep nets trained on visual tasks are
surprisingly accurate predictive models of both cortical spiking and population aggregate responses
of primate visual brains [KRK14] . By making use of
this correspondence, we obtain a computational realization of the proposed definition that would not
be possible using alternative methods such as brain imaging.

(c) AVA

e
Sovee

Yot
A

P T 2 4

:
3¢
»
e

(1) Maori Tattoo | (j) Aboriginal

(g) Huichol

Figure 1: Examples of art and non-art image data used in this study: (a) Google Street View, (b)
IAPR TC-12 Benchmark, (c) AVA (artistic photos), (d) Kaggle subset of Wikiart (Impressionism
category), (e) Ukiyo-e (Japan), (f) Op Art, (g) Huichol (Mexico), (h) Islamic tile, (i) Maori tattoo
(New Zealand), (j) Aboriginal (Australia). Please enlarge to see details.

—— Genres 1000

—— lslamic Tiles
==+ AVA =-==- Huichol (Mexico)
...... Kaggle e Op Art
—-= |APR TC-12 800 —-— Aboriginal (Australia)
—— Street view | —— Ukiyo-e (Japan)
[Tatoo (South Pacific)
==+ Impressionism
é‘ 600 Street view
3 !
o
C
S
Z 400
200
oy e .
0 — 0 it
2 Z S S JRY R B N, SN S SRR SR S S o o eSS
o~ g v v <]) > » > o o o' F & @ @
& > S > &5 > & S S S S & S @ Z A N N
F&F e FeTe&sees e e e é F & e
Relu layer Relu layer
(a) Overall cat I (b) Individual genres

Figure 3: RMS activation at several relu layers of VGG, averaged across images.

Table 1: One-way permutation analysis
Comparison Stat p.value p.adjust
AVA/IAPR=0 1397 0 0.00
AVA/Kaggle=0 4.317 1.581e-05 0.00
AVA/Genres =0 -21.13 4.382e-99 0.00
AVA/Street View =0 30.6 0 0.00
IAPR/Kaggle=0 -9.28 1.697e-20 0.00
IAPR/Genres =0 -29.05 1.464e-185 0.00

IAPR/Street View =0 23.08 0 0.00
Kaggle/Genres =0 -23.44 1.829¢-121 0.00
Kaggle/Street View =0 2695 0 0.00

Genres/Street View =0 36.69 0 0.00

X m.#%

»
7
(v

Fhe. !‘% AREEF
o

e

) q- \ f
Jn‘l.,-|||||,l AN ;

=\

E.'.

- N TITm

3 v P ’
) 2 'I."",nv 1
\ |
=
= o~
] .
- [1<) T
; oLl
:
‘J

G

Ly st

Qi

u_lﬂllﬂuunumuﬂl
= (TIITII e u . e o
\

[l dlimng

L1177

-
=
-
-
-

[T

C

~
[
[Trri

"ll"""“

e
"
g "r.,wﬁ

QAT

I..u.g,“v

——
2

Figure 5: Pattern created by a male pufferfish [KOI13]]. Permission to reproduce Figure 3 of [KOI13]
obtained from Rightslink copyright clearance center.

composability, multiple dispatch, other

software engineering is not

- O-0: state acts like globals to all (inherited) functions of a
class

- Violates referential transparency. Hard for humans,
hard for compillers.

- Arbitrarily asymmetric: dispatch only on the type of the
first arg: a.mul(b)

- Julia: dispatch on all types, avoid state wherever possible

Multiple dispatch

julia>*
* (generic function with 149 methods)

julia> function *(a::String, n::Integer)
accum =""
fori=1:n
accum = accum + a # after defining +
end
return accum
end
* (generic function with 150 methods)

julia> "abc" * 4
"abcabcabcabc”

Type magic compositionality

+ symbolic for free

- cuarray

type magic:
convert numeric code to symbolic for free

Stochastic Lifestyle A Random Blog About Math and Life

Home Current Projects Personal Website RSS
-

Some Fun With Julia Types: Symbolic Expressions in the ODE “ (ategories
50|ver Mam%r?f?;rzsntial Equations

Stochastics

May 4 2017 in Differential Equations, Julia, Mathematics, Uncategorized | Tags: | Author: Christopher

Rackauckas

Programming
In Julia, you can naturally write generic algorithms which work on any type which has specific C
"actions”. For example, an "AbstractArray” is a type which has a specific set of functions CUDA
implemented. This means that in any generically-written algorithm that wants an array, you can give FEM
it an AbstractArray and it will "just work™. This kind of abstraction makes it easy to write a simple HPC
algorithm and then use that same exact code for other purposes. For example, distributed computing Julia

can be done by just passing in a DistributedArray, and the algorithm can be accomplished on the GPU
by using a GPUArrays. Because Julia's functions will auto-specialize on the types you give it, Julia

automatically makes efficient versions specifically for the types you pass in which, at compile-time, MATLAB
strips away the costs of the abstraction. Xeon Phi

Mathematica

The ODE solvers for Julia are in the package DifferentialEquations.jl. Let's solve the linear ODE:

d

a =2

with an initial condition which is a symbolic variable. Following the tutorial, let's swap out the
numbers for symbolic expressions. To do this, we simply make the problem type and solve it:

using DifferentialEquations, SymEngine
y® = symbols(:y®@)

ue = yo

f=(ty) -> 2%

prob = ODEProblem(f,u®,(0.0,1.8))

sol = solve(prob,RK4(),dt=1/10)

println(sol)
SymEngine.Basic[y®,1.2214%y9,1.49181796%y0,1.822106456344%y0,2.22552082577856%y0,2.71825113/

The unreasonable effectiveness of the
Julia programming language

Fortran has ruled scientific computing, but Julia emerged for large-scale numerical work.

LEE PHILLIPS - 10/9/2020, 4:15 AM

Q JuliaCon 2020 | Keynote: Scientific Machine Learning | Prof Karen Will... Y ~»
Watch later ~ Share

juliacon Keynote: Karen
2020 Willcox

Kare » illcox

computing

@Pumas O JUSPAY - MyEm

JEFFREY SARNOFF

|l e
A Vercel

R =~

sticker

Watch on 3 YouTube

Ain't no party like a programming language virtual conference party

I've been running into a lot of happy and excited scientists lately. “Running into” in the virtual
sense, of course, as conferences and other opportunities to collide with scientists in meatspace
have been all but eliminated. Most scientists believe in the germ theory of disease.

Anyway, these scientists and mathematicians are excited about a new tool. It's not a new particle
accelerator nor a supercomputer. Instead, this exciting new tool for scientific research is... a
computer language.

ArFS TECHNICA

The Expression Problem, via extended analogy

The concept of the “expression problem” arises in the study of the design of computer languages.
It is part of the domain of computer science, and so the existing explanations of its meaning,
implications, and the various ways around the problem tend to be abstract and rely on a
specialized terminology. But we can do better. It's possible to describe all the issues involved by
using an analogy to cooking.

The computer science terms that we would like to analogize are functions/programs, data types,
and libraries/modules/packages. Briefly, functions or programs are procedures for taking some
input, doing something to it, and producing some output. Data types are collections of numbers
or other information, which may have various kinds of structure, that the functions operate on.
Libraries, etc., are collections of functions, along with descriptions of the data types that they
work with, bundled together to perform a set of related tasks. An example of a library would be a
set of functions for drawing graphs. The individual functions in the library might be for drawing
different types of graphs, like pie charts and histograms. The data type for a pie chart, for
example, would be a list of pairs of elements, with the first being a word or phrase and the
second a percentage.

For anyone who has spent time in the kitchen creating dishes from recipes, this analogy will be
fairly direct and natural. The library or package becomes the recipe book; imagine a somewhat
focused book about making desserts, or soups, for example. The functions or programs can be
thought of either as complete recipes for making a dish or as techniques or procedures, such as
how to sauté. We can visualize them as gears, as they are the machinery for processing raw
ingredients. The data types are the raw ingredients in this exercise.

Imagine our recipe book is organized in such a way that recipes only work with certain
ingredients. For example, you can look up “how to sauté” and find the procedure, the set of steps,
for sautéing onions or sautéing shrimp. All these procedures are different, as they use different
ingredients. If recipes work like a computer language, the ingredient lists are part of, in fact
enclosed within, the recipes.

O]
Recipes that only work with specified ingredients.

A new ingredient

There is more than one way to organize a recipe book, however. What if it were organized arot
ingredients, rather than around methods of cooking? For each ingredient, there would be a se
techniques or methods that go with it. Continuing with our iconography, this could be
represented with this picture:

function sinc(x)::Float64
if x ==
return 1
end
return sin(pi*x)/(pi%*x)
end

primitive type Float16 <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end
primitive type Char 32 end

primitive type Int8
primitive type UInt8
primitive type Int16
primitive type UInt16
primitive type Int32
primitive type UInt32
primitive type Int64
primitive type UInt64
primitive type Int128
primitive type UInt128

: Signed 8 end

: Unsigned 8 end

: Signed 16 end
: Unsigned 16 end
: Signed 32 end
: Unsigned 32 end
: Signed 64 end
: Unsigned 64 end
: Signed 128 end
: Unsigned 128 end

A A A A A A A AN A A

development, teaching, other

- call python (using PyPlot)

- call C

https://github.com/Wikunia/Javis. |

function draw_latex(video, action, frame)
black_red = blend(0, Point(0, 150), "black", "red")
setblend(black_red)
fontsize(50)
latex(
L"""\begin{equation}
\left[\begin{array}{cc}
2 & 3 \\ 4 & \sqrt{5} \\
\end{array} \right]
\end{equation}""",
0,
valign :middle,
halign = :center

)

end

The biggest change is that we added the and functions. creates a linear blend between two
points using two given colors - in this case, black and red. applies the blend to the drawn object. We also
use the function this time as it makes writing the function easier.

Can you guess what happens when we execute the code with this newly updated function? Here is
what the output looks like:

- Jupyter = julia + python + R

- Pluto

- live ("reactive")

 no hidden state. "At any instant, the program state is
completely described by the code you see.”

- notebooks are julia source (vs ipynb)

https://youtu.be/IAF8DjrQSSK?t=1327

Pluto for education

For students: Fall 2020

Trial runs with TU Berlin & MIT
+ Easy toinstall

+ Live feedback Feedback from students and teachers

+ Fewer confusing bugs .
Spring 202I

For teachers: Guides for writing course material (template

repositories, video tutorials, etc)

+ Write engaging course material

: , PlutoEducation. j1 with useful widgets and
" AnccrmelEln autograding tools

golden_ratio = missing tools > @ Autograder.jl

- golden_ratio = missing

M Autograder.jl ®

MICHIGAN Project ID: 13560

Exercise 8: golden_ratio
Keep working on it!
-0-19 Commits ¥ 1Branch ¢ 0Tags [} 154 KB Files [154 KB Storage

Julia client for the Michigan Autograder

master Autograder.jl

julia

Spring 2021

Introduction to Computational Thinking
Math from computation, math with computation

Alan Edelman, David P. Sanders & Charles E. Leiserson

Welcome

Class Reviews

Class Logistics
Homework

Syllabus and videos
Software installation
Cheatsheets
Previous semesters

Submit Short Clips

-- Module 1: Images, Transformations, Abstractions -

1.1 - Images as Data and Arrays
1.2 - Intro to Abstractions

1.3 - Transformations & Autodiff
1.4 - Transformations with Images

1.5 - Transformations Il: Composability, Linearity

and Nonlinearity

1.6 - The Newton Method

1.7 - Intro to Dynamic Programming
1.8 - Seam Carving

1.9 - Taking Advantage of Structure

2.1 - Principal Component Analysis

2.2 - Sampling and Random Variables

2.3 - Modeling with Stochastic Simulation
2.4 - Random Variables as Types

2.5 - Random Walks

https://computationalthinking.mit.edu/Spring21/newton _method/

https://computationalthinking.mit.edu/Spring21/transforming _images/

https://computationalthinking.mit.edu/Spring21/2d_advection_diffusion/

https://computationalthinking.mit.edu/Spring21/newton_method/
https://computationalthinking.mit.edu/Spring21/transforming_images/

finally Done

