
Performance-Driven Facial
Animation
SIGGRAPH 2006

Frederic Pighin	 	 	 Industrial Light + Magic

J.P. Lewis	 	 	 Stanford University

George Borshukov	 	 Electronic Arts	 	

Chris Bregler	 	 	 New York University	

Parag Havaldar	 	 Sony Pictures Imageworks

Thomas Kang	 	 	 Softimage

Jim Radford	 	 	 Moving Picture Company

Mark Sagar	 	 	 Weta Digital

Steve Sullivan	 	 	 Industrial Light + Magic

Tom Tolles	 	 	 House of Moves

Li Zhang	 	 	 Columbia University

	

fpighin a t ilm d o t com	 zilla a t computer d o t org

Schedule

8:30 Introduction and Overview
Fred Pighin, Industrial Light + Magic

9:00 Facial Motion Capture in Production
Parag Havaldar, Sony, and Tom Tolles, House of Moves

10:00 Break

10:15 Facial Retargeting
Fred Pighin, ILM, and J.P. Lewis, Stanford

11:15 Markerless Face Capture and Automatic Model Construction
Chris Bregler, NYU, and Li Zhang, Columbia

12:15 Lunch

1:30 Performance Driven Facial Animation at ILM
Steve Sullivan and Christophe Hery, ILM

2:15 Monster House
Parag Havaldar, Sony

3:00 King Kong
Mark Sagar, Weta

4:00 Virtual History - Jim Radford, Moving Picture Company,
Face Robot - Thomas Kang, Softimage

4:45 Playable Universal Capture at Electronic Arts
George Borshukov, EA

5:15 Panel on the future of performance-driven animation
all speakers

Contents
Notes
Introduction and History
Fred Pighin and J.P. Lewis

Face Retargeting
Fred Pighin and J.P. Lewis

Markerless Face Capture and Automatic Model Construction (I)
Chris Bregler, NYU

Markerless Face Capture and Automatic Model Construction (II)
Li Zhang, Columbia

PFDA at Sony Imageworks
Parag Havaldar

Virtual History : The Secret Plot to Kill Hitler
Jim Radford, The Moving Picture Company

Facial Performance Capture and Expressive Translation for King Kong
Mark Sagar, Weta Digital

Playable Universal Capture
George Borshukov et al., Electronic Arts

Slide Presentations
Introduction and History
Fred Pighin, ILM

Background Math Overview
J.P. Lewis, Stanford

Facial Retargeting
Fred Pighin and J.P. Lewis

Markerless Face Capture and Automatic Model Derivation
Chris Bregler, NYU

Markerless Face Capture using Structured Light
Li Zhang, Columbia

Playable Universal Capture at Electronic Arts
George Borshukov, Electronic Arts

Interactive UCap Sequencing with Leanne Adachi
Jefferson Montgomery, Electronic Arts

Papers
Performance-Driven Facial Animation
L. Williams

Learning Controls for Blend Shape Based Realistic Facial Animation
P. Joshi, W. Tien, M. Desbrun, and F. Pighin

Making Faces
B. Guentery, C. Grimmy, D. Woodz, H. Malvary, F. Pighinz

Synthesizing Realistic Facial Expressions from Photographs
F. Pighin, J. Hecker, D. Lischinski,, R. Szeliski, and D. Salesin

Universal Capture – Image-based Facial Animation for “The Matrix Reloaded”
G. Borshukov, D. Piponi, O. Larsen, J. Lewis, C. Tempelaar-Lietz

Analysis and Synthesis of Facial Expressions with Hand-Generated Muscle Actua-
tion Basis
B. Choe and H.-S. Ko

An Example-Based Approach for Facial Expression Cloning
H. Pyun1, Y. Kim2, W. Chae1, H.-W. Kang1, and S.-Y. Shin1

Face Transfer with Multilinear Models
D. Vlasic, M. Brand, H. Pfister, J. Popovic

Performance-Driven Hand-Drawn Animation
I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. Salesin, J. Seims, R. Szeliski, K. Toyama

Siggraph 2006 course notes
Performance-driven Facial Animation

Introduction

Frédéric Pighin J.P. Lewis

Industrial Light + Magic Stanford University

Overview
Creating an animation of a realistic and expressive human face is clearly one of greatest challenges in com-
puter graphics. The human face is an extremely complex biomechanical system that is very difficult to model.
Human skin has unique reflectance properties that are challenging to simulate accurately. Moreover the face
can convey subtle emotions through minute motions. We do not know the control mechanism of these mo-
tions.

This course focuses on animating the face, ignoring rendering issues. Although the subject is contentious,
some people feel that manual keyframe animation may never capture the subtleties of real facial movement.
A more practical viewpoint is that while some animators may be able to produce realistic facial animation,
the consistent production of large amounts of flawless animation is expensive and probably not practical.

On the other hand, the ideal “input device” for driving facial animation is probably the face itself – simply
mimicking the desired expression is far faster, easier, and more natural than adjusting dozens of sliders. Thus
comes the idea of performance-driven facial animation: drive the animation directly from a person’s captured
facial performance.

History
Williams: the genesis of performance driven facial animation. Lance William’s paper “Performance-
Driven Facial Animation” [13] in Siggraph 1990 introduced the term to the computer graphics community.
Although there were a few earlier works on automated face tracking, they generally targeted the idea of
model-based video compression in an era when long-distance transmission of video was impractical. In
William’s groundbreaking demonstration, a static scan of the face was warped by a set of markers tracked via
video (with frontal plane X-Y motion only). Each marker had a related “warp field”.

Hardware systems. Motion capture systems date from the 1980s or earlier. One of the first prominent facial
performance animation demonstrations is that of SimGraphics, shown at Siggraph in 1992. This system used
a custom face-tracking helmet with physically attached sensors, rather that passively tracked markers. Only
a few gross regions of the face were tracked. Systems such as Acclaim and Ascention capable of tracking
up to a hundred markers or so date from the early 1990s, though they were largely used for body rather
than face motion capture, however, by the mid- to late- 90s the idea of face tracking with hardware motion
capture systems was commonplace and regularly seen in short demonstrations and animations. While current

1

systems such as the Vicon can track more than 100 markers, it is difficult and time consuming to physically
place large numbers of markers on a face, and dense motion capture systems are arguably preferable if very
high fidelity is required.

Face tracking approaches

Software based systems offer the promise of moving beyond markers to track all regions of the face at the
pixel level. There have been literally hundreds of independent published papers on software face tracking, so
we will only mention some of the main approaches. Further details on some of these approaches appear in
other sessions of the course, particularly in the session on Dense Motion Capture.

Stereo, photogrammetry, and structured light. Stereo provides potentially the most accurate approach
to face tracking. Photogrammetry has been applied to reconstructing accurate animated faces from several
cameras [8]. Unguided stereo reconstruction is quite difficult, however, and successful systems have tended
to use additional information, such as

• disambiguating markers [8],

• projected structured light patterns [7, 15],

• manual hints and correspondence establishment, and

• manual correction of mistakes [3].

Producing an animated mesh with a stereo technique also requires solving for frame to frame correspon-
dances throughout the shot.

Feature tracking. Early work in computer vision proposed a breakdown in terms of feature-based and
appearance-based approaches. Feature based approaches to face tracking would include custom approaches
that look for prominant features (the eyes, nose, etc.), whereas appearance based approaches capture the
appearance of these regions from training images. Although the appearance-based approach is intuitively
appealing, it has not been as successful as other approaches.

Appearance-based tracking. The active appearance model (AAM) [5] (and related independently invented
approaches) is the dominant appearance-based face-tracking approach at present.1 The active appearance
model consists of two principal component (PCA) models. The first is trained on variations in face shape (in
the case of tracking, typically this means changes in the appearance of a single face as it rotates and changes
expression), expressed as the locations of a set of invisible “virtual markers” on the face. The second principal
component model is trained on the variations in face skin texture, however, this variation is captured after the
shape data is identified and removed by morphing the texture to a normalized face shape.

The “gabor-jet” approach introduced by Wiskott, von der Malsburg and collaborators [14] might be con-
sidered to lie somewhere in between feature- and appearance- based approaches. This system represents the
appearance of important features and their surroundings with a multi-resolution set of Gabor wavelets. The
large scale wavelets provide context to help locate and disambiguate specific features. This approach is also
used in a commercial face tracking product (Eyematic/NevenVision).

1An earlier version of these notes stated that the system developed by Image Metrics uses AAMs; this is incorrect.

2

Model-based tracking. One of the oldest approaches to face tracking is to construct a 3D model of the
subject and adjust its orientation and parameters until it best matches the video frame (in the robotics com-
munity this approach is called “visual servo”, though the “model” there is a physical robot rather than a
CG face). This approach dates to the late 1980s [1], and pioneers of the approach include Li, Roivainen, and
Forchheimer in the early 1990s [10] and more recently, DeCarlo and Metaxas [4] and Eisert and collaborators
[6].

Automatic model-derivation. Recent research has shown that a deformable model can potentially be de-
rived automatically from only two-dimensional information across an number of frames. Chris Bregler is a
pioneer in this area and he surveys this work later in this course.

Performance-driven facial animation in entertainment
Applications of facial motion capture in entertainment have only appeared only in the last several years.

Movie Tests
In 1998 a number of graphics facilities did tests for a potential remake of The Incredible Mr. Limpet. Several
of these used facial motion capture (the Centropolis test used the Eyetronics sytem, for example), and some
of the technology from the PacTitle effort led to the LifeFx system several years later. LifeFx had a ground-
breaking short animation in the Siggraph 2000 electronic theater – marking perhaps the first time that a CG
actor actually fooled a few people (mainly people at the back of the rather large theater).

In 1999 ILM revealed their Hugo test of an alien-like character driven by retargeted performance cap-
ture. One writer remarked in 2002 that Hugo was the animated character “that most shakes my faith in the
...impossibility of fabricating synthetic souls” [12]. The technology behind this test has not been published.

In 2002 Disney showed their Human Face Project in the Siggraph Electronic Theater. This test animation
showed cross-mapping from an older actor to a CG younger actor.

Combinations of Motion Capture and Traditional Animation
Both Final Fantasy (2000) and an early test for Shrek chose to use motion capture for the body animation but
manual animation for the face, so these are not examples of performance-driven facial animation.

Although the facial motion for Gollum in the Lord of the Rings trilogy was done with traditional keyframe
animation, it was heavily guided by reference video of the actor Andy Serkis who “played” Gollum. Thus
the Gollum character might be considered to be almost “roto (rotoscope)-driven”.

Motion Capture arrives at the movies: The Matrix sequels and The Polar Express
The Matrix sequels used performance-driven virtual actors in a number of special effects shots. Their system
[3] applied markerless dense motion capture, but required manual intervention. The system used optical flow
in each of 5 HD cameras, and then applied stereo to reconstruct the 3D motion of the face mesh. Because
optical flow “drifts” or accumulates errors over time, the system needed to be re-initialized with a manually
corrected face mesh at frequent intervals (every few seconds, depending on the amount of motion).

George Borshukov will describe an evolution of this system in his presentation later in the course.

The Polar Express
The Polar Express in 2004 was the breakthrough movie for performance-driven facial animation, with most
or all characters being driven by marker-based motion capture [2].

3

Figure 1: The “uncanney valley”.

Sony Imageworks has further developed their use of motion capture for movies such as Monster House, and
Parag Haldavar describes the use of a FACS (Facial Action Coding System)-based intermediate representation
for retargeting in his session of this course.

The Creepy Factor

Although performance-driven facial animation is now an established and somewhat successful technique,
there is even further to go. Current technology is suitable for animated films where the characters have a
somewhat “cartoony” feel, but attempts to produce realistic digital clones rarely fool people for more that
a few seconds. Moreover, several large scale film industry attempts to produce a CG ”lead” character have
been attempted and subsequently abandoned. These include the previously mentioned proposed remake of
The Incredible Mr. Limpet in 1998 and Disney’s human face attempt in 2000-2002.

Worse still, some CG humans have been described as “creepy”, “the living dead”, etc. This phenomena
is now widely described as the Uncanny Valley (see Fig. 1), a term introduced roboticist Masahiro Mori in
1970 [11]. Although we can all subjectively identify this effect, it’s cause is a subject of speculation. For
example, while several people in an online discussion blamed the lifeless characters in The Polar Express on
its use of motion capture, the blog author demonstrates (or argues, at least) that still images of the characters
can be considerably improved with photoshop editing – suggesting that the problem may have nothing to do
with motion [9].

References

[1] K. Aizawa, H. Harashima, and T. Saito. Model-based analysis synthesis coding system for a person’s
face. Signal Processing: Image Communication, 1:139–152, 1989.

[2] David Bennett. The faces of The Polar Express. notes in SIGGRAPH course #9: Digital Face Cloning,
2005.

[3] George Borshukov, Dan Piponi, Oystein Larsen, J. P. Lewis, and Christina Tempelaar-Lietz. Universal
capture: image-based facial animation for ”the matrix reloaded”. In Proceedings of the SIGGRAPH
2003 conference on Sketches & applications, pages 1–1. ACM Press, 2003.

4

[4] D. Decarlo and D. Metaxas. Deformable model-based shape and motion analysis from images using
motion residual error. In Proceedings, First International Conference on Computer Vision, pages 113–
119, 1998.

[5] G.J. Edwards, C.J. Taylor, and T.F. Cootes. Learning to identify and track faces in image sequences. In
Proceedings, 8th British Machine Vision Conference, pages 130–139, 1998.

[6] P. Eisert, T. Wiegand, and B. Girod. Model-aided coding: A new approach to incorporate facial anima-
tion into motion-compensated video coding, 2000.

[7] EYETRONICS. Shapesnatcher. http://www.eyetronics.com.

[8] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin. Making faces. In SIGGRAPH 98 Conference
Proceedings, pages 55–66. ACM SIGGRAPH, July 1998.

[9] Ward Jenkins. The Polar Express: a virtual train wreck. wardomatic.blogspot.com/2004/12/
polar-express-virtual-train-wreck 18.html, 2004.

[10] H. Li, P. Roivainen, and R. Forcheimer. 3-d motion estimation in model-based facial image coding.
IEEE Trans. Pattern Anal. Mach. Intell., 15(6):545–555, 1993.

[11] Masahiro Mori. On the uncanny valley. In Proceedings of the Humanoids-2005 workshop: Views of the
Uncanny Valley, December 2005.

[12] Lawrence Weschler. Why is this man smiling? Wired, June 2002.

[13] L. Williams. Performance-driven facial animation. In SIGGRAPH 90 Conference Proceedings, vol-
ume 24, pages 235–242, August 1990.

[14] Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph von der Malsburg. Face recognition
by elastic bunch graph matching. In Gerald Sommer, Kostas Daniilidis, and Josef Pauli, editors, Proc.
7th Intern. Conf. on Computer Analysis of Images and Patterns, CAIP’97, Kiel, number 1296, pages
456–463, Heidelberg, 1997. Springer-Verlag.

[15] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces: high resolution capture
for modeling and animation. ACM Trans. Graph., 23(3):548–558, 2004.

5

Siggraph 2006 course notes
Performance-driven Facial Animation

Facial Motion Retargeting

Frédéric Pighin J.P. Lewis

Industrial Light + Magic Stanford University

1 Introduction

When done correctly, a digitally recorded facial performance is an accurate measurement of the performer’s
motions. As such it reflects all the idiosyncrasies of the performer. However, often the digital character that
needs to be animated is not a digital replica of the performer. In this case, the decision to use performance
capture might be motivated by cost issues, the desire to use a favorite actor regardless of the intended charac-
ter, or the desire to portray an older, younger, or otherwise altered version of the actor. The many incarnations
of Tom Hanks in Polar Express illustrate several of these scenarios.

In this scenario, the recorded (source) performance has to be adapted to the target character. This process is
called motion retargeting or cross-mapping. In this section, we examine different techniqques for retargeting
a recorded facial performance onto a digital face.

The important issues for cross-mapping are the choice of facial model parameterization (or “rig” in the
industry parlance) and the nature of the chosen cross mapping (linear or more general).

A rig provides a parameterization of the facial expressions of a digital face. The semantics of the param-
eters depends on the system. The parameters could be a set of values representing muscle activations (or
actuations), or these value could describe the relative contribution of facial expressions. A rig provides a way
of describing facial expressions with a small number of parameters and limits the range of expressions to the
allowed range of these parameters. In particular, by using a rig for the target character we can solve for a
retargeted motion with the rig as a constraint. Using a rig we can make sure that the expressions generated
for the target face are valid for this character. Each frame requires solving for the parameters in the rig.

Note that we will not emphasize the distinction between spline and polygon models, because for the most
part the cross-mapping algorithms are identical (or the required changes between the two cases will be evident
to any experienced graphics person). Similarly, we will also not distinguish between geometric source models
(as constructed manually or obtained from a dense motion capture system) and simple collections of points
(as provided by hardware motion capture systems such as the Vicon). This is again because the difference
between marker points and vertices has little effect on many algorithms, and one format can be transformed
into the other by triangulating the markers or considering each vertex in the mesh as a marker. Instead, we
underline when necessary when the technique is more appropriate for dense source animation (animated mesh
or dense mocap). Lastly, for a couple of the techniques covered ([2, 5]) either the source or target (or both)
is video rather than 3D data. Here the distinction is mentioned but not emphasized, because (at least in the

1

techniques surveyed below) it should be relatively easy to imagine a corresponding algorithm operating on
3D data.

1.1 Parameterization

Blendshape parameterization. Blendshape animation is one of the most widespread facial animation tech-
niques. In blendshape animation, a rig is a set of linearly combined facial expressions each controlled by a
scalar weight. The blendshapes provide a linear parameterization of the face deformations. The space of
potential faces is the linear space spanned by the blendshapes (or a portion of this space if the weights are
bounded). In this framework retargeting is reduced to estimating a set of blending weights for the target face
at each frame of the source animation.

There are several approaches to choosing the individual blendshape targets:

• whole-face targets, such as a target that represents a smile expression or a particular vowel,

• delta targets, where each target is a displacement from the neutral face, and the displacement is typi-
cally localized, such as ‘raise the right eyebrow’,

• local blendshapes [12], where separate blendshape systems cover particular regions, typically the upper
and lower face,

• linear motion capture bases obtained by selecting frames of motion capture, and

• blendshapes derived from principal component analysis, as described below.

Although the whole-face, delta, and local approaches all have their adherents, the systems have equivalent
expressive power, as can be easily seen by considering the simplicity of converting a model to any of the
alternate approaches. Given a delta model, a whole-face model with an identical range motion can be obtained
simply by adding the neutral face to each delta target, and likewise, a whole face model can be converted to
a delta model by defining and subtracting a “neutral” face from each of the other targets. Similarly, a local
model can be converted to a delta model by extending each local target with zeros over the remainder of the
whole face – resulting in a less efficient but expressively equivalent model.

Note that one way of automatically obtaining a whole-face basis is to simply select a sufficient set of frames
from motion capture; we term this a ‘motion capture basis’. This requires some care to obtain targets that
both span the full expression space and are not redundant. An approach to this problem developed in [5] will
be described later in these notes.

Blendshape models created by principal component analysis are distinctly different from the the whole-
face, delta, and local approaches, as will be described next.

PCA parameterization. Principal component analysis (PCA) of motion capture data (dense or marker)
automatically produces a blendshape model of sorts. The advantages of a PCA model are that it is the most
accurate blendshape model possible with a given number of blendshapes, and that it is obtained automati-
cally. A disadvantage is that while the resulting model has nice mathematical properties (the blendshapes
are orthogonal, so fitting is particularly efficient), the model is quite poorly suited for human manipulation.
This is because the individual targets resulting from PCA tend to have widespread effects that are difficult
to describe and remember. In a production environment, it is often desirable to allow for the possibility of
“emergency” human editing of the animation. Thus, PCA models may be ideal as a low-cost and accurate
representation of the source performance, but they are perhaps a risky choice for the target. As well, motion
capture of the target is often not available by definition.

2

Raw mesh parameterization. In some cases the source or target may be represented simply as the un-
derlying (polygon or spline) face geometry. In the case of detailed geometry, this representation has many
degrees of freedom that are not present in an actual face, and special care is required to avoid invoking these
motions .

1.2 Mapping
In general, the retargeting problem can be posed as a function estimation problem where the goal is to cre-
ate a function 1 that produces a target expression for each source expression. This scattered interpolation
formulation encompasses retargeting mappings that are non-linear. In the case where the target face is pa-
rameterized by a rig, the function maps source expressions into target parameters. Again, the advantage here
is that the target parameters always describe a valid target expression. Without a target rig, a mechanism has
to be implemented that guarantees that the retargeting function produces valid target expressions.

For the source face, the issue of the rig is not fundamental since we assume that the source animation is
valid. A more important issue for the source is to determine which components of the source animation is
affecting the target face. By default, one can assume that every single vertex of the source face affects the
target face. In practice this is often not desirable and we might decide to only consider the motion of a subset
of the source geometry. This could be done for simplifying the mapping estimation process specially in the
case where the target face has fewer degrees of freedom than source face (e.g. a live performer driving a
cartoon character). Also, this could help in speeding up the retargeting process.

Linear mapping. A linear mapping is of course the simplest approximation to any mapping, and is a
common (though not exclusive) choice for cross mapping. Linear mapping has obvious potential deficiencies,
however. Suppose that the target is a dragon that “smiles” by first widening its mouth, and then curling the
mouth corners upward. Doing performance-driven animation of a blendshape model using linear cross-
mapping cannot produce this subtle non-linear motion, however, it could be obtained by either choosing
non-linear mapping technique or using linear mapping in conjunction with a more sophisticated rig that has
a built-in control for the desired effect.

Scattered data interpolation. In general, the retargeting problem can be posed as a scattered data interpo-
lation problem, where a function is estimated that maps the source parameter space onto the target parameter
face. In this case, the estimation is performed by constraining the function on specific data points in the source
space. Igarashi et al. [10] call this technique Spatial Keyframing in a more general performance-driven ani-
mation context. There are many ways of solving scattered data interpolation problems. For instance Buck et
al. [2] uses partitioning of the target space via a Delaunay triangulation. The mapping is set at each node in
the triangulation and linearly interpolated withing each triangle. Partitioning quickly becomes impractical in
higher dimensions. Fortunately kernel-based techniques such as Radial basis function (RBF) interpolation [3]
provide excellent alternatives. A basic introduction to RBF interpolation is given in the introduction of the
course.

Art direction. Regardless of the underlying representation of the retargeting function, it is often desirable
to let a user drive the retargeting process. The need for user input is clear when the source and the target
character are very different. A user needs to specify how the motions of the source maps into motions for the
target. This is often done at the facial expression or muscle activation level depending on the underlying facial
parameterization (or rig). The scattered data interpolation framework supports user input quite naturally since
the correspondances between source and target expressions can be determined by a user. The need to support

1This assumes that only one target expression can be associated to each source expression. This might not be true if for instance the
target expression depends as well from the dynamics of the source face.

3

user input and the corresponding interface depends very much on the application. It could be critical for
animating a hero character in a feature film but not necessary for animating chatroom avatars.

2 Survey of Techniques
Parallel Blendshape Models. If we have a set of blendshapes for the performer and one for the target
character that correspond to the same expressions, then once the performance is mapped onto the source
blendshapes, it can be easily mapped onto the target character by simply reusing the same weights [17].
Unfortunately, this simple situation rarely occurs in practice. Often the blendshapes are not available for the
source or they do not correspond to the target blendshapes. Although a custom model representing the source
performance could be manually constructed, this can take as much as a year of manual effort to do well [11],
which is a lot of effort considering that this model will never be seen or used other than as a representation of
the source performance. Fortunately, many of the techniques described below make the manual construction
of a source model unnecessary.

Constructing the (or source) by warping). If the target does not differ too much from the source, the
unavailable model (whether source or target) can be constructed from the available blendshape model using a
simple volume warp such as a free-form deformation. This was one of the early approaches to cross-mapping
[16]. This approach is not suitable when the unavailable model has detailed features (such as wrinkles) that
cannot be easily introduced with a global warp.

Posed-Correspondence Blendshape Models. In many cases one may have a target blendshape model and
a source model (or motion capture basis) with differing controls. In fact, this is probably the first scenario
to arise in many cross-mapping efforts: an artist has constructed the target model, and motion capture of the
source is available (either in the direct form of a motion capture basis, or through PCA of the motion capture
data). One easy approach to this scenario was demonstrated in [14]: given blendshape models with N targets,
an animator must simply pose the target model to match at least N distinct frames of the source. The linear
mapping from source to target is then simply a high-dimensional coordinate conversion that can be solved by
least-squares.

Choe and Ko: refining a generic source model. Choe and Ko [4] approach the problem by assuming that
blendshapes are available for the target face. To animate these shapes, they first create a corresponding set of
blendshapes (or actuation basis) for the source face. Once this is done, the blending weights can simply be
transfered from the source blendshapes to the target blendshapes. The main contribution of their approach is
that it refines the source blendshapes as a function of the recorded performance. In this sense, it is tolerant to
approximate modeling.

This refinement is performed as follows. This technique starts by manually assigning a location (corre-
sponding point) on the target model for each recorded marker. From these correspondences, a transformation
(rigid transformation and scaling) is computed that maps the source coordinate system onto the model coor-
dinate system. This transformation takes care of the difference in orientation and scale between the source
and target models. It is estimated on the first frame and applied to all the frames of the performance. The
following procedure is then applied for each frame. If a frame in the animation is considered as a vector, it
can be written as a linear combination of the corresponding points in the blendshapes where the weights are
the blending weights. This provides a set of linear equations where the blending weights are the unknowns.
Augmented with a convexity constraint (i.e. all weights have to be non-negative and sum up to one), this
system can be solved using quadratic programming. This approach assumes that the source blendshapes can
exactly represent the performance, which is generally not true of manually sculpted blendshape models. To
address this issue, a geometric correction is performed by solving the same system for the position of the

4

corresponding points. These two steps (blend weight estimation and geometric correction) are iterated until
convergence. Finally, the displacement of the corresponding points are propagated to the model vertices using
radial basis functions [3].

This work is presented in a muscle actuation framework where each blendshape corresponds to the actua-
tion of a muscle or muscle group. However, it should equally apply to sets of blendshapes constructed with
different philosophies.

Chuang and Bregler: robust mapping from a motion capture basis. The work by Chuang and Bre-
gler [5] starts with a different set of assumptions. The source and target faces do not have blendshapes.
They proceed by extracting shapes from the animated source and sculpting corresponding ones for the tar-
get face. The source in their technique is video, but similar thinking could be applied in mapping from
three-dimensional motion capture.

With this background, they present two ideas that lead to a robust retargeting. First, they show how to
choose a basis from among the source frames. After experimenting with several plausible approaches it
was found that the best basis (least error in representing the source performance) resulted from taking the
source frame point vectors that result in the smallest and largest projection on the leading eigenvectors of
the source performance principal component model. Secondly, they point out that reusing the source weights
on a target model does not work well when the basis is large and does not exactly represent the source
performance. In this situation errors in representing a novel source frame can sometimes be reduced with
large counterbalanced positive and negative weights, which results in a poor shape when the weights are
reused on the target. Instead, they require the weights to be non-negative. This prevents the previously
described situation because negative weights are not available, and results in demonstrably better retargeting
even though the error in representing the source is somewhat higher.

This approach has limitations. In particular since the target shapes are derived from the source shapes,
using a different performer requires resculpting the target shapes. Also, since the source shapes are extracted
using statistical analysis it is unlikely that the target shapes can be reused for correcting the target animation
through key-framing.

Kuratate et al.: general linear mapping. The work by Kuratate et al. [13] assumes that both source and
target ranges of facial expressions are defined by a set of scans. The scans are parameterized using PCA and
transfer between the two PCA basis is performed using a linear estimator. Non-corresponding PCA shapes
are handled using an exchange matrix that allows reordering or blocking off PCA in the estimation of the
linear estimator. To handle a more general case, the exchange matrix could be generalized to express the
PCA of the target face as linear combinations of the PCA of the source space. An issue with this technique is
that the blendshape rigs derived from PCA are very poorly suited for manual editing, so the application must
be fully automatic.

Vlasic et al.: multi-linear mapping. Freeman and Tenenbaum [8] popularized bilinear (and subsequently
multilinear) repesentations in the vision community. While there are several “flavors” of bilinar and multi-
linear (also called tensor) models, they can generally be considered as extensions to principal component
analysis. Whereas PCA captures all the variations in a single set of data, multilinear models can be used to
capture independent high-level “meta-dimensions” of the data (not to be confused with the dimesions indenti-
fied by PCA). Vlasic et al.[20] applied this idea to facial cross-mapping, with one “dimension” capturing the
variation in appearance across individuals (between source and target in particular) and a second dimension
covering facial expression variation.

Buck et al.: local blendshape mapping. Buck et al. [2] developed a system for mapping 2D facial motion
onto cartoon drawings that uses a piece-wise linear representation for facial expressions. The input motion

5

is estimated from video by tracking a sparse set of features whose configuration provides a simplified facial
expression.

Their system is build on top of a library of cartoon drawings that represent key poses for different facial
areas of the target character (e.g. mouth, forehead). These key drawings are blended together, much like a
set of blendshapes, to create an animation. Their mapping algorithm relies on associating each key drawing
with a particular configuration of the tracked features. This association is then generalized using a scattered
data interpolation algorithm. The interpolation is performed using a partition of the space of potential feature
configuration (i.e. simplified facial expression). The partition they use is a 2D Delaunay triangulation. To
map a frame of input motion, first the triangle that contains that frame is determined; second the barycentric
coordinates within the triangles are computed; finally these coordinates are used as blending weights to
compute the combination of key drawings. To provide a 2D parameterization of the input space, a Principal
Component Analysis is performed on some test data. The two first principal components (maximum variance)
determine the reduced dimensionality space.

Tim Hawkins et al. [9] use the same technique to animate facial reflectance fields with a higher dimensional
space.

Pyun et. al: radial basis mapping. The work by Pyun et al. [18] takes a different approach to retargeting
with corresponding blendshapes. Instead of reusing the weights between corresponding shapes, they use
an intermediary parameterization of the source motion. A small number of feature vertices are selected on
the source mesh. Then the dimensionality of the vector space spanned by these vertices is reduced using
PCA, so that each source frame can be projected onto a small set of parameters. The target weights are then
estimated from these parameters. The mapping is performed using radial basis functions set to interpolate
the corresponding source and target shapes. The advantage of using an intermediate parameterization is to
speed-up the mapping algorithm and to add a level of control through the selection of the feature vertices.

Deng et al. [6] similarly use a radial basis mapping. Their source model is obtained by PCA of motion
capture.

Expression Cloning. Using a blendshape system is not the only way to drive a synthetic face through per-
formance capture. For instance, good results can also be achieved using radial basis functions [15]. Noh and
Neumann [22] propose a different approach, called “Expression Cloning”, that does not rely on blendshapes.
Their technique assumes that the source performance is given as an animated mesh (i.e. the topology and
motion curves for every vertex).

The first step of the algorithm is to find geometric correspondences between the source and target models.
This is done by computing a sparse set of correspondences that are propagated to the rest of the mesh using
scattered data interpolation (using radial basis functions). The sparse correspondences are determined either
manually or using some face-specific heuristics.

Once the two models are brought into dense correspondence the motion vectors (offsets from the initial or
rest expression) can be transferred. This transfer is performed by assigning a local coordinate system to each
vertex in the source and target models. These coordinates systems are determined by the normal of the mesh
at that vertex. Transferring a motion vector can then be done by changing local coordinate systems. The
motion can also be locally scaled by using the ratio of locally defined bounding boxes in the two models. An
additional procedure takes care of the special case of the lip contact line and prevents any spurious interactions
between the two lips.

Summer and Popovic: global expression cloning. The work by Summer and Popovic [19] proposes a
different solution to the same problem. Where Noh and Neumann [22] estimate local deformations indepen-
dently at each vertex, Summer and Popovic [19] estimate them using a global optimization. They describe
the source motion as a set of per triangle affine deformations from the rest configuration. The motion is trans-
fered by estimating a corresponding set of transformations for the target mesh. Vertex continuity on the target

6

mesh imposes a set of constraints. The position of the target vertices can be estimated elegantly using a sparse
least-squares solver. Although based on a sounder mathematical justification, the global approach adopted by
this technique has its drawbacks. In particular, the optimization can amplify small mesh imperfections and
noise.

Expression/Style learning. Wang et. al [21] describe an ambitious machine-learning based system for
cross-mapping. A data reduction manifold learning technique (local linear embedding, LLE) is first used
to derive a mapping from animated expression geometry over time to a one dimensional manifold (curve)
embedded in a low-dimensional (e.g. 3D) space. They then establish correspondences between curves for a
given expression over different individuals (this includes different monotonic reparameterizations of cumu-
lative length along the curve). Once the correspondences are established, the registered curves are averaged
to produce a mean manifold for the particular expression. Evolution of the expression over time now corre-
sponds to movement along this curve.

Next a mapping from the curve back to the facial geometry is constructed. First a mapping from points on
the expression curve back to the actor’s changing facial geometry is obtained using an approximating variant
of radial basis scattered interpolation. This mapping conflates the different “styles” of facial expressions of
different people. Lastly, a bilinear decomposition is used to factor the changing expression geometry into
components of facial expression and individual identity (thus, for a particular facial expression there is a
linear model of how various individuals effect that frozen expression, and for any individual the evolution of
the expression over time is also a linear combination of models).

Although the system deals with each facial expression in isolation, it hints at future advances in deriving
useful higher level models from data.

Hardware systems Lastly, for historical completeness various hardware-based systems should be men-
tioned. A prominent example is the SimGraphics “face waldo” face tracking helmet in the early 1990s,
which used sensors that were physically attached to a few important regions of the face such as the lips and
eyebrows. Since these systems were both proprietary and rather limited compared to current approaches, we
will not cover them in depth.

Summary. The source and target model construction and parameterizations and the cross-mapping chosen
in each of the above approaches are summarized in the following table. RBF and PCA refer to radial basis
function mapping and principal component (analysis) respectively.

approach source model mapping target model
parallel blendshapes manual blendshape linear blendshape
Choe and Ko adapted linear linear blendshape
Chuang and Bregler selected mocap basis positive linear blendshape
Buck et al. PCA on (image) mocap Delaunay scattered interpolation local blendshape (image

domain)
Kuratate automatic PCA linear automatic PCA
Vlasic et al. scans multilinear multilinear blendshape
Pyun et. al PCA of mocap radial basis blendshape
Noh and Neumann arbitrary RBF on heuristic correspon-

dences
arbitrary

Summer and Popovic arbitrary global optimization arbitrary
Deng et. al PCA mocap basis radial basis blendshape
Wang et. al model (driven from

structured light data)
linear manifold, RBF bilinear expression/person

basis

7

Unexplored issues
Expression vs. motion cross-mapping. The different techniques we have described treat the cross-mapping
issue as a geometric problem where each frame from the recorded performance is deformed to match the tar-
get character. Unfortunately, this might not respect the dynamics of the target character. To go beyond a
straight per frame cross-mapping requires an approach that takes timing into account. There are basically
two ways this can be tackled: using a physical approach or a data-driven approach.

A physically-based animation system could provide physical constraints for the target face. The cross-
mapping algorithm would have to satisfy two types of constraints: matching the source performance but also
respecting the physics of the target face. By weighting these constraints an animator could control how much
of the source performer versus how much of the target character appears in the final animation.

Any data-driven approach must be carefully designed to minimize the “curse of dimensionality” issues
introduced by additional dimensions of timing and expression. One approach might involve building a (small)
database of motions for the target character. The performer could then act these same motions to create a
corresponding source database. Using machine learning or interpolation techniques these matching motions
could provide a time-dependent mapping from the source motion space to the target motion space.

Non-linear rigs. The only rigs that are considered in the research covered in this document are linear or
piecewise linear blendshapes. While a model that is automatically derived using PCA can by definition
express the desired motion, some experts doubt that the simple blendshape models constructed by human
modelers are sufficient to accurately express the subtle motion of real faces [1]. In general, the relationship
between the blending weights and the deformed geometry should be non-linear to allow the greatest generality
and fidelity, although this consideration must be balanced against criteria that favor simpler models – for
example, a non-linear mapping will typically (though not necessarily) have more parameters and if so will
require much more data to avoid falling on the variance (overfitting) side of the bias/variance dilemma. A
non-linear relationship is clearly required for the motion of the jaw or the motion of the eyelids. Retargeting
with such rigs require a different set of techniques.

Facial puppeteering. The human face can express a wide gamut of emotions and expressions that can vary
widely both in intensity and meaning. The issue of cross-mapping raises the more general issue of using
the human face as an animation input device not only for animating digital faces but any expressive digital
object (e.g. a pen character does not have a face). This immediately raises the issue of “mapping” the facial
expressions of the performer onto meaningful poses of the target character. Dontcheva et al. [7] tackles this
issue in the context of mapping body gesture onto articulated character animations.

References
[1] George Borshukov. Face Cloning in the Matrix Sequels, notes in SIGGRAPH course #9: Digital Face

Cloning, 2005.

[2] Ian Buck, Adam Finkelstein, Charles Jacobs, Allison Klein, David H. Salesin, Joshua Seims, Richard
Szeliski, and Kentaro Toyama. Performance-driven hand-drawn animation. In NPAR 2000 : First
International Symposium on Non Photorealistic Animation and Rendering, pages 101–108, June 2000.

[3] Martin D. Buhmann. Radial Basis Functions : Theory and Implementations. Cambridge University
Press, 2003.

[4] Byoungwon Choe, Hanook Lee, and Hyeong-Seok Ko. Performance-driven muscle-based facial ani-
mation. The Journal of Visualization and Computer Animation, 12(2):67–79, May 2001.

8

[5] E. Chuang and C. Bregler. Performance driven facial animation using blendshapes interpolation. Tech-
nical Report CS-TR-2002-02, Stanford University, 2002.

[6] Z. Deng, P.-Y. Chiang, P. Fox, and U. Neumann. Animating blendshape faces by cross-mapping motion
capture data. In ACM I3D, 2006.

[7] Mira Dontcheva, Gary Yngve, and Zoran Popović. Layered acting for character animation. ACM
Transactions on Graphics, 22(3):409–416, July 2003.

[8] William T. Freeman and Joshua B. Tenenbaum. Learning bilinear models for two-factor problems in
vision. In CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition
(CVPR ’97), page 554, Washington, DC, USA, 1997. IEEE Computer Society.

[9] Tim Hawkins, Andreas Wenger, Chris Tchou, Andrew Gardner, Fredrik Göransson, and Paul Debevec.
Animatable facial reflectance fields. In Rendering Techniques 2004: 15th Eurographics Workshop on
Rendering, pages 309–320, June 2004.

[10] T. Igarashi, T. Moscovich, and J.F. Hugues. Spatial keyframing for performance-driven animation. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Euro-
graphics Association, 2005.

[11] Hiroki Itokazu. personal communication, Disney Feature Animation, 2001.

[12] Pushkar Joshi, Wen C. Tien, Mathieu Desbrun, and Frdric Pighin. Learning controls for blend shape
based realistic facial animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 187–192. Eurographics Association, 2003.

[13] T. Kuratate, E. Vatikiotis-Bateson, and H. Yehia. Cross-subject face animation driven by facial motion
mapping. In Proceeedings of 10th ISPE international Conference on Concurrent Engineering: Research
and Applications. Swets and Zeitlinger, 2003.

[14] J. P. Lewis and F. Pighin. Cross-Mapping notes in SIGGRAPH course #9: Digital Face Cloning, 2005.

[15] J. Noh, D. Fidaleo, and U. Neumann. Animated deformations with radial basis functions. In ACM
Symposium on Virtual Realisty Software and Technology, pages 166–174, 2000.

[16] E. C. Patterson, P. C. Litwinowicz, and N. Greene. Facial animation by spatial mapping. In Nadia Mag-
nenat Thalmann and Daniel Thalmann, editors, Computer Animation 91, pages 31–44. Springer-Verlag,
Tokyo, 1991.

[17] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D.H. Salesin. Synthesizing realistic facial expres-
sions from photographs. In SIGGRAPH 98 Conference Proceedings, pages 75–84. ACM SIGGRAPH,
July 1998.

[18] Hyewon Pyun, Yejin Kim, Wonseok Chae, Hyung Woo Kang, and Sung Yong Shin. An example-based
approach for facial expression cloning. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 167–176. Eurographics Association, 2003.

[19] R. W. Summer and J. Popovic. Deformation transfer for triangle meshes. In Proceedings of ACM
SIGGRAPH 2004, 2004.

[20] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. Face transfer with multi-
linear models. ACM Trans. Graph., 24(3):426–433, 2005.

[21] Y. Wang, X. Huang, C.-S. Lee, S. Zhang, D. Samaras, D. Metaxas, A. Elgammal, and P. Huang. High
resolution acquisition, learning, and transfer of dynamic 3-d facial expressions. In Eurographics, 2004.

9

04/26/2006 04:36 PMSIGGRAPH Course

Page 1 of 2file:///Users/zilla/zilla/P/N/Blendshapes/Course/06_Bregler/bregler-notes.html

Slides and Notes for SIGGRAPH Course 30:�Performance-Driven Facial
Animation

Section: Markerless Face Capture and Automatic Model Construction

Chris Bregler chris.bregler@nyu.edu

Latest Version: http://cs.nyu.edu/~bregler/sig-course-06-face/

Slides click here: bregler-slides.ppt

In a way, "Makerless Face Capture" for animation is as old as the trade of traditional animation,
taught by Disney and others in the early 20th century. Animators always look at example
recordings, especially for facial animations. For example, the idiosyncrasies and mannerisms of the
Step-Mother's facial expressions in Cinderella were based on filmed recordings of actress Eleanor
Audley. In some cases, the animations were even a direct copy of the hand-traced motions from
film, like in scenes of Snow White. Performing such tracing and tracking automatically by a
computer has been the topic of computer vision research over the past 20 years. Just recently new
techniques have become available that have good enough quality for animation in the
entertainment industry.

In this part of the course we will survey these visual tracking techniques and modeling techniques,
with a focus on non-rigid or deformable tracking and models. This includes a review of methods
that incorporate non-rigid model constraints into optical-flow based methods and
appearance/image based techniques, and blend-shape models or PCA models that are trained
from example data. In addition, we will focus on a new family of techniques that evolved over the
past five years, so-called “rank-constrained” techniques. These techniques combine the tracking
and the 3D non-rigid reconstruction problem into one global XYT optimization problem. We will
review applications of all these methods to lip-shape, eye-gaze, head-motion, and full-face
tracking and modeling.

Snakes / Active Contours:

http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.robots.ox.ac.uk/~contours/

Optical Flow Basics:

http://www.ri.cmu.edu/projects/project_515.html
http://mrl.nyu.edu/~bregler/classes/vision_spring06/shi_tomasi_94.pdf
http://mrl.nyu.edu/~bregler/classes/vision_spring06/bouget00.pdf

3D Model Based:

http://www.cs.rutgers.edu/~decarlo/facetrack.html
Disney's Human Face Project (link TBD)

Appearance Based:

04/26/2006 04:36 PMSIGGRAPH Course

Page 2 of 2file:///Users/zilla/zilla/P/N/Blendshapes/Course/06_Bregler/bregler-notes.html

http://www.face-rec.org/algorithms/
http://www.isbe.man.ac.uk/~bim/refs.html
http://www.cs.brown.edu/people/black/appear.html
http://www.mpi-sb.mpg.de/~blanz/html/projects_01.htm

Factorization Based Face Capture and Modelling:

http://movement.stanford.edu/nonrig/
http://people.csail.mit.edu/jovan/assets/papers/vlasic-2005-ftm.pdf
http://movement.nyu.edu/projects/face.html

Vision Based Face Animation (so far incomplete!):

http://mrl.nyu.edu/~bregler/videorewrite/
http://research.microsoft.com/MSRSIGGRAPH/1998/makingfaces.htm
http://www.cs.washington.edu/homes/pighin/work/face/
http://www.merl.com/projects/puppets/
http://cerboli.mit.edu:8000/research/mary101/mary101.html

04/27/2006 04:34 PMSIGGRAPH Course

Page 1 of 2http://www1.cs.columbia.edu/~lizhang/sig-course-06-face/

Slides and Notes for SIGGRAPH Course 30: Performance-Driven Facial
Animation

Section: Markerless Face Capture and Automatic Model Construction

Part II: Automatic Model Construction

Li Zhang lizhangATcsDOTcolumbiaDOTedu

Latest Version: http://www.cs.columbia.edu/~lizhang/sig-course-06-face

Slides click here: zhang-slides.ppt

Complementary to the first part on "markerless face catpure" taught by Chris, this part of the section is focused on
constructing realistic 3D face models. The constructed models can be used for facial animation directly, or they can be
used in the model-based face tracking algorithms.

Specifically, the key technical problem we will be discussing is the fundamental computer vision problem of 3D
reconstruction from 2D images. In particular, we will focus on the methods that will capture highly realistic 3D face
models, and more importantly, the way how faces change from one pose to another.

To construct the face models, two important procedures are involved: reconstructing the shapes and computing the
motion between shapes. For shape reconstruction, we will discuss triangulation based methods as well as non
triangulation based ones. The former includes laser scanners, structured light sensors, and stereo systems; the latter
includes defocus sensors and time-of-flight sensors. For motion estimation, we will discuss marker based approach and
template fitting approach.

Laser Scanners:

http://www.ri.cmu.edu/pubs/pub_2453.html
http://graphics.stanford.edu/papers/spacetime/
http://www.mos.t.u-tokyo.ac.jp/~y-oike/research.html

Structured Light Sensors:

http://metrology.eng.sunysb.edu/holoimage/index.htm
http://homes.esat.kuleuven.be/~tkoninck/publications/cvpr_sceneadaptedstructuredlight.pdf
http://grail.cs.washington.edu/projects/moscan/

Stereo Systems:

http://www.ri.cmu.edu/pubs/pub_1751.html
http://grail.cs.washington.edu/projects/ststereo/
http://graphics.stanford.edu/papers/SpacetimeStereo/

Time-of-Flight Sensors:

http://www.ri.cmu.edu/pubs/pub_2522.html
http://graphics.stanford.edu/~jedavis/papers/GonzalesBanosDavis_CVPR2004.pdf

Defocus Sensors:

http://www1.cs.columbia.edu/CAVE/projects/depth_defocus/depth_defocus.php

Marker-based Motion Estimation:

http://research.microsoft.com/research/pubs/view.aspx?pubid=290

Template-Fitting for Motion Estimation:

04/27/2006 04:34 PMSIGGRAPH Course

Page 2 of 2http://www1.cs.columbia.edu/~lizhang/sig-course-06-face/

http://grail.cs.washington.edu/projects/stfaces/
http://www.cs.sunysb.edu/~ial/expressionModeling.html#pubs1

Commercial Systems:

http://www.cyberware.com/
http://www.xyzrgb.com/
http://www.eyetronics.com/
http://www.3q.com/home.asp
http://www.3dvsystems.com/
http://www.canesta.com/
http://www.swissranger.ch/

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 1

SIGGRAPH 2006

Course Notes:

Performance Driven Facial Animation

Parag Havaldar - havaldar@imageworks.com

(c) 2006 Sony Pictures Imageworks Inc. All rights reserved.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 2

Modeling a face and rendering it in a manner that appears realistic is a hard problem in

itself, and remarkable progress to achieve realistic looking faces has been made from a

modeling perspective [1, 6, 13, 15, 16, 2] as well as a rendering perspective [5, 11, 12].

At last years Siggraph 2005, the course of Digital Face Cloning described relevant

material to this end. An even bigger problem is animating the digital face in a realistic

and believable manner that stands up to close scrutiny, where even the slightest

incorrectness in the animated performance becomes egregiously unacceptable. While

good facial animation (stylized and realistic) can be attempted via traditional key frame

techniques by skilled animators, it is complicated and often a time consuming task

especially as the desired results approach realistic imagery. When an exact replica of an

actor’s performance is desired, many processes today work by tracking features on the

actor face and using information derived from these tracked features to directly drive the

digital character. These features, range from a few marker samples [3], curves or contours

[15] on the face and even a deforming surface of the face [2, 16]. This may seem like a

one stop process where the derived data of the performance of an act can be made to

programmatically translate to animations on a digital CG face. On the contrary, given

today’s technologies in capture, retargeting and animation, this can turn out to be a rather

involved process depending on the quality of data, the exactness/realness required in the

final animation, facial calibration and often requires expertise of both artists (trackers,

facial riggers, technical animators) and software technology to make the end product

happen. Also, setting up a facial pipeline that involves many actors’ performances

captured simultaneously to ultimately produce hundreds of shots, with the need to

embrace inputs and controls from artists/animators can be quite a challenge. This course

documents attempts to explain some of the processes that we have understood and by

which we have gained experience by working on Columbia’s Monster House and other

motion capture-reliant shows at Sony Pictures Imageworks.

The document is organized by first explaining general ideas on what constitutes a

performance in section 1. Section 2 explains how facial performance is captured using

motion capture technologies at Imageworks. The next section 3 explains the background

research that forms the basis of our facial system at Imageworks – FACS, which was

initially devised by Paul Eckman et al. Although FACS has been used widely in research

and literature [7], at Sony Pictures Imageworks we have used it on motion captured facial

data to drive character faces. The following sections 4, 5, 6 explain how motion captured

facial data is processed, stabilized, cleaned and finally retargeted onto a digital face.

Finally, we conclude with a motivating discussion that relates to artistic versus software

problems in driving a digital face with a performance.

1 What Constitutes a Performance?
A performance, in most cases, is understood to be a visual capture of an actor face talking

and emoting either individually or in a group with other actors. This is often done by

capturing a video performance of the actor and using video frames either purely for

reference by an animator or further processing them to extract point samples and even

deforming 3D surfaces which are then used to retarget onto a digital character. There are

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 3

of course a variety of technological hurdles to overcome before the 2D or 3D

reconstructed data can be used – camera calibration, tracking points, and reconstructed

3D information. Apart from video media, other media types such as audio have also been

used to capture a voice performance and drive digital faces. Most of the work here [4, 9]

approximates the lip and mouth movement of lines of speech but does not have any

explicit information that relates to other areas of the face such as brows, eyes and the

overall emotion of the character. These have to be either implicitly derived or added on as

a post process. Another medium of driving a digital face has been to use facial

puppeteering, where a control device such as a cyber glove is used to drive a face. In such

cases finger movements are retargeted on to the face.

While all these forms of capture to drive a face have yielded interesting results, the most

common by far has been optical data that is used to reconstruct certain facial feature

points that then are retargeted onto and drive a digital face.

2 Facial Motion Capture at Imageworks
Imageworks has had a fair amount of success in producing full-length CG animated

movies based entirely on motion capture – both body and face. It began with The Polar

Express, where the Imageworks Imagemotion
TM

 facial and body motion capture

acquisition, processing and animation pipeline was setup and successfully tried. The

feedback from this experience helped to significantly enhance the pipeline for Monster

House and now Beowulf. Motion capture has also been used to drive faces of digital

characters in Spider-Man 3. Each productions needs are different, for example in Monster

House, the motion capture system captured data of body and face together. The facial

data had to be ultimately targeted onto characters whose faces were stylized and did not

conform to the actual actor faces. For Beowulf, the requirements are more geared to

producing realistic animation on characters that are supposed to look real and faces

perform real. On Spider-Man 3, the facial motion captured data was acquired separately

in a sit down position and the facial animation generated was blended in key framed body

shots. The different types of systems used, the number of people simultaneously captured

and facial only vs. face and body capture -- all result in varying data quality, creating

many challenges to make data driven facial animation work well. At Imageworks, the

artists and engineers are constantly involved to devise a universal system, which can

adapt to these different production requirements.

On Monster House, face and body was captured simultaneously with two hundred

cameras creating a capture volume of 20 feet x 20 feet x 16 feet (length, breadth, height).

Eighty infrared markers were used on an actors face to capture the actor’s performance.

The data was captured and reconstructed in 3D using the multiple-camera system and

post processed using, among a variety of tools, Imageworks proprietary Imagemotion

technology which is adapted to capturing and processing motion data. On an average,

there were about four actors in the volume, with a maximum of six at any given time.

In actual use, during any take, all the actors are made to stand apart in a standard T pose

position – a position where the legs are together, hands are stretched out and the face is

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 4

relaxed. This position is tremendously useful for a variety of search and standardization

during the mocap data processing both for the body and face. Also, each take ends in all

the actors returning to a standard T-pose in the volume. The T-pose is used by the facial

pipeline in the normalization process to ensure that marker placements are made to

correspond (as far as possible) to those on the day of the calibration (master T-pose).

More on this is explained in section 4 and illustrated in Figure 1 below.

Figure 1. Motion capturing actors on “Monster House.” Each actor starts

the take and also ends the take in a standard T-pose position with a

relaxed face. This neutral facial pose is used for normalizing the day-

to-day changes in marker placements.

3 Facial Action Coding System (FACS)
The Facial Action Coding System or FACS was originally designed in the 1970s by Paul

Eckman, Wallace Friesen and Joseph Hager [7]. Given that the face has muscles that

work together in groups called Actions Units (AUs), FACS teaches how to understand

when these action units are triggered and give a relative score to them. Although initially

designed for psychologists and behavioral scientists to understand facial expressiveness

and behavior, it has also been recently adapted in visual communication, teleconferencing,

computer graphics and CG animation [8, 15].

Eckman et al. [7], categorized facial expressions into 72 distinct Action Units. Each

Action Unit represents muscular activity that produces momentary changes in facial

appearance. This change in facial appearance of course varies from person to person

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 5

depending on facial anatomy, e.g., bone structure, fatty deposits, wrinkles, shape of

features etc. However, certain commonalities can be seen across people as these action

units are triggered. The action units in FACS are based on the location on the face and the

type of facial action involved. For example, the upper face has muscles that affect the

eyebrows, forehead, and eyelids; the lower muscles around the mouth and lips form

another group. Each of these muscles works in groups to form action units. The action

units can further be broken down into left and right areas of the face, which can get

triggered asymmetrically and independently of each other. In general, all the action units

suggested by FACS give a broad basis for providing a good foundation for dynamic

facial expressions that can be used in CG animation.

On Monster House, the facial system made use of FACS as a foundation to base the

capture and retarget motion captured data on the characters’ faces. Prior to acting, each

actor went through a calibration phase where the actor is made to perform all the action

units. The 3D reconstructed facial pose data that corresponded to one-action unit captures

the extreme positions of how the actors perform a certain action. We used 64 poses, some

of which were split into left and right positions along with 18 phoneme poses which

described how actors articulated a phoneme. A complete list of these 64 facial

expressions is provided in reference [7]. A few of the expressions are described below. In

each case, the actual FACS reference, the actor’s performance, and the retargeted

expression on the character are shown.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 6

Figure 2. Example poses in a FACS based facial system. The reference

action unit image is shown on the left, the actor’s performance of the

pose is shown in the middle and the artistic interpretation on the

character is shown on the right.

Neutral Pose

Brow Lowerer Pose

Lip Corner Puller Pose

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 7

Figure 3. More Example poses in a FACS based facial system. The mouth

stretch and lip stretcher pose are shown. On “Monster House,” the

facial system used a total of 64 poses including 18 phoneme positions.

4 Data Capture and Processing
Data capture on Monster House was performed using an optical system with 200 infrared

cameras capturing both body and face together. The capture volume was 20x20x16 feet

and, on average, the performance of four actors was simultaneously captured. The

number of facial markers used was 80. The capture system is a passive optical system

that uses infrared cameras to capture infrared light reflected by the markers. The image

from such cameras is a low entropy image consisting of mostly black areas where no

infrared light was seen, with a few white dots whose size in the image varies depending

on body/face marker, distance of the actor from the camera, occlusion caused by self and

other actors, etc. The low entropy images have two main advantages:

Mouth Stretch Pose

Lip Stretcher Pose

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 8

• Due to low entropy, the cameras can capture and record images at higher

definitions and at higher frame rates, typically at 60 Hz

• The 3D reconstruction problem triangulates points from multiple images at

different viewpoints to get the marker location in space and needs to associate

point correspondences automatically from the images. This correspondence

problem in general is difficult to resolve, but is greatly improved by having only

white dots to work with.

After 3D reconstruction, we now have (x,y,z) positions for markers in frames. However

the data is bound to be noisy, does not have temporal associativity (i.e., consistent

labeling) across all the frames, and may have gaps. A few typical data frames for the

facial markers are shown in the Figure 4 below. These problems are sorted by using a

learning based approach that learns both from a facial data model as well as the temporal

quality of the data.

Figure 4. Facial data quality. On a large volume, multiple-person capture

stage, the facial data capture quality varies depending on the number

of people, self and inter-actor occlusions, etc. Good quality data is

shown on the left, but at times this may significantly degrade as shown

on the right.

4.1 Segmenting and Labeling Facial Data

The markers reconstructed for each frame have both body markers and face markers.

Prior to any processing of facial data, the markers need to be labeled. Labelling is a

process by which 3D reconstructed markers in all frames are consistently marked to have

the same label. Labeling all markers (face and body) is normally based on trajectories can

prove to be a very cumbersome and prone to error, especially with the number of markers

visible in the volume and frequently required manual labor. We accomplished this task in

a two step process by making use of the fact that body marker sizes are considerably

larger than the facial markers. The first step involved tuning the 3D reconstruction so that

only body markers are reconstructed (no facial markers) and consistently labeling the

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 9

body markers using velocity-based constraints. Next, the 3D reconstruction can be tuned

to acquire facial markers, which will also get body markers. The body markers can then

be removed by using labeled data from the first step, resulting in only facial data.

4.2 Stabilization

During a performance, the actor is moving around in the volume resulting in the face

markers being translated along with body, while the actor is speaking and emoting.

However, for the purposes of retargeting the facial marker data onto the face, the facial

data needs to be made stationary without the effect of body and head movement. The

nullification of head rotations and body movement from the facial marker data is known

as stabilization. Stabilization can be a tricky problem to solve because the face markers

do not necessarily undergo a rigid transform to a standard position as the actor continues

acting. There are rigid movements caused by head rotations and the actor’s motion, but

when the actor starts emoting and speaking, all the facial markers change positions away

from their rigid predictions. Typically, to solve for the inverse transformation, a few

stable point correspondences should be enough but it is not always easy to detect, on a

frame-by-frame basis, which markers are stable and have only undergone a change due to

the rigid transformation. The noise in the markers 3D reconstructed position also adds to

the problem further.

To solve this problem, the Imageworks artists and engineers developed tools that solve

the problem in a hierarchical manner by first doing a global or gross stabilization

choosing selective markers, and further refining the output by local or fine stabilization

by analyzing the marker movements relative to a facial surface model. The gross

stabilization involves using markers that mostly do not move due to facial expressions –

such as markers on the head, ears and the nose bone.

4.3 Facial Cleaning

Although the facial data has been stabilized, the data does contain missing markers due to

occlusions and lack of visibility in the cameras, noise caused by errors in 3D

reconstructions and occasional mislabeled markers. The cleaning and filtering process

developed on Monster House made use of a learning system based on good facial model

data that helped estimate missing markers, could remove noise and in general ensured the

legality of all markers. The system was made scalable enough to handle wide ranges in

facial expression as well as be tuned to ensure that the dynamics of the facial data.

These cleaning tools used the basic, underlying FACS theory of muscle groups to group

markers together and organize them into groups of muscles. Muscle movements can be

used to estimate probabilistically where the likely positions of missing markers should be.

The predicted location is based spatially on the neighborhood points as well as

temporally by studying the range of motion of the markers. It was our experience the

probabilistic model and the marker muscle grouping had to be tuned to work for with

each actor.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 10

Once all the markers were predicted, standard frequency transforms were used to remove

the noise in the data. However, care should be taken to understand the level of signal-to-

noise ratio, which can drastically change over different frames for each marker. This is

because high frequency content, which is normally categorized as noise, need not be so

when the actor moves muscles and creates expression quickly.

4.4 Normalization

When capturing a long performance, such as a movie that spans over more than one day,

actors need to remove motion captured markers and reapply them on a regular basis.

Although appropriate steps can be taken to ensure that markers are placed at the same

position on the face, it is common to have small differences between markers placements

at every day positions. These differences can significantly affect the retargeting solutions

described in the next section. Normalization is the process of adjusting the marker

placements so that the differences in the positions do not compromise the extent of facial

expression that the actor has performed and faithfully transfer that onto the character’s

face. Normalization is accomplished in two steps.

• Each take starts and ends with the actors performing a T-pose (see Figure 1). The

T-pose of each actor in a specific take is oriented to the master T-pose of the actor,

which was computed during the calibration phase mentioned above. This relies on

certain relaxed landmark markers such as the corners of the eyes and mouth,

which are expected to change very little from day to day. This alignment enables

the computation of offset vectors for each marker.

• The offset vectors can now be applied to the take’s T-position so that each marker

in the T-pose is identical to the master T-pose. The offsets are then propagated

through the actors performance so as to normalize all the frames.

5 Retargeting Motion Captured Data Using FACS
As seen in the previous section, the FACS theory gives a set of action units or poses

which the authors [7] deem as a complete set for most facial expression. During a

calibration phase, we capture mocap frames of the actor that relate to his facial

expression corresponding to a FACS pose. Some of these poses are broken into left and

right sides in order to capture the asymmetry that an actor face might undergo. Every

incoming frame of the actor is then analyzed in the space of all these FACS captured

frames. As such, these action unit-triggered poses correspond to facial basis vectors, and

each one’s activation needs to be computed for an incoming data frame. An illustration of

this process is shown in Figure 5. The activations get transferred onto a digital face,

which has been rigged using a facial muscle system. On Monster House, the facial poses

on a character, which corresponded to FACS poses, were generated by an artist, requiring

a facial rig. The facial setup on Monster House was based on Imageworks’ proprietary

character facial system (CFS). The system helps pull and nudge vertices on a 3D facial

model so that the resulting deformations are consistent with what happens on a human

face. It consists of four fascia layers each of which are blended together to create the final

facial deformation.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 11

• Muscle Layer– This is the main layer that consists of skull patches with muscled

controls that deform the face. The muscle controls are activated by motion

captured data.

• Jaw Layer – helps control the jaw movements.

• Volume Layer – helps add volume to the deformations occurring on the face. This

helps to model wrinkles and other facial deformation, which can then be triggered

by motion captured data.

• Artic Layer – This layer relates to the shape of the lips as they deform – in

particular, the roll and volume of lips, essential when the character’s lips thin out

or pucker in facial expressions.

Also important are the eye positions. The facial rigging system starts by using a high

resolution model of the face and filling in the various fascia layers which are driven by

the motion captured data. The next step then is to define a way to map or retarget the

motion captured data onto the face. This is accomplished by analyzing an incoming

mocap frame in the space of all the facial basis vectors as captured using the FACS

theory. The weighted values give the relative percentage by which the FACS action units

or poses are triggered. These weights are computed using mathematical linear and

nonlinear optimization techniques. However, we have found that the weights obtained by

such rigorous analysis might not always correspond to good aesthetic deformations on the

characters’ face and sometimes require an artist’s or animator’s feedback to tune the

system to perform as desired.

Figure 5. Computing w1, w2 … wn gives the activation of each FACS

action unit. The computation of these weights needs mathematical

linear / non-linear optimization techniques.

The output of the whole system is shown, for example, in the Monster House still images

below.

+ w2 * + w3 *
= w1* + …

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 12

6 Multidimensional Tuning
Although the facial retargeting achieved by various mathematical optimization processes

may seem correct mathematically, they do not always necessarily conform to the

requirements of a finalized animation shots. There may be a variety of reasons for why

this happens:

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 13

• Actors not performing wholly according to the actors calibration

• Retargeting issues arising from mapping mathematically correct marker data

to an artistically designed face

• Facial model not conforming to an actor’s face

• Marker placements differ from day to day

• Attempting to produce an animation contrary to what the actor performed –

either the expression is not there in the motion captured data or needs to be

exaggerated

Most of these problems can be corrected by a tuning system, which recalibrates the facial

[bais??] library based on feedback from an animator. At Imageworks, the artists and

software engineers developed a “Multidimensional Tuning System,” which takes an

artist’s input to reduce the effects of incorrect mathematical solves. In this system, post a

FACS solve, the animator adjusts a few frames (typically five to ten, among the many

thousands) to “look correct.” This is accomplished by modifying the weights of poses on

a “few” culprit frames that have resulted from a FACS solve. The tuning system exports

this changed data, analyzes it and creates a more optimized FACS library. The new

library generated is based on the marker range of motion as well as the chan ged

weighting and uses non-linear mathematical optimization tools. This changed library

when used in a new solve now attempts to hit the weighting defined by the animator on

the few tuned frames at the chosen poses and also incorporate this change

programmatically on to various other frames causing the whole animation to look better.

An Example of the tuned outputs on the facial library is shown in Figure 6 below

Figure 6. The images above show FACS poses overlaid before and after

the tuning phase. The left image shows the lip shut phoneme position

overlaid before and after, while the right image shows the same for the

lid tightener pose.

In Figure 6, one can see that the new marker positions (in black) have been adjusted to an

optimized location based on the animators corrected weighting values over a few tuned

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 14

frames. This change is shown on two poses but occurs on more depending on the

animator’s input. Furthermore, the changes are done in such a way, when the FACS

system resolves the solution with the new “tuned FACS matrix,” not only does the solve

hit close to the weights on the tuned frames, but also on all other frames creating a more

correct animation. The effect of this on the retargeting solution on a character is shown

Figure 7 and Figure 8.

Figure 7. The left image above shows a solved frame with the original

FACS calibrated matrix, the right one shows the solved frame with the

tuned matrix. The effect of the tuned right lid tightener pose is evident.

Figure 8. The left image above shows a solved frame with the original

FACS calibrated matrix, the right one shows the solved frame with the

tuned matrix. The actor is saying the beginning of the word “please.”

The original matrix solve does not show the lips closed to say the first

syllable while the tuned matrix solve does.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 15

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 16

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 17

7 Discussion
We have attempted to describe the overall foundations of representation and analysis.

The whole process is a combination of artistic input and mathematical processes to model

a face and have data drive it via retargeting solutions. Here are a few interesting questions

which should provoke good discussion.

• The retargeting solutions though mathematically correct, need not always work

aesthetically where an animator’s feedback is crucial and final touch ups

necessary. How do programmers design tools that encapsulate the fidelity

achieved by motion capture data, as well as, allow animators to massage or add on

more artistic content additively – in such a manner that the two do not conflict,

and consistency is preserved temporarily across a shot(s) and for the entire

production? To that end, the mathematical approaches in literature show how to

get exact solves in some space (PCA, retargetted blend shapes, etc.), but having

user assisted guidance to go towards mathematical minimizations in optimization

that make sense aesthetically is not easy.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 18

• Acting in a large volume with body and face, with many actors is what a director

and a true performance capture system really desires. By being in the midst of the

actual people, an actor is more in sync with his/her role and thereby emotes

performances well -- this when compared to a sit down single scenario in front of

a system. However, the data capture technologies from both cases yield

substantial differences in fidelity – large volume captures with many people are

not as stable as a sit down, one person capture. What course should be taken

during solving, retargeting and animation such that the cost associated with data

processing, clean up and the final integration and animation is reduced?

• Is facial rigging necessary? What does a rig get you in terms of being able to be

driven by performance captured data sets. Rigging a face can be an expensive

setup increasing production costs, but when and how does rigging solve these

problems.

• Retargeting is not always an easy problem to solve, especially when the actor’s

facial feature and geometry do not coincide with the 3D facial model and rig – for

example in case of a stylized character. How do we make universal systems in

which the retargeting works effectively between real faces as well as stylized,

humanoid characters that may also need exaggerated cartoon like movements?

• Are there any specific "rules" that you can use, whether mathematically founded,

heuristically arrived at or even aesthetically pursued for when a person talks vs.

muscle and skin movements on the rest of the face? To that end, how do you

formalize a model for facial dynamics that are evident in small/large vibrations,

jerks intonations when a persons face undergoes fast motion while acting an

emoting e.g., moving head quickly from side to side, talking while running?

• Most performance driven techniques for facial animation including ours use

visual optical data – video, infrared imagery, etc. What do other performance

captures media give you and how can one use them more effectively to drive

facial animations. There is various literature on usage of audio [4, 9], but how

does a system use both?

• Wrinkles can have a lot to do with facial expression. How do you model wrinkles,

and how does a programmatic system trigger their appearance and the extent to

which they should be present in an expression? Do you need to physically model

them in the 3D facial model, can their effect be achieved through shading and

bump maps during the rendering process? A few wrinkles are shown below.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 19

• Every CG face is modeled, textured, animated and rendered. Texturing and

rendering are indeed necessary to make a face look real. But in order for the

performance of an animated face to look real, to what extent does rendering help

in getting close to a real performance?

8 Acknowledgments
All large production projects require artists, animators, integrators, software engineers

and management. Cooperative work ultimately manifests in the final product on screen.

Here is a list of people involved on the project in Monster House and other related shows

that helped create this document.

Management – George Joblove, Bill Villareal, Brian Keeney, Leslie Picardo, Jerome

Chen, Jay Redd

Motion Capture and Tracking – Demian Gordon, Dennis J Huack, Darin Velarde, Nancy

Ong

Motion Capture Integration – Albert Hastings, , Josh Ochoa David Bennett, Ron Fisher,

Brian Doman

Animation – Troy Saliba, T. Daniel Hofstedt, Kenn Mcdonald, Remington Scott

Facial Rigging – JJ Blumenkranz, Michael Laubach, Brian Thompson, Rick Grandy

Arthur Gregory

Software – Mark Sagar, Armin Bruderlin, Sosh Mirsepassi.

Training – Sande Scoredos

Marketing – Carlye Archibeque

© 2006 Sony Pictures Imageworks Inc. All rights reserved.

SIGGRAPH 2006 Parag Havaldar

Performance Driven Facial Animation Sony Pictures Imageworks

 20

9 References

1. V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and video.

In Proc. Of Eurographics, 2003.

2. George Borshukov, Dan Piponi, Oystein Larsen, J. P. Lewis, and Christina Tempelaar

Lietz. Universal capture: image-based facial animation for ”the matrix reloaded”. In

Proceedings of SIGGRAPH Conference on Sketches & applications. ACM Press,

2003.

3. E. Chuang and C. Bregler. Performance driven facial animation using blendshape

interpolation. CSTR- 2002-02, Department of Computer Science, Stanford University,

2002.

4. Cosker, D.P., Marshall, A.D., Rosin, P.L., Hicks, Y.A., Speech-driven facial animation

using a hierarchical model, VISP(151), No. 4, August 2004, pp. 314-321

5. Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and

Mark Sagar. Acquiring the reflectance field of a human face. In SIGGRAPH 2000

Conference Proceedings, pages 35–42. ACM SIGGRAPH, July 2000.

6. Eisert, P., and Girod, B. 1997. Model-based facial expression parameters from image

sequences. In Proceedings of the IEEE International Conference on ImageProcessing

(ICIP-97), 418-421.

7. P. Ekman and W.V. Friesen, Manual for the facial action coding system, Consulting

Psychologists Press, Palo Alto, 1977.

8. I. A. Essa and A. P. Pentland Facial expression recognition using a dynamic model and

motion energy. Proc. IEEE Int’l Conference on Computer Vision, pages 360–367,

1995.

9. Theobald, B.J., Kruse, S.M., Bangham, J.A., Cawley, G.C., Towards a low bandwidth

talking face using appearance models, IVC(21), No. 12-13, December 2003, pp. 1117-

1124.

10. Tim Hawkins, Andreas Wenger, Chris Tchou, Andrew Gardner, Fredrik G¨oransson,

and Paul Debevec. Animatable facial reflectance fields. In Rendering Techniques

2004: 15th Eurographics Workshop on Rendering, pages 309–320, June 2004.

11. Jensen H. W., Marshiner, S., Levoy, M., and Hanrahan, P. 2001. A practical model

for subsurface light transport. Proceedings of SIGGRAPH ’2001, 511–518.

12. Jensen H. W. J Buhler, A Rapid Hierarchical Rendering Technique for translucent

materials. In Proceedings of SIGGRAPH 2005.

13. Jun Yong Noh and Ulrich Neumann. Expression cloning. In Proceedings of ACM

SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pages

277–288, August 2001.

14. Mark Sagar, Reflectance Field Rendering of Human Faces for “Spiderman 2”.

SIGGRAPH 2004.

15. D. Terzopoulos and K. Waters. Techniques for realistic facial modeling and

animation. In Nadia Magnenat Thalmann and Daniel Thalmann, editors, Computer

Animation 91, pages 59–74. Springer-Verlag, Tokyo, 1991.

16. Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces: high

resolution capture for modeling and animation. ACM Trans. Graph., 23(3):548–558,

2004.

“Virtual History : The Secret Plot to Kill Hitler”
Jim Radford

The Moving Picture Company

Abstract

This paper outlines the process the MPC Visual Effects team used to recreate in CG the
faces of WWII leaders for Discovery’s TV special Virtual History, particularly the
techniques employed in order to model and animate the leaders’ faces.

The main areas that will be covered:
• Casting the actor
• Modeling the face
• Tracking into contemporary footage
• Facial Motion Capture
• Post Production – inserting the CG into the shot
• Grading the result to resemble authentic archive material

1 Introduction

Virtual History was groundbreaking in several ways. It was the first TV program to
attempt to create realistic historical figures using CGI and Facial Motion Capture, and the
first to attempt to create imagery indistinguishable from 1940’s colour archive footage.
Three WWII leaders were chosen : Hitler, Roosevelt (FDR) and Churchill. Not only were
realistic CG human faces to be created, and not only faces resembling these figures, but
faces matching the leaders as they appeared at that stage in their lives.
In addition to this, we portrayed the leaders in situations never before seen – Hitler with
his doctor, FDR suffering a heart attack, Churchill discussing chemical warfare – the
premise being that this was newly-discovered “unofficial” footage shot at that moment in
history, 20th July 1944.
Virtual History was delivered in July 2004, and was first aired in October 2004.

Figure 1. Hitler: 1940’s color archive footage

2 Casting

The process started with the actor.
Since we were recreating only the historical figure’s face (we had decided against
replicating the whole head, in order to limit the volume of CG shots), it was important
that the actor’s head dimensions matched the historical figures as closely as possible. We
obviously did not have access to the WWII leaders, so the actor’s compatibility in this
respect was established by comparing digital stills of the actor with archive material of
the historical figure.

Figure 2. Hitler: Facial area selected for CG reproduction.

3 Modeling

Once the actor was chosen, we took a plaster cast of his head. The actor/CG demarcation
line was established, and the historical figure’s face was sculpted directly on the cast. The
resulting maquette was laser-scanned to obtain a CG model.
The face area was then extracted, and refined to create a workable mesh.

Figure 3. FDR: Actor’s head cast, Sculpted maquette.

The static CG face model was then textured and shaded.
Our reference for this was archive material, and observation of faces that matched the age
and physiology of the leaders. This included colour, reaction to light (diffuse, specular,
translucence), and skin detail (wrinkles, pores, distinguishing marks). Facial hair
(eyebrows, moustache), and glasses were also modelled.

As we knew that the viewer’s focus would be drawn to the eyes of our characters,
particular attention was paid to this area. This was not only true for the textures and
shading model, but also for the animation rig being prepared for facial motion capture.
Our characters would have to deliver dialogue, and convey emotion whilst doing so.

For Hitler and FDR it was felt that, with the aid of makeup, their appearances were
convincing enough to appear in non-hero (ie. non-CG) shots. For Churchill, this was not
the case, and a prosthetic layer was added to the actor’s jaw and chin.

Figure 4. FDR: Actual 1940’s archive, and actor’s eye detail

Figure 5. Hitler: Wireframe mesh to textured face (minus the facial hair !)

4 Tracking

During the live action shoot, the actor wore a custom-made facial rig with markers
attached, which facilitated the subsequent tracking of his head within the shot. One of the
challenges during production was the volume of setups to be completed within the
schedule. Shots featuring the leaders were divided into two types: those destined for CG
replacement, and those where - due to their being far from the camera, or obscured by
other characters – no CG was required. The facial tracking rig therefore needed to be easy
and quick to apply and take off, without disturbing the actor’s makeup. Whether or not
the shot was destined for CG face replacement, the actor would deliver his performance.
This was important for direction and the supporting cast, and was invaluable as reference
during the facial motion capture shoot and for the VFX team when working on the shots.

Figure 6. Hitler: Live action plate showing the actor wearing the facial tracking rig.

5 Facial Motion Capture

After Production wrapped, and takes were selected, the Facial Motion Capture shoot took
place over three days - one day each for Hitler, FDR, and Churchill. Since Hitler was to
be speaking German, it was decided to use a German speaker, rather than the actor who
played him in the live action scenes. For the other two characters, the same actors were
used.

As in the live action scenes, Churchill performed with his prosthetics applied, as we felt it
was preferable to capture him with his facial form as close to the target mesh as possible,
rather than relying more heavily on the retargeting part of the data processing pipeline.

Eyetronics (www.eyetronics.com), a company specialising in static and dynamic
scanning, supervised the motion capture shoot.
First dots were placed on the actor’s face to trace specific movements. As each actor
spoke, a grid was projected onto his face as a reference guide to correlate movement from
frame to frame. For each frame, about 30,000 points were captured – 100 times more than
with traditional motion capture techniques of that time.

The shoot proved challenging for the actors. Not only were they required to assume their
character without the aid of wardrobe, supporting cast etc, but they also had to deliver
their dialogue accurately and “with feeling”, whilst trying to keep their head still, and all
the time staring into a bright light !

Figure 7. Hitler: Applying the dots to the motion capture actor.

Close attention was given to the duration of the delivered dialogue. Time is money, as the
saying goes, and since the project had a finite budget set aside for data processing, a
rolling total was kept to ensure that we were on track. Sometimes a good take was
discarded, not because the delivery was poor, but because it had to be quicker for
budgetary reasons.

Figure 8. The motion capture shoot. Note the actor under the glare of the projected grid.

Figure 9. Hitler: The actor during the shoot, and the captured data.

6 Post Production

The static textured face meshes were tracked onto the live action actors in their respective
shots, and lighting began.
Eyetronics delivered the motion capture data to us as Maya scenes, along with clips of the
captured footage with audio and corresponding driven CG meshes (Figure 10). These
clips were important as it allowed to us to accurately position the dialogue within the
shots. Certain live action shots had their dialogue slipped or partially replaced, in order to
better tell the story.

There were, of course, occasions where shots did not work immediately, and a certain
amount of time was spent trying to find our way out of “Uncanny Alley” !
Sometimes it was remarkably difficult to establish where the problem lay, and we helped
ourselves by using a checklist on a per-shot basis :

• Does the face fit the actor’s head properly (position, scale, orientation) ?
• Is the track good ?
• Does the face resemble the historical character ?
• As he would look on this day ?
• Is the lighting correct ?
• Is the eye animation correct ?
• Etc …

The motion capture data gave us an animated facial mesh, but certain elements were
rigged and animated directly. The eyes were not captured, so these were animated by
hand, which worked well, since this allowed us to direct them according to the dialogue

and emotion in the shot. We also “painted out” the motion in the areas immediately
around the eyes, and animated these using blendshape techniques.

Figure 10. FDR: The actor, and the driven realtime CG meshes

One particular problem we encountered was the noise / signal ratio within the data.
Eyetronics’ technique captured very fine motion, which we wanted to keep as much of
this as possible, especially in scenes where the emotion was conveyed by movement that
was felt rather than seen. However, sometimes we found that in removing the noise from
a clip, the signal (movement) disappeared too ! We concluded also that the relatively
unusual conditions that the actors were asked to perform under during the motion capture
shoot probably contributed to the sometimes-muted facial performance.

The animated and lit faces were composited into the live action footage using standard
3D and 2D techniques.

7 Grading

Once we were happy with the technical composite, the footage was manipulated to
resemble authentic 1940’s color archive material.
Essentially, we created a “life story” for each of the three character’s film footage, from
initial exposure in-camera, through to the present day, when the footage was supposedly
“discovered”. We employed a range of techniques towards this end, including film-stock
characteristics, lens imperfections, camera frame-rates, chemical reactions during
developing, and damage incurred during storage.

Figure 11. Hitler : Live action plate, final graded image

The three strands – German, American, English – were given different resultant “looks”
based on the considerations described above. These also helped the viewer better
differentiate between them in-program, especially when different leaders’ scenes were
cut back-to-back.

8 Conclusion

Creating realistic CG human faces remains a very ambitious task, especially within the
time and budgetary constraints common in TV broadcasting. The completion of Virtual
History left us with as many questions as answers, but this body of work is also testament
to the talent and dedication of the VFX team assembled for this project.
We look forward to contributing further in future work, and are excited by the challenges
that lay ahead.

9 Final Imagery

10 Acknowledgements

Since 2004, some of those I mention here have moved on to pastures new.
I’m including them here in the positions they held at the time of the project.
I’d like to thank the following :

David Abraham, Discovery UK
Dunja Noack, and the team at Tiger Aspect Productions
David McNab, Director
Eyetronics for Facial Motion Capture

The VFX team at MPC :
Klaudija Cermak, Loraine Cooper, Christophe Damiano, Dean Koonjul,
Oliver Money, David Mucci, Minh Nguyen-Ba, Tom Phillips, Glen Swetez,
Kim Taylor, Simon Thomas.

Facial Performance Capture and Expressive Translation for King Kong (sketches_0077)

Mark Sagar1

Weta Digital

To successfully convey and translate the most ferocious to
the most subtle and soulful moments (often expressed purely
through the eyes) from actor Andy Serkis’s performance to
the face of King Kong required applying innovative motion
capture analysis and mapping techniques.

Standard facial motion capture techniques used in film
production involve some form of direct drive between the
marker position and the facial geometry control mesh with
some form of geometric transformation if retargeting is
necessary.

Typical problems with this approach include susceptibility to
noise, and the difficulty to edit if a facial performance
change is required. Also although critical to the performance,
detailed eye motion is not usually captured, and it is usually
animated later from video reference which can be a
challenging task due to the high frequency components of
eye motion.

For many reasons, including the complexity of King Kong’s
facial geometry, the subtlety required being close to the
range of marker displacement error and the desire to work
seamlessly with animation meant standard motion capture
techniques were unsuitable.

Expression Space

The technique used for King Kong breaks the direct
geometric connection by first fitting the motion capture data
to an expression space, which is then mapped to another
expression space defined by animation control presets on the
creature facial puppet.

The expression space is effectively a Gorilla specific superset
of Ekman and Friesen's Facial Action Coding System
(FACS) which groups facial muscles which work as units. It
represents an effective alphabet of facial expression; any
expression can be formed by combinations of the individual
elements.

Expression space has several benefits. It provides a
transcription of the communicative content of the
performance, and is ideal to map in an art-directable way to a
topologically different character. It provides an intuitive
format for motion editing and making performance changes.
Because the face is constrained in its motion, fitting to an
expression space significantly reduces noise and allows for
intelligent filtering.

Expressive Translation
1

For King Kong, actor Andy Serkis closely studied gorilla
behaviour and facial expression and mimicked it as much as
possible. However while there is much in common between
the facial structure of humans and gorillas, there are
characteristic expressions a gorilla can make that a human
cannot unambiguously mimic (and vice versa).

1 Email: marks@wetafx.co.nz

Since humans and gorillas have similar musculature it was
possible to map most of the expression space in a muscle to
muscle way especially in the upper part of the face. To
enable the actor to perform the unique gorilla expressions, a
mapping was made between a particular human mouth
configurations and distinct gorilla mouth shapes.

Indirect Eye tracking

The eyes are the window of the soul. Eye motion is complex
and driven by internal and external stimuli and reflexes. It
has many very high frequency components making it
difficult to keyframe animate. Although very subtle the
relationship of the pupil and eyelid position in facial
expression is a critical element of the performance.

When the eyeballs move the eyelids are affected mostly due
to displacement caused by the cornea. However the actions
of the surrounding eye muscles such as the oris orbicularis
also affect the eyelids so expressions and corneal
deformations are not independent. When the expressions are
fitted the contribution of eye gaze direction is also solved for
enabling indirect yet accurate tracking of eye movement,
including high speed saccades.

Motion editing

The output of the system is a set animation curves which
control muscle groups and gorilla expressions and are easy to
manipulate for motion editing and combining with animation
if performance changes are called for; For example brow
motion could be toned down without affecting the rest of the
face, or the jaw could be closed while keeping the action of
muscles adding expression to the mouth.

A special GUI was created which allowed direct
manipulation and visualization of the muscle groups directly
in Maya, with sliders in 3D space moving with the face.
These worked in conjunction with a rich set of curve editing
tools providing for a fast intuitive workflow.

Contributors: Rudy Grossman, Weta Digital

References: P. Ekman and W.V. Friesen. Facial Action Coding
System: Investigator's Guide. Consulting Psychologists Press, 1978

Figure 1: Detailed motion capture of the eyes and surrounding
muscles helped give Kong a sense of soul.

mailto:marks@wetafx.co.nz

Playable Universal Capture: Compression and Real-time Sequencing of
Image-based Facial Animation

George Borshukov∗ Jefferson Montgomery∗ Witek Werner∗

Worldwide Visualization Group
Electronic Arts, Inc.

Figure 1: Frames of Leanne Adachi’s performance that were captured, processed, and rendered using the techniques described in this paper.

Abstract

This paper describes a facial animation playback scheme based on
simultaneous encoding of captured face textures and geometric po-
sitions. The high quality facial data is acquired using a more ro-
bust variant of the Universal Capture (UCap) technique that incor-
porates state-of-the-art marker-based motion capture. A novel en-
coding, based on Principal Component Analysis, is used to encode
the data and uses more components in areas of the face that require
them yielding finer control over the visual quality of the reconstruc-
tion. Furthermore, a frame interpolation technique is demonstrated
that operates within this component sub-space and provides smooth
transitions between facial expression clips allowing us to effectively
apply a motion graph approach to facial animation. The method
runs in real-time for tens of high-fidelity characters on current hard-
ware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques; I.3.6 [Computer Graphics]: Com-
putational Geometry and Object Modeling; E.4 [Coding and Infor-
mation Theory]: Data compaction and compression

Keywords: Performance capture, Facial Modeling, Facial Anima-
tion, Image-based Techniques, Data Compression, Real-time Im-
plementation, GPU Rendering

∗e-mail:{gborshukov, jmontgomery, wwerner}@ea.com

1 Introduction

There are a vast number of factors involved in reproducing the sub-
tleties of realistic facial animation. So many, in fact, that it is near
impossible for an animator or a computer simulation to achieve gen-
uinely realistic results. One reason for this is simply a lack of suffi-
cient models for the important characteristics and subtle dynamics
of facial expressions expected by human observers, who are all ul-
timate experts at watching faces! TheUncanny Valleyhas recently
become the standard term for the unintentional creepy appearance
of near-photoreal, computer generated, animated faces. This phe-
nomenon, first predicted by [Mori 1982] in the context of robotics,
is being increasingly seen in human characters in video games. The
work described in this paper can be viewed as a direct attempt to
build a bridge across the Uncanny Valley and start climbing up the
other side for the most challenging applications of all for digital
humans — those requiring real-time interactivity.

The best feasible solution currently available for achieving the high-
est possible realism and believability is to simply capture all aspects
of a facial performance and use the captured data to reconstruct
the performance. This paper discusses a new capture process and
outlines some improvements introduced to ensure a more robust,
production-ready pipeline that preserves important subtleties.

Such capture techniques produce a large amount of data which pro-
hibits recreation at interactive rates. In order to reduce the storage
and memory access burdens, a compressed representation that re-
tains the important captured subtlety is desired. This paper intro-
duces a novel compression technique based on multivariate analysis
that accomplishes this with the following benefits:

• the encoding is an optimal approximation in a meaningful sense,
• the small per-frame representation can yield a very high com-

pression ratio,
• useful operations can be performed in the compressed space, re-

ducing required computation, and
• the decoding algorithm can decode frames in random order.

Ultimately, these new techniques allow us to unleash the richness of
the high-fidelity data content we capture. Our compression allows
us to encode numerous expression clips and then sequence short
constituent expressions with minimal blending across the transi-
tions. This paper shows how to use this approach in a real-time
interactive application that delivers compelling visual experiences
and allows

• interactive switching between different captured clips at any
point, triggering and blending appropriate facial motions from
a state graph,

• complete freedom of camera movement,
• control over the character’s shading, lighting, and environment,
• stylization either by capturing made-up actors or by adjusting the

shaders for additional artistic effect,
• application of deformations to the mesh geometry after the data

has been processed and layering damage or sweat effects through
textures or shader parameter adjustments, as well as

• removal of captured rigid head movement and application of new
overall head movement which can come from body motion cap-
ture, hand animation, or procedural techniques.

Section 2 of this paper introduces a variety of research that enables
this work or addresses the problem in a different way. Section 3
describes our data capture process and Section 4 covers the data
compression. Section 5 shows how to combine performances into
new sequences. Section 6 presents qualitative and quantitative re-
sults while Section 7 discusses concrete steps and ideas for future
work and Section 8 offers some concluding remarks.

2 Related Work

One of the earliest efforts in the field of facial cloning was the pio-
neering system developed by [Parke 1972; Parke 1974] who made
use of two orthogonal photographs and patterns painted on a per-
formers face to recover 3D facial geometry. With advancements in
range scanning, researchers have explored its use to automatically
model faces. The resulting data can be fitted with a structured face
mesh and additionally augmented with a physically based model of
skin and muscles [Lee et al. 1993; Lee et al. 1995; Terzopoulos and
Waters 1991; Waters 1987].

The idea of recovering facial geometry from images led naturally
to motion estimation from video. An early system by [Williams
1990] tracks the 2D face motion of a performer from a single video
stream. Later, [Guenter et al. 1998] extended this approach to 3D
recovery from multiple video streams. Other researchers have ex-
plored marker-less tracking techniques, often relying on more so-
phisticated models such as linear blend shape models [Blanz et al.
2003; Pighin et al. 1999], bi-linear models [Vlasic et al. 2005], or
physically-based models [Terzopoulos and Waters 1991]. Tracking
from video using more complex models has also been discussed by
[Essa et al. 1996; Reveret and Essa 2001]. Recently, [Hyneman
et al. 2005] described a very successful tracking approach devel-
oped in the context of Disney’sGemini Manfilm attempt in 2000.

A promising new research direction is the recovery of dense geom-
etry from video. The system developed by [Zhang et al. 2004] uses
six video cameras and two structured light projectors to recover
the facial geometry completely automatically, whereas [Borshukov
et al. 2003] used optical flow calculated from five hi-def cameras
to recover the facial geometry and texture at every frame which
required some manual assistance, but no structured light. [Bre-
gler et al. 2000] have also done pioneering work on recovering de-
formable models from single video streams.

[Lee et al. 1995; Waters 1987] designed systems to make it rela-
tively easy to animate facial expression manually. The techniques

in this paper do not synthesize animations using a physical or pro-
cedural model of the face. Instead, they capture facial movements
in three dimensions and then replay them in real-time, faithfully
reconstructing a particular person’s facial expression. Hence our
work is also unlike that of [Essa and Pentland 1997] which attempts
to recognize expressions or that of [DeCarlo and Metaxas 1996]
which can track a limited set of facial expressions. It differs also
from recent work by [Sifakis et al. 2005] which combines a highly
complex non-linear model of muscle activations with motion cap-
ture.

[Pighin et al. 1998] captured different facial expressions consisting
of geometry and texture from an arbitrary number of images. They
used these for creating smooth transitions between expressions by
morphing. However, their library of eight fundamental expressions
limited the space of possible transitions, and their shape construc-
tion required manual guidance.

Our work is similar to the work of [Guenter et al. 1998], but dif-
fers in important ways. The capture system and process is stream-
lined, modernized, and tested in large scale production. We deploy
a state-of-the-art motion capture system with 8 infrared cameras,
3 high-definition cameras, and only 70 small retroreflective facial
markers, instead of 6 cameras and 186 medium sized florescent fa-
cial markers. Our system never loses track of a marker and has
sub-millimeter resolution. Our key contribution is extending their
compression approach from a PCA on skeletons and MPEG-4 on
textures to a new Variable PCA for both the full mesh and textures
allowing us to compress detailed motions and achieve interactive
facial animation. Arguably, this has less objectionable compression
artifacts and potentially higher compression ratios (due to its ability
to capitalize on longer-term temporal correlations) but the real win
is the simplicity of decompression.

3 Data Capture

In an effort to generate photo-realistic believable human perfor-
mances, we endeavored to capture and reconstruct data of very
high fidelity. For this we have developed a more robust production
level version of the Universal Capture (UCap) system introduced by
[Borshukov et al. 2003]. A pipeline overview can be seen in Fig-
ure 2. Instead of doing a full markerless tracking approach using
optical flow we deploy a facial motion capture system consisting of
(see Figure 3): 8 IR cameras plus 3 synchronized, high-definition,
color cameras framed on the actor’s face as well as an ambient light-
ing setup. Around 70 small retroreflective markers are placed on the
actor’s face. The IR cameras are used to track reflected light from
the facial markers in the infrared domain at a rate of 120 frames per
second (fps). Simultaneously at 30 fps, the hi-def color cameras
record all the subtleties of the actors performance including color
variations in blood flow due to emotional state changes, skin com-
pression in the areas of wrinkle formation, self-shadowing, and am-
bient occlusion effects. As part of the process the two data sources
are aligned in both space and time. Mocap facial data is tracked in
VICON iQ or House of Moves Diva. The facial markers are isolated
and stabilized in Alias MotionBuilder. IO Industries Streams 5 is
used to extract image sequences (see Figure 4) from the recorded
video. Eos Systems PhotoModeler is used to recover the color cam-
era positions in 3d space with respect to the recovered facial marker
3d locations.

The 3d motion path of the face markers is then used as the di-
rect source of deformation for the face geometry. We scan using
XYZRGB’s technology and convert to a mesh surface using Cys-
lice. We achieve the deformation with a facialbonerig in Maya.
The number of bones is equal to the number of markers on the face.
Each bone is weighted to the face mesh using a standard skinning
process. The vertex weights which describe how the movement of
a bone (joint) affects the movement of a vertex are adjusted by an
artist. What make our skinning process successful, and qualitatively
different from other approaches, is the availability of a reference
image sequence which the artist uses to achieve an optimal weight-
ing. Once this one-time weighting setup is perfected using one cap-
tured move it is then reused for the remaining captured moves with

Data Processing

UCap Session
Capture talent

Take Selection

UCap
Image
Export

Mocap Data
Track

with rigid
transform
estimation

Alignment
Export control

point locations at
synch frame

 Camera
Reconstruction

3 images at synch frame

Alignment:
Align mocap 3d marker

data to camera image data

Head Scan
Surfacing /

Detail Normal
Map Creation

Facial Bone Rig
Create/update initial

weighting

Mesh Alignment
Drive bones with

mocap data. Refine
bone rig weights

Lip Interior
Contour
Tracking

Camera Reprojection / Geometry Export

Automated
Marker

Removal

Streams 5

iQ/Diva/MotionBuilder

Maya

PhotoModeler

Digital Fusion

VPCA
Compression

Real-time
Application

Cyslice

UCap Session Prep
Choose talent, create

move tree shotlist

Data Acquisition

Frame
Sequences

Maya
File

Animated Texture
Blending, Color

Correction,
Cleanup

Maya File Mesh
+ Normal Maps

Geometry
Vertex

Sequence

Animated
Texture

Sequence

Output

 UV Space
Sequences

for 3
Cameras

Alignment
Establish synch
frame between

mocap data and
UCap image data

Head Scan
Talent

Figure 2: Pipeline diagram.

the same actor.

This deformation approach achieves excellent results in accurately
reconstructing the facial shape and motion in all areas of the face;
except for the interior contour of the lips for obvious reasons of not
being able to place markers there. Currently, we solve the lip con-
tour problem with the addition of 8 bones which control the shape
of the lip interior and whose placement over time is determined by
an animator using the background images as a reference. Another
problem area where we have a similar solution is the tongue, which
is of crucial importance in reproducing speech. In Section 7 we de-
scribe the approach we have taken to fully automate this process.
Figure 5 shows the skinned mesh with the facial bone rig.

Once we have achieved successful reconstruction of the facial de-
formations as shown in Figure 6 then we can project the input image
sequences from each camera for every frame to produce animated
facial texture maps. The presence of facial markers would at first
glance prevent us from using the captured color images as textures.
However we exploit the fact that current generation motion cap-
ture systems need very small markers (1.5 mm in diameter) which
are also highly retroreflective. By placing ring lights around each

Figure 3: Capture setup: above, the hi-def cameras with ring lights,
mocap IR cameras, and ambient lighting setup. Below, make-up
application (purely for artistic effect) and the use of a talent director
which is key to good actor performances.

Figure 4: Input camera views: notice the nice marker separation
which makes removal straight-forward.

Figure 5: Facial bone rig: one bone per marker and additional bones
for mouth/tongue tracking.

of the hi-def cameras we guarantee that the markers in each of the
color images appear at very high intensity which makes them easy
to key out and replace with adequate skin textures. We perform
this marker removal and “hole-filling” process in the final stage of
animated texture generation where the re-projected (in UV space)
camera views are blended to produce a final marker-free composite
image sequence as shown in Figure 7. This process is accomplished
in the Eyeon Digital Fusion compositing package.

The combination of accurate mesh deformation, ambiently lit ani-
mated textures, and advanced shading techniques can achieve high
realism of facial animation and rendering in challenging applica-
tions [Borshukov et al. 2004]. One of the contributions of this paper
is in coming up with a more robust and efficient way of acquiring

Figure 6: Geometry reconstruction: the process results in accurate
and detailed shape recovery for every frame.

Figure 7: Texture generation: combining images in UV space with
data from each camera.

data of this quality. The most important contribution however is the
ability to aggressively compress the extremely large data sets asso-
ciated with this technique while preserving their quality and allow-
ing triggering, blending, and decompression at interactive speed.
The following sections discusses the compression approach.

4 Data Compression

For our application, the captured performance is organized into two
matrices,Ximg andXgeo, containing image and geometry data re-
spectively. For each captured frame, color channels and geometry
attributes each contribute a single column vector, whose length is
the number of pixels and the number of vertices respectively, to
their respective matrix1. For example, one frame of a facial perfor-
mance may specify3 column vectors (representing the red, green,
and blue color channels) ofXimg and 9 vectors (representing the
position, normal, and binormal attributes) ofXgeo. In this formu-
lation, the performance is analyzed, compressed, scheduled, and
decompressed (as described in the following sections) in a process

1This assumes, for example, that each image color component is a sepa-
rate sample from an identical distribution, which is useful when colors vary
in similar ways.

that is performed separately — but identically — on both the image
and geometry data (Ximg andXgeo).

4.1 Principal Component Analysis
For each of the data matrices (hereafter simply labeledX) as-
sume that then column vectors represent independent and iden-
tically distributed samples from anm-variate exponential family
(e.g., Gaussian) distribution. Under such an assumption, sufficient
statistics are provided by the sample mean and covariances, and the
statement is implicitly made that directions out from the mean with
largest variance contain the most relevant information content.

Principal Component Analysis(PCA) is a non-parametric optimiza-
tion procedure for extracting information content from measured
data, ranking its level of interest, and describing it using orthogonal
components. As such, it is extremely useful; not only for identi-
fying structure in measured data, but also for discovering lower-
dimensional descriptions while optimally retaining relevant infor-
mation.

The first step of PCA is to center the measured data by removing
the sample mean. Define the matrixA such that each column equals
the sample mean subtracted from the corresponding column ofX
(as shown in Equation 1, where the notationxi j denotes the element
of matrix X at row i and columnj).

A : ai j = xi j − 1
n

n

∑
k=1

xik (1)

The original vector basis for this representation corresponds to the
experimenter’s interpretation of the measurements, but PCA reveals
a more useful, orthonormal basis with which to describe the data.
The new basis is derived from the structure of the data itself through
thesingular value decompositionof the centered data:

ai j =
r

∑
k=1

uikskv jk (2)

U andV are both orthonormal matrices whose column vectors are
the left and right singular vectorsrespectively, andS is a diago-
nal matrix withr = rank(A) decreasing, but positive,singular val-
ues. The left singular vectors not only span the column space ofA,
thereby specifying an orthonormal basis for the data, but also have
axes that are aligned along variance extrema and are independent
(i.e., the transformed data has a diagonal covariance matrix). These
axes are called theprincipal componentsof the data set.

Whenr < min(m,n), there is redundancy in the original basis de-
scription, and PCA reveals which components can be removed from
the data without any loss of information yielding a compression ra-
tio of ρrank= 1

mn(r(m+n)+m). In practice, however, a large num-
ber of low-variance components can also be disregarded without
significant degradation in the data, as shown in Equation 3.

ai j ≈ ãi j =
c

∑
k=1

uikskv jk, c < r (3)

Although lossy, removal of the least-principal components in this
way achieves further compression (ρpca = c

r ρrank) while guaran-
teeing optimal retention of the original variances. Specifically, no
other rank-c matrix can do better, in Frobenius norm2, to this ap-
proximation ofA.

2TheFrobenius matrix normis the discrete version of theL2 norm, and
is defined by the square root of the sum of squares of the matrix elements.
The approximation error is given by:

‖Ã−A‖2
F =

m

∑
i=1

n

∑
j=1

(
r

∑
k=c+1

uikskv jk

)2

(4)

Typically, both the geometry and texture data captured using the
techniques of Section 3 both exhibit highly correlated structure over
long sequences. This can be observed in the distribution of singular
values in Figure 8, which are directly related to the error induced
by a corresponding dimensionality reduction. Consequently, this
important structure can be accurately represented using a surpris-
ingly small number of principal components. Several captures that
we have analyzed, although representing drastically different actors
and performances, share this important property.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
in

gu
la

r
V

al
ue

s

Principality (c)

Principal Component Analysis

Figure 8: The first16singular values recovered from several differ-
ent performance captures. A significant portion of the data variance
is representable by a small number of principal components.

4.2 Relaxing The Assumptions: “Variable PCA”
Despite the optimality of the approximation, standard PCA com-
pression produces poor results if the data does not satisfy the inher-
ent assumptions. Specifically,

• the captured data may not be generated by a linear superposition
of underlying components — in which case, PCA linearly ap-
proximates the non-linearity which can be inefficient, requiring
many more principal components than the inherent structure of
the data dictates; or

• the captured data may not be generated from an exponential dis-
tribution — in which case, the sufficient statistics considered
may not determine the data and the Frobenius norm may not be
the appropriate error metric.

The consequences of non-conformance tend to be localized com-
pression artifacts. In this application, you might observe excessive
relative blurring in areas such as the eyes which can be very detri-
mental to qualitative acceptance of the render due to a human ob-
servers tendency to scrutinize such areas.

Despite the fact that these assumptions may introduce compression
artifacts, they also engender simple and efficient algorithms, which
is key for an interactive implementation. Instead of abandoning
PCA, note that the number of components representing informa-
tion is measurement-invariant3 and the computation required for
reconstruction is also measurement-invariant4. At the same time
for some data sets the error contribution of each measurementdoes
vary, as shown in Figure 9.

This is a qualitative inefficiency that can be addressed by balanc-
ing the representational cost of each data measurement using aba-
sis configuration: a different number of components for each di-
mension,{ci}, as shown in Figure 10. By increasing the dimen-
sionality of the basis representation for measurements with poor

3A PCA-compressed data set holdsnc+ c+ 1 elements per measure-
ment.

4Decoding a PCA-compressed data set requiresncmultiply-and-add op-
erations per measurement.

 0

 1

 2

 3

 4

 5

 6

 7

C
on

tr
ib

ut
io

n
to

 to
ta

l e
rr

or
 (

m
ill

io
ns

)

Measurement (pixel or vertex index)

Contributions to Total Error

Figure 9: For a fixed number of components, the principal compo-
nent sub-space minimizes the total Frobenius-norm error. However,
each measurement’s contribution to that error is different as shown
in this example data set.

approximations, while equivalently decreasing the dimensionality
for well-approximated measurements, this approach effectively in-
creases the rank of the approximation without increasing the storage
size, thereby increasing the compression quality.

Leanne’s Basis Configuration
(Component Distribution)

 0
 10
 20
 30
 40

Num. Components

Figure 10: The basis configuration found for the texture data in
Leanne Adachi’s performance (in UV space as shown in Figure 7).
Each pixel is reconstructed using a different number of components.

Although the altered basis is generallynot orthonormaland the ba-
sis axes arenot independentas in standard PCA, reconstruction is
still a linear operation:

ai j ≈ ˜̃ai j =
ci

∑
k=1

uikskv jk (5)

Finding the best basis configuration is a combinatorial, NP-hard
optimization problem. The goal is to alter the principal compo-
nent basis by settingui j = 0 for all j > ci such that the Frobenius
norm approximation is minimized while simultaneously maintain-
ing a constant compression ratio, given by Equation 65.

ρvpca=
1

mn

(
m

∑
i=1

ci +n max
i∈[1,m]

ci +m

)
(6)

5The zeroed component values are not stored by the compressed repre-
sentation.

This is an Integer Programming problem and can be solved using
a standard technique such as Branch and Bound using Linear Pro-
gramming regressions. However, because the dimensionality of this
application is so high and since the value of each basis configura-
tion can be evaluated, we elected to use a local search starting from
the PCA configuration{ci} = constant. This is modified by trad-
ing δ components from the best-approximated measurement to the
worst-approximated measurement; a process which is repeated un-
til such a trade no longer reduces the total error. To avoid local
minima, it is also helpful to cycleδ through[1,maxi∈[1,m] ci] until
no trades of any amount can reduce the error.

4.3 Implementation
Besides providing very high potential compression ratios with rel-
atively inoffensive artifacts, a major advantage of the codec de-
scribed above is that decoding (using Equation 5) is algorithmically
simple and particularly amenable to the fast parallel-processing
SIMD processors made available by recent trends. In particular,
the decoding of any two data elements is computationally indepen-
dent (although they may require read access to some of the same
data) and requires simple operations (multiplies and adds). This
has several useful consequences:

1. Data vectors can be decoded in any order. For this applica-
tion, animation clips can be played forwards or backwards, can
be retimed, looped, have frames skipped, et cetera, all with no
penalty.

2. Data vector elements can be decoded by different processors
and/or at different times. This flexibility allows different faces
(or different parts of different faces) to be decoded by whatever
processors happen to have available cycles.

3. Partial data vectors can be decoded. Because texture or geome-
try elements not visible on the screen need not be decoded, extra
benefit is obtained by delaying the decode until this information
is known (e.g., when decoding in a shader program in a GPU).

The multiple vector processors available on current desktop and
game consoles as well as modern graphics chips all contain spe-
cialized hardware for performing these decoding operations in bulk.
Implementations targeting these platforms benefit from certain re-
strictions on the general code such as:

1. The number of principal components used for estimation of each
measurement should be a multiple of the SIMD vector length of
the target processor. Such a restriction increases compression,
simplifies code, and ultimately utilizes the processor more effi-
ciently.

2. A disadvantage of this codec is that the decoding ofany data
vector requiresall the principal components which can be a
bandwidth hardship. For some systems this is handled more
easily than others, but in general, careful memory and cache
management is important. Additionally, the principal compo-
nents (ui) can be further compressed, typically through a simple
technique such as quantization, since that is typically not the
precision bottleneck.

This compression algorithm enables, besides smaller storage size,
quicker transfer rates (less data to communicate) less cache misses
(less data to access) and less computation of linear operations.

5 Sequencing Performances

The previous section described a novel means to compress and de-
compress high-fidelity facial motions at interactive rates. The fact
that this technique preserves the captured subtlety and variety al-
lows us to applymotion graphsto facial animation. Motions graphs
(a.k.amove trees) are common practice in video game development
and have been applied successfully to produce rich and realistic
body movement from both captured and hand-animated clips. They
are similar in concept to a body of graphics research (see [Kovar
et al. 2002; Arikan and Forsyth 2002]). A move tree is a graph
of animation clips, usually representing motions in certain contexts

(like playing a particular sports game) and consists of idle loops and
domain-specific actions (such as punching, running, and kicking).
The graph can be arbitrarily complex and denotes allowable transi-
tions which are triggered either by an AI sub-system or directly by
the user through a game controller.

To apply the motion graph approach to facial animation

1. a library of facial expression clips, fundamental to a certain con-
text, are captured;

2. a motion graph is designed to connect the expressions, and
3. the graph can be traversed, rendering the clips and interpolating

both textures and geometry across the transitions.

5.1 Specifying Leanne’s Motion Graph
Each expression clip in the library is captured in context and can
become a node in a motion graph. For example, Leanne Adachi’s
performance was directed in the context of a kung fu fight, result-
ing in a library of essential related facial motions (part of which is
shown in Figure 11).

Figure 11: Single frames from the expression clip (facial motion)
library we captured for Leanne Adachi.
To create our motion library we used extensive movie references,
came up with classifications for different kinds of moves contrast-
ing typical fighting facial expressions for attack and defense in dif-
ferent mental states with fight openings and idle breathing loops.
Within this classification we apply a layered approach to achieve
additional variety. Each move category is represented with multiple
intensities corresponding to different stages of a fight. The capture
session with Leanne lasted about 3 hours with around 17min of ac-
tual footage captured. Out of this about 2 minutes of footage was
selected for use which was ultimately split into 55 separate clips for
inclusion in the state graph. The average number of frames/move
was 65, while the median was 47 frames. The shortest move was
only 27 frames and the longest 220 frames.

5.2 Interpolating Across Transitions
In general, the boundaries of two captured performances cannot be
seamlessly spliced together in a trivial way. This is due to such rea-
sons as choosing performance clips that do not both start and end
in a neutral pose as well as lighting changes due to the actor’s ori-
entation changes (despite the consistent lighting within the capture
environment).

To alleviate the abruptness of this artifact, a transition window (typ-
ically on the order of1/3 of a second long) can be introduced within
which both geometry and texture contributions from either clip are
linearly interpolated. If reconstructing a frame that is100α percent
through the transition, and using framef of the original clip and
framet of the new clip, theith data element is reconstructed using
the functionLERP(A, i, f , t,α) defined in Equation 7:

LERP(A, i, f , t,α) = (1−α) ai f +(α) ait (7)

Figure 12: Real-time GPU shading including subsurface scattering and soft shadow approximations.

This represents considerable computation: Equation 7 is computed
for every color of every pixel and every attribute of every vertex.
However, because of the linearity of the compression basis change,
this operation can be equivalently performed in the dimension-
reduced principal component sub-space (providing both clips use
the same principal components,U) as shown in Equations 8–10
(reducing the number of elements to blend fromm to maxi∈[1,m] ci).

LERP(A, i, f , t,α) = (1−α)
ci

∑
k=0

uiksivf k +α
ci

∑
k=0

uiksivtk (8)

=
ci

∑
k=0

uiksi
(
(1−α)vf k +αvtk

)
(9)

=
ci

∑
k=0

uiksi LERP(VT ,k, f , t,α) (10)

Beyond computation savings, this kind of linear blending achieves
surprisingly reasonable results even when we allow transitions from
any state to any state, at any moment in time. We were prepared to
apply techniques discussed in [Schödl et al. 2000] to find and limit
the possible set of transitions to places in the clips that satisfy re-
quirements of similar appearance and direction of movement. How-
ever, we found this to be of fairly low priority as users enjoyed the
variety, freedom, and responsiveness offered by a complete motion
graph.

6 Results

Several subjects and performances were captured using the tech-
niques described in this paper. The captured data was analyzed,
compressed, and ultimately rendered using a custom prototyping
engine based on OpenGL ES and Cg. The following images are all
direct captures from our engine where you can interactively trigger
the facial expression clips from the move libraries we have captured
for each character.

The engine relies on compressed data, and the Variable PCA tech-
nique described in Section 4.2 improves the final results. Ulti-
mately, this improvement can be made both quantitative (by mea-
suring some global error metric such as the Frobenius norm, as in

Figure 13). and qualitative (by observing the effect of equivalent
compression on identified trouble areas, as in Figure 14)

Although re-lighting of faces is a difficult problem beyond the sub-
ject of this paper, our technique enables two solutions: the per-
formance can be captured in ambient lighting and the high-detail
normals from the head scan can be used to light and shade using a
style suitable to the environment, or the problem can be avoided
by capturing the data in the desired lighting. To handle the re-
lighting issue using a combination of advanced shading techniques
suitable to modern GPU hardware, we treat the captured color tex-
tures as diffuse albedo maps which already contain baked-in ambi-
ent occlusion. For reflectance we rely on our highly detailed nor-
mal maps perturbing fairly simple, but carefully tuned analytical
model with Lambertian diffuse component and a modified Blinn-
like specular component with a Fresnel-like effect. This is similar
to the approach of [Borshukov and Lewis 2003] who also intro-
duced the subsurface scattering approximation we use (see [Sander
et al. 2004; Fernando 2004] for real-time implementation), which
is crucial for close-ups of realistic skin as shown by [Jensen et al.
2001]. Shadows from “key” light sources are another important ef-
fect and we found that the efficient soft-edged shadows using pixel
shader branching described in [Pharr 2005] worked well in our case.
For the “fill” component of the lighting we take advantage of pre-
blurred diffuse and specular high dynamic range maps.

Figure 12 shows images rendered at interactive (real-time) rates on
modern hardware that demonstrate the success of these approaches
in combination with our hi-resolution data assets. Figures 15 and 16
show stills from different subjects we have captured and processed
including sports celebrities.

7 Future Work

One of the areas of future work we are pursuing actively with very
promising results is fully automating the mouth and tongue tracking
by estimation of bone positions thru minimizing the difference error
between the input images and the rendered in each camera view
model with static texture.

Another area of research is the change of eye gaze direction which
would add another dimension of flexibility to our approach. We
want to do this without sacrificing any visual fidelity, because the
eyes are the most important part of the face and we owe a large part
of the success of our results to deciding not to separate the eyes

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

In
du

ce
d

A
pp

ro
xi

m
at

io
n

E
rr

or
(m

ill
io

ns
)

Compression Ratio

Compression-Induced Approximation Errors

PCA
Variable PCA

Figure 13: Approximation errors (in Frobenius norm) comparing
the standard and Variable PCA representations for several perfor-
mances and compression levels.

Figure 14: There are locations where violated PCA assumptions
have resulted in compression artifacts. Each row above shows one
such area in one performance (with left to right columns represent-
ing the captured data, PCA-compressed data, and Variable PCA-
compressed data respectively).

from the captured data. The approach we like to pursue will still
take advantage of captured geometry and texture data (from certain
eye movement exercises) but parameterize it in such a way that we
can drive it by procedural techniques or intuitive artistic controls.

Currently, although we have captured and processed visemes, we
have not yet experimented with interactive speech synthesis by
blending these short viseme clips, but we believe this approach will
produce excellent results as demonstrated by [Bregler et al. 1997]
and [Ezzat et al. 2002].

8 Conclusion

This paper introduced a production-level animated facial geome-
try and texture capture system and showed how to use the high-
fidelity captured assets in compelling real-time interactive applica-
tions. This achievement relied upon a novel variant of PCA com-
pression that varies the number of components used to represent
each data measurement. The new compression technique achieves
better results for the same compression ratio than standard PCA,
and the linear reconstruction of compressed data is particularly
amenable to current SIMD architectures achieving an acceptable
trade-off between bandwidth, computation, and final visual fidelity.

The quality of data this provides when rendering in real-time, com-
bined with advanced GPU shading techniques, achieves realistic
and engaging visual experiences. This enabled the application of
motion graphs to the domain of facial animation. The paper also
demonstrated techniques for blending across arbitrary transitions of
such motion graphs. Ultimately, this collection of techniques will

Figure 15: Dwyane Wade (top) was captured in specific lighting
and is shown here with no additional shading (only the captured
texture); and Tiger Woods was captured and is presented in more
neutral lighting (middle) and outdoor lighting (bottom).

help human characters in video games and other real-time applica-
tions to approach the believability and emotional impact offered by
their film counterparts.

9 Acknowledgements

We would like recognize the following people who made this work
possible: James Lau and Kevin Noone who build the models for the
results presented in the paper, Paul Thuriot for his important con-
tributions to the facial rigging process, Barry Ruff for his work on
the marker removal and shading techniques, Patrick Mooney who
handled the organizational aspects of the project, Dave Raposo who

helped with processing the data, as well as Stefan Van Niekerk and
the staff at EA Mocap. Special thanks go to James Grieve and Paul
Lalonde for their work on an early prototype of the PCA compres-
sion and Glenn Entis for his continual support of this work.

References

ARIKAN , O., AND FORSYTH, D. 2002. Interactive motion gener-
ation from examples. InProceedings of SIGGRAPH 2002, 483
– 490.

BLANZ , V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3d faces. InProceedings of SIGGRAPH 99, 187 –
194.

BLANZ , V., BOSSO, C., POGGIO, T., AND VETTER, T. 2003.
Reanimating faces in images and video. InComputer Graphics
Forum, Vol. 22, No. 3 EUROGRAPHICS 2003, 641 – 650.

BORSHUKOV, G., AND LEWIS, J. P. 2003. Realistic human face
rendering for ”The Matrix Reloaded”. InProceedings of SIG-
GRAPH 2003 Sketches and Applications.

BORSHUKOV, G., PIPONI, D., LARSEN, O., LEWIS, J. P.,AND
TEMPELAAR-L IETZ, C. 2003. Universal Capture: Image-based
facial animation for ”The Matrix Reloaded”. InProceedings of
SIGGRAPH 2003 Sketches and Applications.

BORSHUKOV, G., SABOURIN, K., SUZUKI , M., LARSEN, O.,
M IHASHI , T., FAIMAN , K., SCHINDERMAN, S., JAMES, O.,
AND JACK , J. 2004. Making of The Superpunch. InProceed-
ings of SIGGRAPH 2004 Sketches and Applications.

BREGLER, C., COVELL , M., AND SLANEY, M. 1997. Video
rewrite: Driving visual speech with audio. InProceedings of
SIGGRAPH 97, 353 – 360.

BREGLER, C., HERTZMANN, A., AND BIERMANN , H. 2000. Re-
covering non-rigid 3d shape from image streams. InProceedings
of IEEE CVPR 2000.

DECARLO, D., AND METAXAS, D. 1996. The integration of
optical flow and deformable models with applications to human
face shape and motion estimation. InProceedings of CVPR, 231
– 238.

ESSA, I., AND PENTLAND , A. 1997. Coding, analysis, interpre-
tation and recognition of facial expressions.IEEE Transactions
on Pattern Analysis and Machine Intelligence 19, 7, 757 – 763.

ESSA, I., BASU, S., DARRELL, T., AND PENTLAND , A. 1996.
Modeling, tracking and interactive animation of faces and heads
using input from video. InProceedings of the Computer Anima-
tion, IEEE Computer Society, 68 – 79.

EZZAT, T., GEIGER, G., AND POGGIO, T. 2002. Trainable video-
realistic speech animation. InProceedings of SIGGRAPH 2002,
388 – 398.

FERNANDO, R. 2004.GPU Gems. Addison-Wesley.

GUENTER, B., GRIMM , C., WOOD, D., MALVAR , H., AND
PIGHIN , F. 1998. Making faces. InProceedings of SIGGRAPH
98, 55 – 66.

HOTELLING, H. 1933. Analysis of a complex of statistical vari-
ables with principle components.Journal of Educational Psy-
chology 24, 498 – 520.

HYNEMAN , W., ITOKAZU , H., WILLIAMS , L., AND ZHAO, X.
2005. Human face project. InProceedings of SIGGRAPH 2005
Courses: Digital Face Cloning, 29 – 46.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRA-
HAN , P. 2001. A practical model for subsurface light transport.
In Proceedings of SIGGRAPH 2001, 511 – 518.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion
graphs. InProceedings of SIGGRAPH 2002, 473 – 482.

LEE, Y., TERZOPOULOS, D., AND WATERS, K. 1993. Construct-
ing physics-based facial models of individuals. InProceedings
of Graphics Interface 93, 1 – 8.

LEE, Y., TERZOPOULOS, D., AND WATERS, K. 1995. Realistic
modeling for facial animation. InProceedings of SIGGRAPH
95, 55 – 62.

MORI, M. 1982.The Buddha in the Robot. Tuttle.

PARKE, F. 1972. Computer generated animation of faces. InPro-
ceedings ACM annual conference.

PARKE, F. 1974.A parametric model for human faces. PhD thesis,
University of Utah, Salt Lake City, Utah.

PHARR, M. 2005.GPU Gems 2. Addison-Wesley.

PIGHIN , F., HECKER, J., LISCHINSKI, D., SZELISKI , R., AND
SALESIN, D. 1998. Synthesizing realistic facial expressions
from photographs. InProceedings of SIGGRAPH 98, 75 – 84.

PIGHIN , F., SZELISKI , R., AND SALESIN, D. 1999. Resynthesiz-
ing facial animation through 3d model-based tracking. InInter-
nation Conference on Computer Vision (ICCV), 143 – 150.

REVERET, L., AND ESSA, I. 2001. Visual coding and tracking of
speech related facial motion. InProceedings of the IEEE CVPR
International Workshop on Cues in Communication.

SANDER, P. V., GOSSELIN, D., AND M ITCHELL , J. L. 2004.
Real-time skin rendering on graphics hardware. InProceedings
of SIGGRAPH 2004 Sketches and Applications.

SCHÖDL, A., SZELISKI , R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. InProceedings of SIGGRAPH 2000, 489
– 498.

SIFAKIS , E., NEVEROV, I., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. InProceedings of SIGGRAPH 2005, 417 –
425.

SIROVICH, L., AND K IRBY, M. 1987. Low-dimensional proce-
dure for the characterization of human faces.Journal of Optical
Society of America 4, 3 (March), 519 – 524.

STRANG, G. 1980. Linear Algebra and its Applications, 2 ed.
Academic Press, New York.

TERZOPOULOS, D., AND WATERS, K. 1991. Techniques for real-
istic facial modeling and animation. InComputer Animation 91,
Springer-Verlag, 59 – 74.

TURK, M., AND PENTLAND , A. 1991. Face recognition using
eigenfaces. InProc. IEEE Conf. on Computer Vision and Pattern
Recognition, 586 – 591.

VLASIC, D., BRAND, M., PFISTER, H., AND POPOVIC, J. 2005.
Face transfer with multilinear models. InProceedings of SIG-
GRAPH 2005, 426 – 433.

WATERS, K. 1987. A muscle model for animating three-
dimensional facial expression. InProceedings of SIGGRAPH
87, 17 – 24.

WILLIAMS , L. 1990. Performance-driven facial animation. In
Proceedings of SIGGRAPH 90, 235 – 242.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: High-resolution capture for modeling
and animation. InProceedings of SIGGRAPH 2004, 548 – 558.

Figure 16: Leanne Adachi was captured in make-up and demonstrates a highly shaded, somewhat stylized look.

Performance-Driven Facial
Animation
Performance-Driven Facial
Animation

Li ZhangSteve SullivanMark Sagar

Jim RadfordFred PighinJ.P.Lewis
Parag HavaldarGeorge BorshukovChris Bregler

…and Thomas Kang!

Performance-Driven Facial
Animation
Performance-Driven Facial
Animation

• Use the human face itself as the “input device”

• Motivations:

– Much easier to produce a facial expression than to adjust
sliders

– Some people believe that keyframe animation cannot
consistently capture the subtleties of human motion

– More people believe that some animators can achieve
realistic motion, but that getting consistent results is time
consuming and expensive.

Early HistoryEarly History

• Lance Williams, Performance-Driven Facial
Animation, SIGGRAPH 1990

• SimGraphics “face waldo” demonstration at
SIGGRAPH 1992

Face Tracking ApproachesFace Tracking Approaches

• Photogrammetry, stereo

Face Tracking ApproachesFace Tracking Approaches

• Marker-based hardware motion capture systems

• Tom Tolles (House of Moves) presentation 9:00
(next)

• Parag Havaldar (Sony Pictures Imageworks)
presentation at 2:15 pm

Structured LightStructured Light

• Eyetronics - used in Discovery Channel’s Virtual
History (Jim Radford presentation at 4:00 pm)

• Li Zhang - Space-time stereo
 (presentation at 11:15)

Appearance ModelsAppearance Models

• Discussed in Chris Bregler’s presentation,
11:15 am

Model-Based Tracking

DeCarlo, Metaxas, 1999 Disney Facial Test, 2002

Automatic derivation of
models from video
Automatic derivation of
models from video

• Chris Bregler’s presentation, 11:15 am

PFDA in EntertainmentPFDA in Entertainment

PFDA in EntertainmentPFDA in Entertainment

• Movie industry tests: LifeFX, ILM’s Hugo,

Did not use PDFA…Did not use PDFA…

• Final Fantasy (2000): bodys were mocap,
faces were manually animated

• Lord of the Rings: Gollum was manually
animated, but based heavily on video
reference -- “roto PFDA”?

… see Mark Sagar’s presentation on PFDA
in King Kong at 3:00pm

The Matrix Reloaded (2003)The Matrix Reloaded (2003)

• Further development this “Ucap” approach at Electronic
Arts: see George Borshukov’s presentation at 4:45

The Polar Express (2004)The Polar Express (2004)

• First project where PFDA used exclusively
for main characters

• See Parag Havaldar’s presentation on PFDA
at Sony (Monster House, …) at 2:15 pm

ScheduleSchedule

Performance-driven facial animation:
background mathematics
Performance-driven facial animation:
background mathematics

J.P. Lewis and Fred Pighin

Background

Scattered Data Interpolation
Background

Scattered Data Interpolation

• Interpolate data at arbitrary (irregularly spaced) locations

• Standard application: warp generic face mesh to fit mocap
markers

Background

Radial Basis Functions
Background

Radial Basis Functions

• Data at arbitrary (irregularly spaced) locations can be
interpolated with a weighted sum of radial functions
situated at each data point.

• Any function other than constant can be
used!

• Common choices:

– Gaussian:

– Thin plate spline: (in 2D)

– Hardy Multiquadratic:

• Notice: the last two increase as a function of
radius

Background

Radial Basis Functions
Background

Radial Basis Functions

Warping Facial GeometryWarping Facial Geometry

For warping facial geometry:

d(x) is the x,y, or z displacement between a point and
where it should go, e.g. between a model point and the
corresponding mocap marker location

• Given data points dk(xk) to interpolate,
solving for the weights is just a matrix
inverse:

Background

Radial Basis Functions
Background

Radial Basis Functions

Background

Principal Component Analysis
Background

Principal Component Analysis

Principal Component Analyis (PCA):

• Gives a best cartesian coordinate system for your data

• Is a method for dimensionality reduction

• Automatically makes a linear (blendshape-like) model of
data

ExampleExample

XPYX +=

1X

2X

X

2Y
1Y

Mathematical FormulationMathematical Formulation

1. Data centering

2. Computing new basis

The eigenvectors of Cov are the vector of

the PCA basis

∑ ′′=

=

samples all

 re whe

][:matrix Covariance

jiij

ij

xxc

c Cov

XXX −=′

}{Y

Limitations of PCALimitations of PCA

• Linear model (linear meaning the subspace
consists of a line, or a plane, or …)

• Not ideal if data is not Gaussian distributed

Manifold LearningManifold Learning

• Generalize away from the linear (line, plane,
…subspace) restriction of PCA

• “Manifold”: a subspace with continuity and
smoothness properties. Essentially, a
surface in a higher dimensional space.

Manifold LearningManifold Learning

Dimensional Thinking:

• A “dimension” is anything that you can independently change

• 3D space: every point describe by 3 numbers, (x,y,z).

• Image space: 1000x1000 “megapixel” image has one million
pixels. A particular image is described by one million
numbers (ignore RGB, say a greyscale image)

 ➞ An image is a point in a million-dimensional space.

Manifold LearningManifold Learning

• (recall) An image is a point in a (e.g.) million-dimensional
space

• Animate an image slightly and the “point” moves.

• Image sequence of a moving head (for example):
corresponds to movement along a one-dimensional curve in
the million dimensional space.

• Manifold learning: discover this curve

• See Expression/Style mapping section of Cross-Mapping
session this morning

Manifold LearningManifold Learning

Red dashed: principal component analysis,

Blue solid: manifold learning

Manifold LearningManifold Learning

Multidimensional Scaling (MDS): a linear predecessor

• Algorithms:

– Local Linear Embedding (LLE),

– Isomap (non-linear version of MDS)

– Laplacian Eigenmaps: related to LLE, clarified and simpler

– Hessian Eigenmaps

– Kernel PCA

– Gaussian Process latent variable model …

• General approach: find a placement of points in a low-dimensional space
(the manifold) such that the distance between points is proportional to the
distance between the original points in the high dimensional space.

The two original algorithms

RetargetingRetargeting

Algorithms for Performance-Driven Animation

J.P. Lewis Fred Pighin

"Don't cross the streams.”
(Ghostbusters)
"Don't cross the streams.”
(Ghostbusters)

• Why cross-mapping?

– Different character

– Imperfect source model

• Also known as:

– Performance-driven animation

– Motion retargeting

Performance Cloning HistoryPerformance Cloning History

• L. Williams, Performance-driven Facial Animation,
SIGGRAPH 1990

• SimGraphics systems, 1992-present

• LifeFX “Young at Heart” in Siggraph 2000 theater

• J.-Y. Noh and U. Neumann, Expression Cloning,
SIGGRAPH 2001

• B. Choe and H. Ko, “Muscle Actuation Basis”, Computer
Animation 2001 (used in Korean TV series)

• Wang et. al., EUROGRAPHICS 2003

• Polar Express movie, 2004

Face space mappingFace space mapping

Source space Target space

s
kf

t
kf

Parameterizing the target
space: a rig
Parameterizing the target
space: a rig

• A facial rig defines a set of
parameters/controllers for the face

• Interpolation in parameter space generates
“valid” expressions

Face space mapping with rigFace space mapping with rig

Source space Target space

f s
f t u

Target parameter
space

u
fs

ft(u)

Building a map from
correspondences
Building a map from
correspondences

s
kf

t
kf

t
if

s
if

s
jf

t
jf

t
lf

s
lf

Building a map from
correspondences
Building a map from
correspondences

s
kf

t
kf

t
if

s
if

s
jf

t
jf

t
lf

s
lf

sf tf

()}..1{),,(| NifffMf t
i

s
i

st ∈=

Main issuesMain issues

• How are the corresponding faces created?

• How to build mapping from
correspondences?

Linear vs. non-linear
mapping
Linear vs. non-linear
mapping

• Linear
– Global blend-shape mapping

• B. Choe and H. Ko, Analysis and Synthesis of Facial Expressions with Hand-
Generated Muscle Actuation Basis, Computer Animation 2001.

• E. Chuang and C. Bregler, Performance Driven Facial Animation using Blendshape
Interpolation, CS-TR-2002-02, Department of Computer Science, Stanford University

• Non-linear
– Piece-wise blend-shape mapping

• I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. H. Salesin, J. Seims, R. Szeliski, and K.
Toyama, Performance-driven hand-drawn animation, NPAR 2000.

• J.-Y. Noh and U. Neumann, Expression Cloning, SIGGRAPH 2001.

– Manifold learning

• Y. Wang, X. Huang, C.-S. Lee, S. Zhang, D. Samaras, D. Metaxas, A. Elgammal, and P.
Huang, High Resolution Acquisition, Learning, and Transfer of Dynamic 3-D Facial
Expressions, Eurographics 2004.

– Single-correspondence mapping

• J.-Y. Noh and U. Neumann, Expression Cloning, SIGGRAPH 2001.

Linear MappingLinear Mapping

Blendshape mappingBlendshape mapping
s
ib

s
jb

t
ib

t
jb

s
i

n

i

s
ik

s
k bwf ∑

=

=
1

,
t
i

m

i

t
ik

t
k bwf ∑

=

=
1

,

(Global) Change of coordinate system

Blendshape mappingBlendshape mapping
s
ib

s
jb

t
ib

t
jb

s
i

n

i

s
ik

s
k bwf ∑

=

=
1

,
t
i

m

i

t
ik

t
k bwf ∑

=

=
1

,

(Global) Change of coordinate system

Blendshapes: definitionBlendshapes: definition

• per-vertex view:

Basis vectorBlendshape
target

bk

weightsSlider valueswk

Math usageIndustry term

Blendshapes: definitionBlendshapes: definition

• Linear algebra of blendshapes:

• per-vertex view:

• global view:

• f : 3n x 1 vector containing all n vertices of the face, in some
packing order e.g. xyzxyzxyz....

• B: 3n x m matrix; each column is one of the m blendshapes,
using the same packing order.

• w: vector of m weights, animated over time

Parallel blendshapesParallel blendshapes

s
kb

t
kb

t
ib

s
ib

s
jb

t
jb

t
lb

s
lb

s
ik

t
ik ww ,, =Use same blending weights:

Parallel Model ConstructionParallel Model Construction

• Have similar blendshape controls in source,
target models

• Advantage: conceptually simple

• Disadvantage: twice the work (or more!) --
unnecessary!

• Disadvantage: cannot use PCA

SolutionsSolutions

• Adapt generic model to source (Choe et. al.)

• Derive source basis from data (Chuang and
Bregler)

• Allow different source, target basis

Source model adaptationSource model adaptation

• B. Choe and H. Ko, Analysis and Synthesis of
Facial Expressions with Hand-Generated
Muscle Actuation Basis, Computer Animation
2001

• Cross-mapping obtained simply by constructing two
models with identical controls.

• Localized (delta) blendshape basis inspired by
human muscles

• Face performance obtained from motion captured
markers

Choe and Ko

Muscle actuation basis
Choe and Ko

Muscle actuation basis

• Model points corresponding to markers are
identified

• Blendshape weights determined by least-
squares fit of model points to markers

• Fit of model face to captured motion is
improved with an alternating least squares
procedure

Choe and Ko

Muscle actuation basis
Choe and Ko

Muscle actuation basis

• Fitting the model to the markers:

• alternate 1), 2)

– 1) solve for weights given markers and
corresponding target points

– 2) solve for target points location

• warp the model geometry to fit the final
model points using radial basis interpolation.

Choe and Ko

Muscle actuation basis
Choe and Ko

Muscle actuation basis

• Fitting the model to the markers:

• Alternate: solve for B, solve for W

• warp the model geometry to fit the final
model points using radial basis interpolation.

Choe & KoChoe & Ko

Derive source blendshapes
from data
Derive source blendshapes
from data

• Principal Component Analysis

• [Chuang and Bregler, 2002]

Recorded source motionsRecorded source motions

Source space Target space

Source basis estimationSource basis estimation

Source space Target space

s
ib

s
jb

s
kb

s
lb

Target basis constructionTarget basis construction

Source space Target space

s
ib

s
jb

s
kb

s
lb

t
ib

t
jb

t
kb

t
lb

Blendshapes by Principal
Component Analysis (PCA)
Blendshapes by Principal
Component Analysis (PCA)

• Automatic construction of blendshape model (given
movement data)

• Advantage: automatic; the most accurate model for
a given number of sliders (L2 sense), easy

• Disadvantage: the resulting model is not intuitive

Derive source basis from
data
Derive source basis from
data

• E. Chuang and C. Bregler,
Performance Driven Facial Animation
using Blendshape Interpolation,
CS-TR-2002-02, Department of Computer
Science, Stanford University

Chuang and Bregler,

Derive source basis from
data

Chuang and Bregler,

Derive source basis from
data

• Parallel Model Construction approach:

– Source model automatically derived,

– Target manually sculpted

• Using PCA would be unpleasant

Chuang and Bregler,

Derive source basis from
data

Chuang and Bregler,

Derive source basis from
data

• Using PCA would be unpleasant

• Solution: use a subset of the motion capture frames as
the blendshape model.

– Subsets of the original motion capture start to “span the space” of
that motion capture.

• Two new problems:

1) Which motion capture frames to use?

2) Source blendshape basis is not exact.

Chuang and Bregler,

Derive source blendshapes
from data

Chuang and Bregler,

Derive source blendshapes
from data

Which motion capture frames to use?

Heuristic: for each of the leading PCA vectors,

Pick the mocap frame that have the largest (min,max)
projections on that eigenvector.

Chuang and Bregler,

Derive source blendshapes
from data

Chuang and Bregler,

Derive source blendshapes
from data

Two new problems:

1) Which motion capture frames to use?

2) Source blendshape basis is only approximate

Observation:

• Directly reusing weights works poorly when the source model is
not exact

– Errors in representing the source can result in large cancelling basis
combinations (nearly cancelling positive, negative weights)

– Transferring these cancelling weights to target results in poor shapes

Chuang and Bregler,

Derive source blendshapes
from data

Chuang and Bregler,

Derive source blendshapes
from data

Errors in representing the source can result in large
cancelling basis combinations (nearly cancelling positive,
negative weights)

+

-

Chuang and Bregler,

Derive source blendshapes
from data

Chuang and Bregler,

Derive source blendshapes
from data

• Solution

– Solve for the representation of the source with non-negative least
squares. Prohibiting negative weights prevents the cancelling
combinations.

– Robust cross mapping.

Chuang and Bregler,

Derive source basis from
data

Chuang and Bregler,

Derive source basis from
data

Non-corresponding
blendshapes
Non-corresponding
blendshapes

s
kb

t
kb

t
ib

s
ib

s
jb

t
jb

t
lb

?

?

?

Is there a “best” blendshape
basis?
Is there a “best” blendshape
basis?

• There are an infinite number of different blendshape models
that have exactly the same range of movement. Proof:

• And it’s easy to interconvert between different blendshapes

 analogy: what is the best view of a 3D model? Why restrict
yourself to only one view??

Global blendshape mappingGlobal blendshape mapping

Motivating scenarios:

1) Use PCA for source!

2) Source or target model is pre-existing (e.g. from a
library)

Global blendshape mappingGlobal blendshape mapping

B,C n vertices, m blendshape targets

Manually create p ≥ m corresponding poses of each
model, with weights vk, wk

Global blendshape mappingGlobal blendshape mapping

• Gather pose weight vectors vk, wk in columns
of V,W

• Solve for the “cloning matrix” E:

this matrix converts weights for one model to
produce the equivalent expression in the
other model.

Global blendshape mappingGlobal blendshape mapping

• Intentional source-target mismatch: style transfer
(person on the right has asymmetric smile)

Non-linear MappingNon-linear Mapping

• Piecewise linear

• Manifold learning

• Single-correspondence

Piecewise linear mappingPiecewise linear mapping

s
ik

i
ik

s
k bwf ,

3

1
,∑

=

= t
ik

i
ik

t
k bwf ,

3

1
,∑

=

=
(Local) Change of coordinate system

sb1
sb2

sb3

tb1tb2
tb3

Piecewise linear mappingPiecewise linear mapping

• I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D.
H. Salesin, J. Seims, R. Szeliski, and K.
Toyama, Performance-driven hand-drawn
animation, NPAR 2000

Buck et. al.

Piecewise linear mapping
Buck et. al.

Piecewise linear mapping

• Project motion onto a 2D space (PCA)

• Construct Delaunay triangulation based on
source blendshapes

• Within a triangle use barycentric coordinates
as blending weights

Buck et. al.

Piecewise linear mapping
Buck et. al.

Piecewise linear mapping

• Split face into 3 regions

(eyes, mouth,

rest of the face)

• If frame outside of triangulated area, project onto
convex hull

Buck et. al.

Triangulation
Buck et. al.

Triangulation

VideoVideo

• hand_drawn.avi

Manifold learningManifold learning

Source space Target space

s
kf

t
kf

Manifold learningManifold learning

• Y. Wang, X. Huang, C.-S. Lee, S. Zhang, D.
Samaras, D. Metaxas, A. Elgammal, and P.
Huang, High Resolution Acquisition,
Learning, and Transfer of Dynamic 3-D
Facial Expressions, Eurographics 2004.

Source and target
embeddings
Source and target
embeddings

Unified embeddingUnified embedding

Final mappingFinal mapping

Final mappingFinal mapping

Wang et. al.

Manifold learning
Wang et. al.

Manifold learning

Manifold (curve) of smile motion obtained by
Local Linear Embedding (from Wang et. al.)

VideoVideo

• final-video2-edit.mov

Mapping from a single
correspondence
Mapping from a single
correspondence

sf0 tf0

()),(| 00
tsst fffMf =

Mapping from a single
correspondence
Mapping from a single
correspondence

• J.-Y. Noh and U. Neumann, Expression
Cloning, SIGGRAPH 2001.

Noh et. al.

Two issues
Noh et. al.

Two issues

• Find dense geometric correspondences
between the two face models

• Map motion using local geometric
deformations from source to target face

Noh et. al.

Estimating geometric
correspondences

Noh et. al.

Estimating geometric
correspondences

• Sparse correspondences through feature
detection

• Dense correspondences by interpolating
matching features (RBF)

Noh et. al.

Local geometric motion
transformation

Noh et. al.

Local geometric motion
transformation

Source Target

Noh et. al.

Animation as displacement from
the neutral/rest face

Noh et. al.

Animation as displacement from
the neutral/rest face

Source Target

Noh et. al.

Local geometric motion
transformation

Noh et. al.

Local geometric motion
transformation

Source Target

?

Noh et. al.

Local change of coordinates
system

Noh et. al.

Local change of coordinates
system

Source Target

Noh et. al.

Local change of coordinates
system

Noh et. al.

Local change of coordinates
system

Source Target

Noh et. al.

Local coordinates system
Noh et. al.

Local coordinates system

• Defined by

– Tangent plane and surface normal

– Scale factor: ratio of bounding boxes containing

all triangles sharing vertex

VideoVideo

• monkeyExp.mov

Summer and Popovic

Global geometric motion
transformation

Summer and Popovic

Global geometric motion
transformation

Source Target

Source rest
Target rest

Target deformed

Source deformed

A

Source rest

A

Summer and Popovic

Global geometric motion
transformation

Summer and Popovic

Global geometric motion
transformation

Source rest
Target rest

Target deformed

Source deformed

A

Source rest

A

V1

V2

V3
V'1

V'2

V'1

V'3

V4

V'4

(V1, V2, V3, V4) (V'1, V'2, V'3, V'4)
A

with V4 = V1 + (V2 – V1) x (v3 – v1)/ sqrt (||(V2 – V1) x (v3 – v1)||)

v4=v1+ v2 v1

Summer and Popovic

Global geometric motion
transformation

Summer and Popovic

Global geometric motion
transformation

• Constraint vertices to move consistently with
respect to each triangle it belongs to

• Solve system of linear equations

ReferencesReferences

• B. Choe and H. Ko, Analysis and Synthesis of Facial Expressions with
Hand-Generated Muscle Actuation Basis, Computer Animation 2001.

• I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. H. Salesin, J. Seims, R.
Szeliski, and K. Toyama, Performance-driven hand-drawn animation,
NPAR 2000.

• E. Chuang and C. Bregler, Performance Driven Facial Animation using
Blendshape Interpolation, CS-TR-2002-02, Department of Computer
Science, Stanford University

• J.-Y. Noh and U. Neumann, Expression Cloning, SIGGRAPH 2001.

• R. W. Summer and J. Popovic, Deformation Transfer for Triangle
Meshes,SIGGRAPH 2004

• Y. Wang, X. Huang, C.-S. Lee, S. Zhang, D. Samaras, D. Metaxas, A.
Elgammal, and P. Huang, High Resolution Acquisition, Learning, and
Transfer of Dynamic 3-D Facial Expressions, Eurographics 2004.

Future workFuture work

• Artists-driven retargeting

• Physically-based retargeting

SIGGRAPH Course 30:
Performance-Driven Facial Animation

For Latest Version of Bregler’s Slides and Notes please go to:

http://cs.nyu.edu/~bregler/sig-course-06-face/

SIGGRAPH Course 30:
Performance-Driven Facial Animation

Section:

Markerless Face Capture and Automatic
Model Construction

Part 1: Chris Bregler, NYU

Markerless Face Capture

Markerless Face Capture - Overview -

• Single / Multi Camera Input

• 2D / 3D Output

• Real-time / Off-line

• Interactive-Refinement / Face Dependent / Independent

• Make-up / Natural

• Flow / Contour / Texture / Local / Global Features

• Hand Crafted / Data Driven

• Linear / Nonlinear Models / Tracking

Markerless Face Capture – History –

Kass, M., Witkin, A., & Terzopoulos, D. (1987) Snakes: Active contour models.

• Single Camera Input

• 2D Output

• Off-line

• Interactive-Refinement

• Make-up

• Contour / Local Features

• Hand Crafted

• Linear Models / Tracking

Tracking = Error Minimization

Err(u,v) = Σ || I(x,y) – J(x+u, y+v) ||

Tracking = Error Minimization

In general: ambiguous using local features

Tracking = Error Minimization

Kass, M., Witkin, A., & Terzopoulos, D. (1987) Snakes: Active contour models.

Tracking = Error Minimization

Error = Feature Error + Model Error

Tracking = Error Minimization

Error = Optical Flow + Model Error

-

Optical Flow (Lucas-Kanade)

Intensity

x

v ?
i

I(x) - J(x + v)i i i

2

I (x) - I(x) v
it i

2∆

i
linearize

I J

 E(V)

V

-

= E(V)

V

Model

I (1) - I(1) v t 1

I (2) - I(2) v t 2

I (n) - I(n) vt n

...

2

∆

∆

∆

Optical Flow + Model

V

-

= E(V)

V

Model

I (1) - I(1) v t 1

I (2) - I(2) v t 2

I (n) - I(n) vt n

...

2

∆

∆

∆

V = M(θ)

Optical Flow + Model

V

-

V

Model

Optical Flow + linearized Model

V = M θ
2

Z + H V

2

Z + C θ

Optical Flow + Hand-Crafted Model

DeCarlo, Metaxas, 1999 Williams et a,l 2002

Optical Flow and PCA

Eigen Tracking
(Black and Jepson)

PCA over 2D texture and contours

Active Appearance Models (AAM): (Cootes et al)

PCA over 2D texture and contours

PCA over texture and 3D shape

3D Morphable Models
(Blanz+Vetter 99)

Affine Flow and PCA

3D Model Acquisition

- Multi-view input: Pighin et al 98

Solution for Rigid 3D Acquisition

Structure from Motion:

 - Tomasi-Kanade-92

Factorization

3D Pose
3D rigid Object

Acquisition without prior
model ?

• No Model available ?

• Model too generic/specific ?

• Stock-Footage only in 2D ?

Solution based on
Factorization

- We want 3 things:
- 3D non-rigid shape model
- for each frame:

- 3D Pose
- non-rigid configuration (deformation)

-> Tomasi-Kanade-92:

W = P S

Rank 3

Solution based on
Factorization

- We want 3 things:
- 3D non-rigid shape model
- for each frame:

- 3D Pose
- non-rigid configuration (deformation)

-> PCA-based representations:

W = P non-rigid S

Rank K

3D Shape Model

Linear Interpolation between 3D Key-Shapes:

S1
S2S

Basis Shape Factorization

Complete 2D Tracks or Flow Matrix-Rank <= 3*K

Nonrigid 3D Kinematics from point
tracks

-

-

Nonrigid 3D Kinematics from dense
flow

-

Nonrigid 3D Kinematics from dense
flow

-

Nonrigid 3D Kinematics from dense
flow

Motion Capture

Modeling

Synthesis

Nonrigid 3D Kinematics from dense flow Nonrigid 3D Kinematics from dense flow

Markerless Face Capture - Summary -

• Single / Multi Camera Input

• 2D / 3D Output

• Real-time / Off-line

• Interactive-Refinement / Face Dependent / Independent

• Make-up / Natural

• Flow / Contour / Texture / Local / Global Features

• Hand Crafted / Data Driven

• Linear / Nonlinear Models / Tracking

SIGGRAPH Course 30:
Performance-Driven Facial Animation

Section:

Markerless Face Capture and Automatic
Model Construction

Part 2: Li Zhang, Columbia University

Outline

1. Scanning face models

– Triangulation methods

– Non triangulation methods

2. Dense facial motion capture

– Marker based capture

– Template fitting for face scans

Principle 1: triangulation

I J

Stereo

Principle 1: triangulation

I J

Active stereo

Principle 1: triangulation

I J

Structured light

Laser scanner

Cyberware® face and head scanner

+ very accurate <0.01mm
− >10sec per scan

A. Gruss, S. Tada, and T. Kanade "A VLSI Smart Sensor for Fast Range Imaging,"
ICIRS 1992

Working Volume: 350-500mm - Accuracy: 0.1%
Spatial Resolution: 28x32 - Speed: 1000Hz

+ Fast – up to 1000Hz
− Customized device

Fast laser scanner (temporal)

Fast laser scanner (spatial)

Oike, Y. Ikeda, M. Asada, K., “Design and implementation of real-time 3-D image
sensor with 640x480 pixel resolution”, IEEE Journal of Solid-State Circuits, 2004.

Working Volume: 1200mm - Accuracy: 0.07%
Spatial Resolution: 640x480 - Speed: 65Hz

Possible issue: Stripes within a range map are not simultaneously measured.

P. Huang, C. Zhang, F. Chiang, “High-speed 3-D shape measurement based on
digital fringe projection”, Journal of Optical Engineering, 2003

Working Volume: 10-2000mm - Accuracy: 0.025%
Spatial Resolution: 532x500 - Speed: 120Hz

Digital fringe range sensor

+ Real time performance
− Phase ambiguity near discontinuities
− Customized device
− Capture from one viewpoint at a time

Active multi-baseline stereo

S. Kang, J.A. Webb, C. Zitnick, and T. Kanade, “A Multibaseline Stereo System with
Active Illumination and Real-time Image Acquisition,” ICCV 1995.

Working Volume: 2000mm - Accuracy: 0.1%
Spatial Resolution: 100x100? - Speed: 30Hz

+ Only require one image per camera
+ Simultaneous multi-view capture
− Less accurate than laser scanners or fringe scanners

3D surface

I J

x1 x2

Disparity: d = x1 – x2

Spacetime stereo

3D surface

time

I J

Spacetime stereo

time

3D surface

I J

Spacetime stereo

time

surface motion

I J

time

surface motion

I J

•Matching volumetric window
•Local linear disparity change

→affine window warp

Key ideas:

Zhang et al. CVPR 2003

Spacetime stereo

Input stereo video:

656x494x60fps videos captured by firewire cameras

Face Example: Result Comparison

Frame-by-frame stereo

 WxH=15x15 window

Spacetime stereo

WxHxT=9x5x5 window

Face Example: Mouth motion

Zhang, L., Curless, B., Seitz, S., “Spacetime stereo”, CVPR 2003,
Working Volume: 300mm - Accuracy: 0.1%
Spatial Resolution: 640x480- Speed: 60Hz

+ More accurate and stable than frame
by frame stereo
+ Simultaneous multi-view capture
− Offline computation (3min per frame)

Principle 2: Time-of-flight

+ No baseline, no parallax shadows
+ Mechanical alignment is not as critical
− Low depth accuracy
− Single viewpoint capture

Miyagawa, R., Kanade, T., “CCD-Based Range Finding Sensor”, IEEE Transactions
on Electron Devices, 1997

Working Volume: 1500mm - Accuracy: 7%
Spatial Resolution: 1x32- Speed: ??

Principle 3: Defocus

Principle 3: Defocus

Nayar, S.K., Watanabe, M., Noguchi, M., “Real-Time Focus Range Sensor”,
ICCV 1995

Working Volume: 300mm - Accuracy: 0.2%
Spatial Resolution: 512x480 - Speed: 30Hz

+ Hi resolution and accuracy, real-time
− Customized hardware
− Single view capture?

Commercial products

30Hz1-2cm720x486Time of flight3DV

30Hz1cm64x64Time of flightCanesta

<0.1sec?HighActive stereo3Q

<0.1sec<2mmHighStructrued lightEyetronics

>10sec per

scan

0.01mmVery highLaserXYZRGB

>10sec per

scan

0.01mm>500x500LaserCyberware

SpeedDepth

accuracy

XY

resolution

Working principleCompany

Comercial products

Canesta

64x64@30hz
Accuracy 1-2cm

Not accurate enough for face modeling,
but good enough for layer extraction.

Outline

1. Scanning face models

– Triangulation methods (created most accurate face models)

– Non triangulation methods

2. Dense facial motion capture

– Marker based capture

– Template fitting for face scans

Marker based approach

182 colored dots on a face 6 cameras videotaping performance

Dot removal for texturemapdeforming face model3D dot motion

Guenter et al SIGGRAPH 1998

Making faces

Guenter et al SIGGRAPH 1998

+ Realistic appearance
− Limited geometry details
− The overhead of painting faces

∙∙∙

High Resolution Acquisition of
Dynamic 3-D expression

template

Problem: estimating 3D motion between shape measurement

Approach: template fitting

∙∙∙ ∙∙∙

Wang et al Eurographics 2004

High Resolution Acquisition of
Dynamic 3-D expression

Subject 1

Subject 4

Subject 3

Subject 2

Initialization

template

Fitting Tracking over time

∙∙∙ ∙∙∙

∙∙∙

∙∙∙∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

High Resolution Acquisition of
Dynamic 3-D expression

+ High resolution motion
− less robust for larger inter-frame deformation

Wang et al Eurographics 2004

video projectors

color cameras

black & white cameras
Spacetime faces

Face capture rig
Zhang et al SIGGRAPH 2004

Capture process

Input videos (640x480, 60fps)

time

time

stereo

time

stereo spacetime

Global spacetime stereo

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

A sequence of
meshes:

Template mesh

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Warped template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Warped template Fitted template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Warped template Fitted template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Warped template Fitted template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Fitted template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Fitted template

A sequence of
color image pairs:

A sequence of
depth map pairs:

time

Fitted template

+ High resolution motion (~20K vertices)
− not robust for very fast motion

Spacetime faces

⇒ Better skin models for
template fitting⇒ Fast cameras

Zhang et al, SIGGRAPH 2004

George Borshukov Jefferson MontgomeryGeorge Borshukov Jefferson Montgomery

Playable Universal CapturePlayable Universal Capture

 Witek WernerWitek Werner

James Lau Patrick Mooney Barry Ruff Dave RaposoJames Lau Patrick Mooney Barry Ruff Dave Raposo
Electronic Arts, Inc.Electronic Arts, Inc.

IntroductionIntroduction

• UCap: High fidelity digital
face cloning through
accurate capture and
reconstruction of both
facial motion and texture

• What it gives you today
– Emotionally Believable

Characters??
– Climb up higher on the
 right side of
 the Uncanny Valley?

Universal Capture (UCap)Universal Capture (UCap)

CollaborationsCollaborations

• Fight Night – Nov’04
• Tiger Woods – Jan/Dec’05
• EAJ Fighting Test – June’05
• NBA Live – Dwyane Wade

July’05
• MOH:A – Tokyo Game Show

– Aug’05
• C&C – Cane, principal

character – Aug’05
• EA Mocap - ongoing tech

transfer almost complete

Tiger Woods – Jan/Dec 2005Tiger Woods – Jan/Dec 2005

• Session in Orlando

• Session in LA with 4
other pro golfers

Dwyane Wade – July 2005Dwyane Wade – July 2005

• Session in Burnaby

Evolution: UCap -> Playable UCapEvolution: UCap -> Playable UCap

• Universal Capture – linear
• Playable Universal Capture – non-linear

– Capture an Emotion Tree (move tree/motion graph)

– Apply "move tree" idea used almost universally for body

animation in games to the face

– Robust processing pipeline and tech transfer to EA Mocap

– Variable basis PCA encoding of geometry & texture for memory

efficient real-time playback

• No facial rig for the runtime: use compressed PCA vertex streams

for all facial deformations, which are decompressed at runtime on

the SPU (PS3) or GPU (Xbox 360)

– Identify create smooth transitions, loops

– Interactive sequencing

• Session in June

• Results presented in
November

EAJ Playable UCap PrototypeEAJ Playable UCap Prototype

Real-time Demo TeamReal-time Demo Team

• George Borshukov

• Witek Werner

• Jefferson Montgomery

• James Lau

• Barry Ruff

• Dave Raposo

• Patrick Mooney

Real-time Demo TeamReal-time Demo Team

• George Borshukov

• Witek Werner

• Jefferson Montgomery

• James Lau

• Barry Ruff

• Dave Raposo

• Patrick Mooney

Can DoCan Do

• Free camera

• Lighting - always best to mix at least 30% of the
original which contains
– subsurface scattering

– ambient occlusion

– microsopic wrinkling and self shadowing effects

• Stylize
– Shoot actor in make up

– Through the shaders

Can DoCan Do

• Apply deformations to mesh after data has been
processed (example superpunch)

• Layer damage/sweat effects throught textures
shader parameter adjustment

• Display results from a very complex facial rig
• Remove overall head movement and apply new

overall head movement which can come from
body mocap, hand animation, procedural
techniques

• Interactively switch from clip to clip at pretty
much any point triggering appropriate moves

Cannot DoCannot Do

• Shoot one person and apply results to another

• Create a new performance or "meaningfully" edit
that was not captured

• Change eye gaze direction
– first problem we want to tackle in the next stage

Main BenefitsMain Benefits

• Accurate facial shape representation

• Accurate lip shape and tongue placement

• Animated color texture maps

Head Geo at runtime:
● facial lifecast XYZ scanned at 250 microns (.25 mm)
● 3500 Quads - > 10,000 Quads after 1 level of subdivision
● 20,000 triangles

Facial Rig (used only during processing):
● translation bone-based (slightly modified Mocap facial rig)
● approx 70 bones, 1 per mocap marker
● 8 lip/mouth bones for hand-tracking the lips
● weighting is key

Textures:
● static texture for ears and back of head
● animating textures for face and neck – 1 texture per frame

Maps:
● normal map (static)
● specular map (static)
● eye/lip material mask to isolate for tweaking

Playable UCap AssetsPlayable UCap Assets

• Take advantage of image-based lighting
techniques

-diffuse env map lookup with normal vector

-preblurred spec environment map look up with
reflection vector

• Do not separate eyes. Use masks to relight

• Apply gamma correction at the end off
calculations (correct your color texture on read)

ShadersShaders

Advanced Shading ExamplesAdvanced Shading Examples

UCap PipelineUCap Pipeline

Data Processing

UCap Session
Capture talent

Take Selection

UCap
Image
Export

Mocap Data
Track

with rigid
transform
estimation

Alignment
Export control

point locations at
synch frame

Camera
Reconstruction

3 images at synch frame

Alignment:
Align mocap 3d marker

data to camera image data

Head Scan
Surfacing /

Detail Normal
Map Creation

Facial Bone Rig
Create/update initial

weighting

Mesh Alignment
Drive bones with

mocap data . Refine
bone rig weights

Lip Interior
Contour
Tracking

Camera Reprojection / Geometry Export

Automated
Marker

Removal

Streams 5

iQ/Diva/MotionBuilder

Maya

PhotoModeler

Digital Fusion

VPCA
Compression

Real-time
Application

Cyslice

UCap Session Prep
Choose talent , create

move tree shotlist

Data Acquisition

Frame
Sequences

Maya
File

Animated Texture
Blending, Color

Correction ,
Cleanup

Maya File Mesh
+ Normal Maps

Geometry
Vertex

Sequence

Animated
Texture

Sequence

Output

 UV Space
Sequences

for 3
Cameras

Alignment
Establish synch
frame between
mocap data and

UCap image data

Head Scan
Talent

Designing the Move Tree Shot ListDesigning the Move Tree Shot List

Goal
● interactive ucap demo
● with full dynamic range of motions
● achieving believability and
responsiveness

Tools
● DVD reference
● contrast (typical fighting facial
expressions vs. openings & inserts)
● layered approach /intensities/
● classification

ATTACK
REACT
DEFENSE
INSERT
OPENING
BREATHING IDLES

A C T I O N S

NAME / INTENSITY LEVEL SH# FR# FR# DURATIONPRIORITY NOTES COMPLETION COMPLETION

ATTACK_ANGRY_intenL1 0037_1 152 193 41 M G G

ATTACK_ANGRY_intenL2 0037_1 750 798 48 H G G

ATTACK_ANGRY_intenL3 0037_1 257 300 43 M G G

ATTACK_ANGRY_intenL4 0037_1 661 709 48 M G G

ATTACK_COCKY_intenL1 0038_1 203 257 54 M W W/G

ATTACK_COCKY_intenL2 0038_1 82 149 67 H W W/G

ATTACK_AGGRESIVE_intenL1 0039_1 78 110 32 L W W/G

ATTACK_AGGRESIVE_intenL2 0039_1 167 199 32 M W W/G

ATTACK_AGGRESIVE_intenL3 0039_1 527 560 33 M W W/G

ATTACK_AGGRESIVE_intenL4 0039_1 618 653 35 H W W/G

ATTACK_TIRED_intenL1 0041_1 722 744 22 L W W/G

ATTACK_TIRED_intenL2 0041_1 92 135 43 M W W/G
ATTACK_TIRED_intenL3 0041_1 197 236 39 M W W/G

ATTACK_TIRED_intenL4 0041_1 640 690 50 H W W/G
ATTACK_TIRED_intenL5 0041_1 816 868 52 M W W/G

ATTACK_STRENUOUS_intenL1 0042_1 66 131 65 H P W/G
ATTACK_STRENUOUS_intenL2 0042_1 171 244 73 M P W/G

ATTACK_STRENUOUS_intenL3 0042_1 522 580 58 L P W/G
ATTACK_STRENUOUS_intenL4 0042_1 616 718 102 M P W/G

ATTACK_KILLER_intenL1 0043_1 446 485 39 L G G

ATTACK_KILLER_intenL2 0043_1 188 234 46 H G G
ATTACK_KILLER_intenL3 0043_1 90 124 34 M G G
ATTACK_KILLER_intenL4 0043_1 344 430 86 L G G

REACT_FACE_R 0044_2 580 627 47 H D G

REACT_FACE_L 0044_2 657 704 47 H D G
REACT_TOES 0044_2 740 776 36 H D G
REACT_STOMACH_intenL1 0044_2 809 848 39 L D W/G

REACT_STOMACH_intenL2 0044_2 961 1025 64 M D G
REACT_STOMACH_intenL3 0044_2 897 942 45 H D G

REACT_AVOIDANCE_L 0048_3 37 64 27 H P G
REACT_AVOIDANCE_R 0048_3 98 127 29 H P G

REACT_AVOIDANCE_UP 0048_3 151 180 29 H P G

REACT_MORTAL 0049_1 91 216 125 H G G

DEFENSE_COCKY 0050_3 260 302 42 H G G

DEFENSE_DESPERATE_intenL1 0051_1 541 586 45 H D G

DEFENSE_DESPERATE_intenL2 0051_1 626 673 47 L D G

DEFENSE_HORRIFIED_intenL1 0052_2 64 97 33 L P W/G

DEFENSE_HORRIFIED_intenL2 0052_2 137 172 35 M P W/G
DEFENSE_HORRIFIED_intenL3 0052_2 217 251 34 H P W/G

INSERT_FRUSTRATION 0057_1 217 269 52 H P W/G

INSERT_PANIC 0058_2 100 174 74 H W W/G

INSERT_INTIMIDATION 0059_1 542 666 124 H W W/G

OPENING_PEACEFUL_SPIRITUAL 0060_1 295 484 189 H P W/G

OPENING_PHYSICAL_STRENGH 0061_2 355 448 93 H P W/G

OPENING_DISRESPECTFUL_AROGANT 0063_1 497 601 104 H W W/G

EYE_BLINK 0060_1 272 294 22 H P W/G
`

I D L E L O O P S
`

NAME / INTENSITY LEVEL SH# FR# FR# DURATIONPRIORITY NOTES COMPLITION

Captured Facial Move TreeCaptured Facial Move Tree

Reference creation
● video analysis (roamer camera)
● comparison against wanted moves
● animation reference table creation (group moves)
● sub range identification (Adobe Premiere editing)
● final take list (clip ranges)
● request to process takes (motion, textures)

Post processingPost processing

Leanne Processing StatsLeanne Processing Stats

● Length of capture session - 3 hours
● Total data captured - 197 GB
● Total # of moves captured - 33
● # of moves selected for use – 21
(ultimately split into 55 separate clips and grouped for state flow)
● Total minutes of footage captured - ~17 min
● Minutes of footage selected for use - ~ 2 min
● Average # of frames/move - 65 frames
● Median # of frames/move - 47 frames
● Shortest move - 27 frames, Longest move - 220 frames
● # of trackers – 3, approximate processing time - 1.5 months

Video (includes speech processing)Video (includes speech processing)

• UCAP_siggraph2006_852x480_H264_stereo_EA_Watermarked.mov

NFS In-Game PrototypeNFS In-Game Prototype

• Edward Douglas

• Collin O’Conner

Engineering OverviewEngineering Overview

• Jefferson Montgomery

Special ThanksSpecial Thanks

• John Hable, Hakan Kihlstrom, Jean-Luc
Dupra, Paul Thuriot, Kevin Noone, James
Grieve, Paul Lalonde

• Stefan Van Niekerk, Ben Guthrie, Doug
Griffin and the rest of the EA Mocap crew

• Neil Eskuri, Sean Smillie, Collin O’Conner,
Edward Douglas and the rest of the
innovative NFS team

• Jeff O’Connell, Brian Wideen, Glenn Entis

Interactive UCap
Sequencing with Leanne

Adachi

Jefferson Montgomery
EA Worldwide Visualization Group

jmontgomery@ea.com

What is UCap?

• Video- and Motion-captured performances

• Facial Animation

• Streaming Textures

• Normal Maps

• All high definition and highly accurate data
that captures subtlety of performance

Runtime Challenges

• Enormous amount of source data

(GBytes per performance)

• Storage?

• GPU delivery?

Data
Compression!

Data Compression

• VP6, MPG, etc.
– Difficult random access

– Artifacts can be abrasive and difficult to
control

– Complicated decode algorithms

Principle Component Analysis

Advantages

• Forgiving defects (blurring)

• Potential for very high compression

• Automatic pipeline

• Simple reconstruction; well suited to vector
processors

Forgiving Defects

Captured PCA

High Compression Ratio

3,652 frames of performance (Leanne demo)

6,159 Mbytes of animated texture & geometry
=

7,147 Kbytes PCA-compressed

Simple Reconstruction

float PcaDecompress(
float4 weights[4],
float4 components[4])

{
 return dot(weights[0], components[0]) +
 dot(weights[1], components[1]) +
 dot(weights[2], components[2]) +
 dot(weights[3], components[3]);
}

Per colour or vertex attribute

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

How it works…

• Toy example:

Toy example

• 36, 256x256 images ~ 9 Mbytes

Alternate representation

Θ = { 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100,
110, 120, 130, 140,
150, 160, 170, 180,
190, 200, 210, 220,
230, 240, 250, 260,
270, 280, 290, 300,
310, 320, 330, 340,
350 }

&

Alternate representation

1, 256x256 image + 36 angles

64 Kbytes

144:1 compression

=

=

This is PCA?

Θ = { 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100,
110, 120, 130, 140,
150, 160, 170, 180,
190, 200, 210, 220,
230, 240, 250, 260,
270, 280, 290, 300,
310, 320, 330, 340,
350 }

&

Component(s) Weights

Real data: not so nice

…

Data Components

…

Alternate representation

Θ = { 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100,
110, 120, 130, 140,
150, 160, 170, 180,
190, 200, 210, 220,
230, 240, 250, 260,
270, 280, 290, 300,
310, 320, 330, 340,
350 }

&

Component(s) Weights

Alternate representation

&

Θ = { w0, w1, w2, w3, … }

C components

C-dimensional weight
vectors

(For UCap, C ~ 16)

Component(s) Weights

GPU Implementation

• Components are static
– Live in GPU as textures, vertex attributes

• Weight vectors are small
– Uploaded per frame

• Dot product is cheap

Variable Representation

• Modify the number of components used to
represent different parts of the image.

• E.g., more
representation for eyes,
mouth, forehead

• Both automatic and
artist-controlled
optimization through
weighting maps

Leanne Example
Component distribution

Decompressed
result

PCA
(equivalent size)Source

Explosion Example

1) Original Data
2) Compressed to 1/3 size using PCA
3) Compressed to 1/12 using PCA
4) Compressed to 1/12 using VPCA

Component Usage

Compression Conclusion

• PCA/VPCA compression technique
– High compression ratio (UCap performance in

~8Mbytes)

– Low bandwidth requirements (16 float upload
per frame)

– Low decompression complexity (1 dot product
of a 16D vector)

UCap Sequencing

• Segment captured sequences and form
triggerable state machine

• ANT authoring

• Geometry and texture blending over
transitions
– Pre-decompression blending (component

weights)

Facial Motion Graph
Full performance

Facial Motion Graph
Full performance

Select desired facial expressions

Facial Motion Graph
Full performance

Expressions become states in state machine

Avoid_right AttackAvoid_leftIdle

Facial Motion Graph
State machine triggered (AI/game pad/etc.)
to sequence facial expressions

Geometry & Texture blended across transitions

Avoid_right AttackAvoid_leftIdle

~ Computer Graphics, Volume 24, Number 4, August 1990

Performance-Driven Facial Animation

Lance Williams

A d v a n c e d T e c h n o l o g y G r o u p
A p p l e C o m p u t e r , Inc.

20705 Val ley G r e e n Dr ive
Cupe r t i no , C A 95014

ABSTRACT BACKGROUND

As computer graphics technique rises to the challenge of
rendering lifelike performers, more lifelike performance is
required. The techniques used to animate robots, arthropods,
and suits of armor, have been extended to flexible surfaces of
fur and flesh. Physical models of muscle and skin have been
devised. But more complex databases and sophisticated
physical modeling do not directly address the performance
problem. The gestures and expressions of a human actor are
not the solution to a dynamic system. This paper describes a
means of acquiring the expressions of real faces, and applying
them to computer-generated faces. Such an "electronic mask"
offers a means for the traditional talents of actors to be
flexibly incorporated in digital animations. Efforts in a similar
spirit have resulted in servo-controlled "animatrons," high-
technology puppets, and CG puppetry [1]. The manner in
which the skills of actors and puppetteers as well as animators
are accommodated in such systems may point the way for a
more general incorporation of human nuance into our
emerging computer media.

The ensuing description is divided into two major subjects:
the construction of a highly-resolved human head model with
photographic texture mapping, and the concept demonstration
of a system to animate this model by tracking and applying the
expressions of a human performer.

Cr Categories and Subject Descriptors: 1.3.7 [Computer
Graphics]: Three Dimensional Graphics and Realism--
Animation. 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling -- Curve, surface, solid, and ob-
ject representations..1.5 [Computer Applications]: Arts and
Humanities--Arts, fine and performing.

General Terms: Algorithms, Design.

Additional Keywords and Phrases: Animation, Facial Ex-
pression, Texture Mapping, Motion Tracking, 3D Digitiza-
tion.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The seminal work of Parke [2] involved the photogrammetric
digitization of human faces and expressions, and the creation
of a parametric model that used local interpolations, geometric
transformations, and mapping techniques to drive the features
of a computer-animated face. Demonstrations of the face in
action included lip-synchronized speech.

Platt and Badler [3],[4] applied physical modeling techniques
to the parametric face problem. Once again, the goal was to
drive the face at a higher level of control. Simulation of
muscles in this paper established the use of deformation
functions, rather than interpolation, to animate a face.

Brennan [5], working with hand-digitized 2D vector faces,
implemented a kind of automatic caricature by exaggerating
the differences of individual subjects from a prestored "norm."

Burson and Schneider [6] established a mapping
correspondence between facial features in different
photographs, a mapping defined by hand-digitizing key points
of correspondence. Changes in shape and texture between one
pair of photographs could then be used to map changes in
shape and texture to a third. This process has been used to
artificially "age" the photographs of missing children (that is,
to estimate an image of the same child some years hence).
Similar mappings have been used by Burson and Kramlich
(Face Software, Inc., NY., NY.) to interpolate faces and create
composites.

Concurrently, experiments at New York Institute of
Technology involved mapping 2D animated features onto 3D
characters (James Blinn and the author, 1976), and mapping of
live-action video faces onto 3D "masks" (3D face surface
models in which the eye and mouth regions have been
smoothed over, so as not to interfere with the moving lips and
blinking eyes of the mapped video). Live-action mapping was
first essayed by Duane Palyka and the author in 1977, and was
applied by Paul Heckbert in the NYIT videos, "Adventures in
Success," and "3DV" (1984). At the same time, NYIT
researcher Tom Brigham was doing extensive work with
screen-space (2D) interpolation of texture and form.
Brigham's "shape interpolation" was applied to faces, among
other subjects, and must be considered an influence on this
work. One conclusion of these experiments was that much of
the detail and realism of the faces depicted was simple surface
texture. A face model like Parke's would be much more
powerful and convincing with photographic mapping, and
perhaps more individual and personable, as well. The
photographic mapping of 17] illustrates the power of texture
alone, without surface shading of any kind.

© 1 9 9 0 ACM-0-89791-344-2/90/008f0235 $00.75 235

O SIGGRAPH '90, Dallas, August 6-10, 1990

An extended, expressive facial animation was essayed by
Phillipe Bergeron, Pierre LaChapelle, and Daniel Langlois in
1985, in their short, "Tony de Peltrie"lSl. Photogrammetrics
as in [2] were used to digitize both human expressions and the
neutral features of a stylized model. Then, scaled differences
of the various human expressions from the "neutral" human
expression, were applied to the neutral stylized model. This
basic cross-mapping scheme, as in [5], requires a norm to
apply the mapping. Since the mapped differences are scaled,
"caricature" (this time in 3D) is straightforward.

The most recent wrinkle in facial animation is Keith Waters'
application of tailored local deformation functions analogous
to musculature in animating a neutral face definition [9]. This
technique was adopted by the Pixar animation team to control
the patch-defined baby face of "Tin Toy" [10].

The formulations described in this paper are an attempt to
extend the mapping of texture and expression to continuous
motion mapping. Using current technologies, both human
features and human performance can, in the opinion of the
author, be acquired, edited, and abstracted with sufficient
detail and precision to serve dramatic purposes.

Figure 1. Processed model with mosaic texture map

CONSTRUCTING THE MODEL

Dancer Annette White, a personal friend of the author, was
a featured performer in Patrice Regnier's RUSH dance
company which performed at SIGGRAPH in 1985. Her head
was cast in plaster by Long Island sculptor Val Kupris, and the
surface of the plaster head digitized at Cyberware, Inc. [11]].
A number of conventional color 35mm photos of Annette
were taken at this time by Nancy Burson of Face Software,
Inc., with the intent of creating a complete composite
photograph (in cylindrical projection) of Annette's head to
match the scanned relief data of the plaster cast. Face
Software shared an interest in developing electronic mask
technology, and cooperated in the initial test of the model.
They were able to apply their mapping techniques to warp
sections of the multiple photos to the range data acquired from
scanning the plaster head. To facilitate this process, the 16-bit
range data was compressed to eight bits, and a Sobel filter
applied. This "edge enhancement" filtering brought out the
important features (edges of the lips, comers of the eyes) from

the otherwise ghostly range image. The mapping, based on a
triangular mesh, is shown applied to the model in figure 1.
Below the two projections of the model in the photo are the
composite texture map, produced by Face Software, and an
eight-bit compression of the range image after Sobel filtering,
to the right. (The black regions in the filtered range image are
the result of a color map artifact; they should be white.) A
kerchief is worn about the head in this texture map. A shading
discontinuity between photographic sections is visible in the
composite map on the left.

Cyberware had been sent a plaster cast of Annette's head, and
sent back a tape with the digitized surface data, scanned four
times. Data were in the form of 16-bit integers defining a
mesh surface in a cylindrical coordinate system, each entry a
radius indexed by phi (azimuth) and Y. The mesh consisted of
512 columns of samples in phi, by 256 rows in Y. The mesh
was in fine shape to serve as a map with which to register the
photographic texture, but in the meantime, required some
additional work to serve as a satisfactory 3D model.

The usual fashion in which Cyberware displayed digitized
data, at the time this work was undertaken, was as a faceted
model. Missing data -- data obscured from the sensor by
occlusion of the projected laser line -- was mapped to the
center of the Y axis, and was in most cases invisible. If the
data were Gouraud shaded in a straightforward fashion, the
missing samples would severely impact the visible ones, by
clobbering the computed surface normals. In order to make
smooth shading and texure mapping possible, it was necessary
to refine the model: to "heal shut" the missing data, by
interpolating the surface across neighboring samples. It was
moreover desirable to apply a certain amount of data
smoothing to suppress spurious texture, and to use larger local
neighborhoods of samples to estimate surface normals. Such
processing of the digitized surface, very similar to image
processing, proved essential for subsequent mapping and
shading. An outline of the surface processing steps follows.

Healing Shut the Missing Data

Missing data is marked, in the Cyberware format, by a
reserved "Z" value. The first step in surface processing is to
restore surface continuity, a prerequisite for many subsequent
operations. The scanner data is copied into a floating point
array with missing values set to 0.0, and a second floating
point array, a matte, is set to 1.0 where valid data exists, and
0.0 elsewhere. In the vicinity of 0.0 matte values, a small
blurring kernel is applied to both the matte and the surface.
Where the matte value increases (due to the blur) above a
threshold, the surface sample is replaced by the blurred
surface divided by the blurred matte. Filtering is reeursively
applied until no matte values are below threshold. Thus, the
missing data are replaced by smooth neighborhood estimates,
that gradually grow together. An implementation of this basic
general scheme was coded so that the smooth replacement
regions could "grow outward" slightly, smoothing the
correctly-acquired data at the boundaries. All iterations of the
"healing" process were visible, and the matte threshold,
outward creep, and blur kernel could be varied for different
results. Practically speaking, the process worked well for the
small regions of missing data on the digitized face. It could
not be expected to perform well for missing regions much
larger than the blur kernels used. For this reason, a more
detailed discussion of the filtering algorithm would not be
justified. For future work, the methods of [12] are preferred.

Hysteresis Filtering

In many types of data acquisition, noise at the scale of the
sampling interval is particularly bothersome. Special

236

~ Computer Graphics, Volume 24, Number 4, August 1990

Figure 2. Processed peripheral photograph. Figure 3. Sobel-filtered range image warped into a rage.

techniques for removing "salt and pepper" noise from imagery
have been adopted for many purposes. A typical model will
dampen high-amplitude sample-frequency noise in a nonlinear
way. For the filtering used in the head model, a smooth
estimate of the surface at a point was computed by a 3x3 blur
kernel with unity gain and 0.0 as the center sample coefficient.
If the estimate differed from the center sample by greater than
a threshold amount, the center sample was replaced by the
estimate. Such a filter is occasionally called a Tukey filter, or
a "hysteresis" filter (because it modifies the data only when
the threshold is exceeded).

Subjectively, this filtering process smoothed out a number of
glitches and spurious details in the surface of the face. It
performed equally well on small bubbles in the plaster cast
and on data that, for whatever reason, seemed somewhat
rougher than the plaster.

Low-Pass Filtering

B.y. filtering and downsampling data, it is possible to trade pre-
ctmon for resolution directly. This tradeoff occurs in a
continuous way as data are low-pass filtered. The reduced
bandwidth of the surface is accompanied by an increase in
precision for each of the samples. Where the data to be
estimated are more bandlimited than sources of noise in the
system (where the signal is pink, and the noise is white), low-
pass filtering will increase the signal-to-noise ratio.

A weak low-pass filter was applied to the cylindrical R (range)
coordinates of the data, before conversion of the surface from
R(c~,Y) to X(u,v), Y(u,v), and Z(u,v). The skin seemed
smoother after filtering, and faint striations visible in the
surface normals (assumed to be scanner artifacts) diminished.

Filtering the Normsls

In fact, surface normals are extremely sensitive indicators of
perturbations in the digitized surface, including all noise and
artifacts. The usual methods of computing surface normals
from polygon meshes are too local for imperfect data so
closely spaced. It is reasonable to smooth such local normal
estimates, or to use normals of a surface somewhat smoother
than the one actually displayed. In this way, satisfactory
shading can be achieved without smoothing features from the
surface.

When filtering is applied to the range data in the cylindrical
mesh, artifacts occur at the poles, where sample aliasing is
greatest (because the laser line may project very steeply).
Because the spacing of the samples is far from uniform in 3D
space, such filtering is very anisotropic. On the other hand,
filtering the components of the derived normals is much more
expensive, and requires special care. Some normals may
vanish (magnitudes go to zero) after filtering; all normals
require re-unitization.

Some polar artifacts were tolerated in the range-filtering stage,
with the intent of completing the top of the head with a "scalp
mesh." This makes sense because the texture, as well as the
model, would otherwise be very poorly resolved on top of the
head. Despite the difficulties imposed by the "singularity,"
the polar map is a very convenient representation for
interacting with the head model. It provided the basis for
interactive texture mapping, and interactive setup of
expressions.

Registering Cylindrical Texture

Most of the model processing steps described could be
performed automatically. The most tedious process described
so far was that performed by Face Software: taking the
photographs necessary to completely record the subject's head,
and then painstakingly registering the mosaic of photos to the
model range data. Ideally, this step, too, would be automatic.
A scanner which simultaneously captured R, G, B, and range,
would simplify "mask" acquisition greatly. Such a scanner
has only recently become commercially available[11].

In order to generalize the texturing process, as well as to
exercise the "virtual muscles" expected to drive the face, an
alternate method was devised. The first step was to capture
the head texture completely in a single photo. Traditional
photographic methods exist, based on slit-scan cameras. A
camera which exposes its film by moving it continuously past
a vertical slit, while the camera and lens rotate horizontally, is
termed a "panoramic" camera. If the camera is stationary
while the subject rotates on a turntable, the device is termed a
"peripheral" camera. Panoramic cameras are commercially
available, and adapting one for peripheral photography should
be straightforward. The peripheral camera used in this work
was built by Prof. Andrew Davidhazy of the Rochester
Institute of Technology. Prof. Davidhazy was kind enough to

237

O SIGGRAPH '90, Dallas, August 6-10, 1990

photograph Annette's head while she stood on a rotating
turntable; her dance experience proved very useful in
maintaining a vertical and unwavering posture during the spin.
The resulting photograph, like the Cyberware scan, is a
cylindrical projection.

The peripheral photograph was scanned and digitized. An
interactive texture-warping program was written for an SGI
Iris workstation. Using the 12-bit double-buffered display
mode, the user could ping-pong back and forth between a
Sobel-filtemd range image and the peripheral photo. Standard
digital "painting" functions were provided by the program, but
its key feature was a "coordinate airbrush." This is simply a
deformation function in the style of [7] and [9], described in
digital painting terms. In fact, the "coordinate airbrush"
implements an inverse, rather than a forward, mapping. For
many purposes this is equally convenient, and much more
rapid to compute. The idea is that an X, Y coordinate offset is
supplied for the center of the brush (so the center pixel is
replaced by the pixel value in the image at the offset X, Y),
and the airbrush kemel tapers the blend of the coordinate
offsets away from the center of the brush. If the offset is
larger than the span of the airbrush kernel, a singularity
results, like a dimple in a specular surface. In fact, these

Figure 5. "Zebra" triangulation.

Figure 4. Final model, with and without texture. Figure 6. "Serpentine" triangulation.

inverse mappings resemble nothing so much as reflections
from curved mirrors. If the offset is smaller than the span of
the brush kernel, then the mapping behaves much like the
"forward" mapping, like a rubber sheet that can be stretched to
fit points of correspondence together. Figure 2 shows the final
texture after remapping. The general technique was to use
larg.e kernels first, and then use smaller and smaller warps to
register the details. Registering the texture with the filtered
range image took about three hours of interaction. Figure 3
shows a Sobel-filtered range image which has been
interactively warped to change its neutral expression to one of
profound annoyance (the contouring in the image is a result of
the compression to 8 bits). This illustrates the primary
motivation for development of this "warpware": to apply
similar deformation functions to animation of the 3D model.

Figure 4 shows the model with and without texture.
Rendering was performed using the SGI Iris graphics pipeline,
and supporting rendering software by G. W. Hannaway &
Associates. With a generation of graphics hardware that does
not handle texture explicitly, many users effect "texture

mapping" by rendering large meshes of polygons, with texture
multiplying intensities at each mesh vertex. A mesh of
vertices with the same resolution as the texture map
essentially reproduces the map, warped to shape, with bilinear
interpolation (Gouraud shading). To compress the map,
filtering is necessary. In approaching texture this way, which
is certainly a practical expedient on today's Z-buffer polygon
engines, mesh tesselation is an issue. Figure 5 shows the head
model textured with a pixei-scale checkerboard. The striping
of the texture is due to triangulation. To avoid sending
twisted quadrilaterals, all mesh elements are first divided into
triangles. In figure 5, the triangulation diagonals cut across
the mesh in parallel, and become stripes. In figure 6, the same
texture is rendered with a "herringbone" or "serpentine"
triangulation. Alternate mesh quads are divided on alternate,
criss-crossing diagonals. Note that the texture still does not
look like a checkerboard (we could hardly expect it to at this
scale), but is much more isotropic.

After the mapping was corrected, an animation of the head
rotating about the Y axis was taped, and the result examined

238

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

Figures 7-9. Rotations of the mapped 3D model.

F igures 10-11. Basis funct ions on the m o d e l face.

for registration (which looked good!). Figures 7-9 show the
model rotating, exhibiting the mapped texture in 3D.

MODIFYING EXPRESSION

The next step is applying our warpware to animation of the
model. First, a set of warping kernels is distributed about the
face. The factors that govern this distribution include
physiology (the placement of muscles in the face, and the
location of the most motile areas) as well as various practical
considerations relating to the planned use of spot-tracking on
an actor's face to ultimately drive the model. The "bas-
ketweave" texture of figure 6 has been applied to the faces of
figures 10 and 11, and the set of basis functions driving the
face has been slightly offset. The resulting interpolations
display the centers and relative sizes of the control kernels.
The kernels are larger than they appear, but they are radially
symmetric (like the basis functions of [7], rather than the more

elaborate bases used by [9]). Each is a Hanning (cosine)
window, scaled to 1.0 in the center, and diminishing smoothly
to 0.0 at the edge, with no negative values.

Like the enraged expression applied to the range image of
figure 3, the expressions of figures 12 and 13 were created by
hand-warping (with the "coordinate airbrush") the polar
representation of the model, The realistic model can be
stretched in a completely unrealistic way, and actually
resembles a latex mask in some respects.

Tracking Expressions of Live Performers

The final link in our proof-of-concept demonstration is to
increase realism by deriving the basis-function control offsets
from the expressions of a live actor. Video-based tracking
was the method of choice, although various mechanical
schemes were considered. Video offers the most leverage

239

SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 12. "Comedy" Figure l3. "Tragedy"

Hand-animated exaggerated expressions.

because it does not restrict the performer, it is a simple,
widely-available technology, and promises ultimately to
permit motion-tracking without special makeup or fidueial
marks.

The "special makeup" in this case was Scotchlite®, a
retroreflective material manufactured by 3M. Scotchlite uses
a layer of tiny spheroids to behave much like a surface of tiny
comer-reflectors; reflection efficiency is very high within a
small angle from the incident light. A beam-splitter setup was
employed to record the performer, which for budgetary
reasons turned out to be the author. The beam-splitter is
simply a sheet of window glass, between the camera and the
performer, at 45* from the camera's optical axis. At right
angles to the camera, aimed at the performer's side of the
glass, was a slide projector, used as a light source. The setup
is adjusted so that the light reflected from the glass illuminates
the performer's face. The point of the apparatus is, that the
light source and camera are coaxial. Since the light comes
"from the camera's point of view," the efficiency of
retroreflectors in the camera's field of view is very high.
When properly set up, contrast and brightness can be adjusted
so that the camera can see retroreflectors in its field of view,
and little else.

coordinates of the spot centers in each frame.

When the operator selects a spot, it is a matter of touching the
spot, or the spot's near vicinity. A window about the point
indicated is scanned, and the X, Y coordinates of each pixel
are multiplied by the intensity of the pixel; running sums of
the X and Y pixel intensity products are saved. A running
sum is also kept of the pixel intensities. When the window is
completely scanned, the summed X, Y's are each divided by
the summed intensities. This supplies the window's "center of
gravity" or first moment, a fairly robust estimate of the center
of light intensity in the window, which has fractional pixel
precision if the spot falls across a reasonable number of pixeis.
A new window is then scanned from the computed center, and
the process iterated a few times. The window size should be
slightly larger than the spots, so that the iterated result will be
the first moment of the spot itself. In figure 16, tracking
crosses have been superimposed on the spots. Note that
crosses appear even where the spots they mark are very dim;
the spot tracker proved robust, and the motion of the tracking
crosses is quite convincing even for spots of marginal

A paper punch was used to make little round adhesive spots
from Scotchlite tape; figure 14 shows the author applying
spots to his face (the brightness of the image has been scaled
so that the face is visible; originally, only the spots could be
seen). A typical frame (once again, brightened) is illustrated
in figure 15.

The problem of digitizing the actor's performance now
becomes one of tracking a set of bright spots in a dark field.
The special case of tracking spots on a face which faces the
camera is particularly favorable; the spots (if placed wisely)
will never actually touch one another, and can never be
obscured by another part of the face. For the test animation,
the head was held relatively still, and only the facial
expression changed. The algorithm used was to have a human
operator indicate the position of each spot in the initial frame
of a digitized sequence. This takes care of the correspondence
between each spot and the basis function on the face that it
controls. Spots are tracked automatically in sulasequent
frames. The spot tracking routine outputs the X, Y

Figures 14-17: Tracking spots on performer's face.

240

~ Computer Graphics, Volume 24, Number 4, August 1990

Figures 18-25. Tracked expressions applied to the model face.

241

O SIGGRAPH '90, Dallas, August 6-10, 1990
i

visibility. Figure 17 shows the tracking crosses without the
spots. Figures 18-25 show the model face being driven by the
tracked spots, marked by the tracking crosses in one of each
pair of images.

CONCLUSIONS AND FUTURE WORK

The appearance of the model head is quite realistic, and the
test animation is very striking. Although short, the sequence
exhibits some lifelike twitches and secondary motions which
would be unlikely to arise in pure animation. The
fundamental idea of mapping the motions of a live performer
to a computer animated character promises to be a rich one.
Previous efforts to animate faces by interpolating between
various canonical expressions can now be supplemented by
interpolation of canonical motion sequences. Driving a face
or head of very different proportions or physiognomy should
be attempted soon.

The animation of the face is very much a "proof of concept,"
not a completely realized system. At present, the face cannot
open its eyes or mouth, and this portion of the model will
demand a great deal of time. Some ripples on the eyes (visible
in the last two figures) result from the fact that the performer
could blink his eyes (in fact, found it hard not to) and the
model could not. The test did establish that eyeblinks are
quite trackable!

For reasons of efficiency, and to test the validity of the
simplifications, the performer's face was tracked in 2D, and
the result "projected" to the model, which was animated in the
cylindrical coordinates of the range data before being
converted into X, Y, Z meshes with normals. The changes in
the performer's expressions were transferred to the model with
appropriate scaling of the offsets, and a straight projection
onto the face approximates projection onto a cylinder. A test
setup with angled mirrors at the sides of the actor's head
showed that 3D coordinates could be acquired with a single
camera. A more fully-realized system would track
expressions in 3D and apply them in Cartesian, rather than
cylindrical, coordinates.

ACKNOWLEDGEMENTS

My profuse thanks go to Annette White, the model; to Nancy
Burson and David Kramlich, my initial collaborators; to Ariel
Shaw and Andrew Davidhazy, for extraordinary photographic
assistance; to Wyndham Hannaway and Bill Bishop of G.W.
Hannaway & Associates, who made available much of the
computer time, utility software, and exotic paraphernalia this
research required; to my manager, Mark Cutter, and to Ned
Greene, Pete Litwinowicz, and Libby Patterson of Apple's
Advanced Technology Animation Group, for constant support,
advice, and inspiration.

REFERENCES

[1]

[21

[3]

Waiters, Graham, The Story of Waldo C. Graphic.
ACM SIGGRAPH '89 Course Notes, 3D Character
Animation by Computer, August 1989.

Parke, Frederick I., A Parametric Model for Human
Faces. Ph.D. dissertation, Department of Computer
Science, University of Utah, 1974.

Badler, Norman, and Platt, Stephen, Animating
Facial Expressions. Proceedings of SIGGRAPH '81
(Dallas, Texas, August 3-7, 1981). In Computer
Graphics 15, 3, (August 1981), 245-252.

[5]

[61

[7]

[81

[9]

[10]

[11]

[12]

Platt, Stephen Michael, A Structural Model of the
Human Face. Ph.D. Department of Computer and
Information Science, School of Engineering and
Applied Science, University of Pennsylvania, Phila-
delphia, PA., 1986.

Brennan, Susan Elise, Caricature Generator. M.S.
Visual Studies, Dept. of Architecture, Massachusetts
Institute of Technology, Cambridge, MA. Sept.
1982.

Burrson, Nancy, and Schneider, Thomas, "Method
and Apparatus for Producing an Image of a Person's
Face at a Different Age," U.S. Patent #4276570,
June 30, 1981.

Oka, Masaaki, Tsutsui, Kyoya, Ohba, Akio,
Kurauchi, Yoshitaka, Tago, Takashi, Real-Time
Manipulation of Texture-Mapped Surfaces. Pro-
ceedings of SIGGRAPH '87 (Anaheim, California,
July 27-31, 1987). In Computer Graphics 21, 4,
(July 1987), 181-188.

Lachapelle, Pierre, Bergeron, Philippe, Robidoux,
P., and Langlois, Daniel, Tony de Peltrie. [film]
1985.

Waters, Keith, A Muscle Model for Animating
Three-Dimensional Facial Expression. Proceedings
of SIGGRAPH '87 (Anaheim, California; July 27-
31, 1987). In Computer Graphics 21, 4 (July
1987), 17-24.

Lasseter, John, Ostby, Eben,
Good, Craig, Rydstrom, Gary.
Pixar, 1988.

Reeves, William,
Tin Toy. [film]

Cyberware Laboratory, Inc.: 4020/PS 3D Scanner,
4020/RGB 3D Scanner with color digitizer.
8 Harris Court 3D, Monterey, California 93940.

Burt, P.J., Ogden, J.M., Adelson, E.H., and Ber-
gen, J.R., Pyramid-Based Computer Graphics.
RCA Engineer, Vol. 30, 5, Sept.-Oct. 1985.

242

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

Learning Controls for Blend Shape Based
Realistic Facial Animation

Pushkar Joshi1†, Wen C. Tien1, Mathieu Desbrun1 and Frédéric Pighin2

1 University of Southern Califronia, Computer Science Department
2 Institute for Creative Technologies, University of Southern California

Abstract
Blend shape animation is the method of choice for keyframe facial animation: a set of blend shapes (key facial
expressions) are used to define a linear space of facial expressions. However, in order to capture a significant
range of complexity of human expressions, blend shapes needto be segmented into smaller regions where key
idiosyncracies of the face being animated are present. Performing this segmentation by hand requires skill and a
lot of time. In this paper, we propose an automatic, physically-motivated segmentation that learns the controls and
parameters directly from the set of blend shapes. We show theusefulness and efficiency of this technique for both,
motion-capture animation and keyframing. We also provide arendering algorithm to enhance the visual realism
of a blend shape model.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

The human face has always held a particular interest for the
computer graphics community: its complexity is a constant
challenge to our increasing ability to model, render, and an-
imate lifelike synthetic objects. Facial animation requires a
deformablemodel of the face to express the wide range of
facial configurations related to speech or emotions. There
are two traditional ways of creating deformable face models:
using a physically-based model or a blend shape model. A
physically-based model generally simulates various skin lay-
ers, muscles, fatty tissues, bones, and all the necessary com-
ponents to approximate the real facial mechanics. A blend
shape model, however, mostly disregards the mechanics; in-
stead, it directly considers every facial expression as a lin-
ear combination of a few select facial expressions, the blend
shapes. By varying the weights of the linear combination, a
full range of facial expressions can be expressed with very
little computation.

Nowadays, there are several options for creating blend
shapes. A skilled digital artist can deform a base mesh into
the different canonical shapes needed to cover the desired

† e-mail: ppj@usc.edu

range of expressions. Alternatively, the blend shapes can be
directly scanned by a range scanner from a real actor or a
clay model. With this last technique, the scanned data needs
to be registered in order to produce blend shapes that share
a common topology9 and can therefore be combined cor-
rectly.

To express a significant range of highly detailed expres-
sions, digital animators often have to create large libraries
of blend shapes. In this case a naive parameterization of the
face model, one that would give a parameter for each blend
shape, is not practical. In particular, the visual impact of
changing the contribution of a blend shape might be diffcult
to predict, leading to a tedious trial and error process for the
user. Splitting the face geometry in several regions that can
be specified individually somewhat alleviates this problem.
By manipulating a smaller area the user is guaranteed that
the modification will impact only a specific part of the face
(e.g., the left eyebrow). However, segmenting the face manu-
ally is difficult and tedious. The segmentation should reflect
the idiosyncracies of the face being modeled and provide
editing and different level of details. In general, finding the
right parameters and control knobs in a blend shape model
is no simple task, and it often leverages an understanding of
the mechanical structure of the face. In this paper we address

c© The Eurographics Association 2003.

Joshi et al /

the problem of parameterization and control of blendshape
models.

1.1. Related Work

Blend shape interpolation can be traced back to Parke’s pio-
neering work in facial animation12, 13. This initial work has
found many applications both, in computer graphics and in
computer vision.

Parke’s original idea was rapidly extended to a segmented
face where the regions are blended individually8, allowing
a wider range of expressions. Traditionally these regions are
definedmanually. A prototypical example is the segmenta-
tion of a face into an upper region and a lower region: the up-
per region is used for expressing emotions, while the lower
region expresses speech. Although this approximation is of-
ten used in practice, such an ad hoc separation does not re-
flect the subtle interdependencies appearing in reality.

Blend shape models have also found their way in the com-
puter vision community where they help analyze face images
and video. Blanz and Vetter1 designed an algorithm that fits
a blend shape model onto a single image. Their result is an
estimate of the geometry and texture of the person’s face.
Pighin et al15 extended this work by fitting their model to
a whole sequence of images, allowing manipulation of the
video by editing the fitted model throughout the video se-
quence.

There has been little research on interactive blend shape
model manipulation with the exception of the work by
Pighin et al14. They describe a keyframe animation system
that uses a palette of facial expressions along with a painting
interface to assign blending weights. The system gives the
animator the freedom to assign the blending weights at the
granularity of a vertex. This freedom is, in practice, a draw-
back: by not taking into account the physical limitations of
the face, it is rather difficult to create realistic expressions.
The system we propose is quite different: it does respect the
mechanics of the face through an analysis of the physical
properties of the data. In comparison, our system is more in-
tuitive and helps generate plausible facial expressions. Choe
et al3 have done some interesting work on mapping motion
onto a set of blend shapes, but where they build a segmenta-
tion of the face manually, we learn it from the data.

Segmentation is a very active topic in image processing
and computer vision7. However, the problem we are ad-
dressing is very different from image or optical flow segmen-
tation; our goal is to segment a 3D mesh that is a linear com-
bination of sample meshes. Similarly, subdivision surfaces
have become a popular representation for three-dimensional
objects16. The goals of subdivision schemes as researched
so far in the compter graphics community do not match that
of this paper: the segmentation of a linear space of meshes.

1.2. Contribution and Overview

In this paper, we address the problems ofparameteriza-
tion andcontrol of blend shape models. We design anau-
tomatic techniquethat extracts a set of parameters from a
blend shape model. Instead of deriving our control mecha-
nism from the biomechanics of the face, we learn it directly
from the available data. This solution is thus specific to the
processed blend shapes, and reflects the facial idiosyncra-
cies present in data. We also demonstrate the usefulness of
these parameters through two animation techniques: motion
capture and keyframing. Finally, we propose a new render-
ing algorithm for blend shape models; one that addresses the
problem of texture misregistration across blend shape tex-
tures.

We will describe our work by starting in section 2 with
some definitions and notations. Section 3 and section 4 are
then dedicated to the use of the model in motion capture
animation and keyframing respectively. We also explain how
some of the blur artifacts can be avoided while rendering the
blend shape model in section 5. We finally conclude with a
discussion of our results and ideas for future research.

2. Blend Shape Face Model

Setup We define a blend shape face model as being a con-
vex linear combination ofn basis vectors, each vector be-
ing one of the blend shapes. Each blend shape is a face
model that includes geometry and texture. All the blend
shape meshes for a given model share the same topology.
The coordinates of a vertexV belonging to the blend shape
model can then be written as follows:

V =
n

∑
i=1

αi Vi

where the scalarsαi are the blending weights,Vi is the
location of the vertex in the blend shapei, andn is the num-
ber of blend shapes. These weights must satisfy the convex
constraint:

αi ≥ 0, for all i

and must sum to one for rotational and translational invari-
ance:

n

∑
i=1

αi = 1

Similarly, the texture at a particular point of the blend
shape model is a linear combination (i.e., alpha blending)
of the blend shape textures with the same blending weights
as those used for the geometry.

Learning Controls Spanning a complete range of facial ex-
pressions might require a large number of blend shapes. For
instance, the facial animations of Gollum in the feature film

c© The Eurographics Association 2003.

Joshi et al /

(a) (b) (c)

Figure 1: Automatically generated regions: (a) Deformation map (thedeformation in X, Y and Z directions is expressed as a
respective RGB triplet) (b) Segmentation for a low threshold (c) and for a high threshold.

The Two Towersrequired 675 blend shapes6. However, stud-
ies5 have shown that it is possible to create complex and be-
lievable facial expressions using only a few blend shapes by
combining smaller, local shapes. For instance, the face ge-
ometry can be split in three areas, one covering the mouth
and the jaws, another covering the eyes, and the last one
the eyebrows. If the regions can be manipulated indepen-
dently, the number of possible combinations (and therefore
the number of possible expressions) increases significantly.
Although one can define the regions manually, it requires
considerable skill and time, and needs to be performed each
time a new character is animated. Instead, we propose a sim-
ple, automatic and fast (less than a minute for a typical blend
shape model) segmentation process that leverages face de-
formation information directly from the input data to create
meaningful blend regions.

Physical Model One of the simplest physical models for
deformable objects is that oflinear elasticity. The deforma-
tion of an object is measured by the displacement fieldd
between each point’s current position and its rest position.
As explained, for instance, in Debunne et al4, the govern-
ing equation of motion of a linear elastic model is the Lamé
formulation:

ρa = λ∆d +(λ+µ)∇(∇ ·d) (1)

In our current context,d is the displacement of the vertex
from its position on the neutral face,ρ is the averaged face
mass density,a is the vertex’ acceleration, andλ andµ are
the Lamé’ coefficients that determine the material’s behav-
ior (related to Young’s modulus and Poisson ratio). The in-
terpretation of the previous equation is relatively simple: the
laplacian vector∆d of the displacement field represents the
propagation of deformation through the blend shape, while
the second term represents the area-restoring force. These
two second-order operators, null for any rigid deformation,

are thereforetwo complementary measures of deformation
of our face model. To further simplify our model, we will
assume that the area distortion is negligible on a face (our
tests confirm that this assumption does not change the re-
sults significantly); therefore, we only use the laplacian to
segment the face into disjoint regions of similar amount of
deformation, as explained next.

Segmentation Debunne et al4 have introduced a simple
discrete evaluation of the laplacian operator present in Eq. 1.
We compute this discrete laplacian value at every vertex of
every non-neutral (i.e., expressive) blend shape, and takethe
magnitude of the resulting vectors. This provides us with a
deformation map for each expression. We gather these maps
into a single deformation mapM by computing for each ver-
tex independently its maximum deformation value across all
expressions. This resulting map (see Figure 3(a) - expressed
as a vector map to show direction of deformation) measures
the maximum amount oflocal deformationthat our face
model has for the blend shapes used. A fast segmentation
can now be performed by simply splitting this map in the
regions with low deformation, and those with high deforma-
tion. The threshold for this split can be chosen as:

threshold= D[n t]

whereD is the array of sorted deformation values,n is the
size of this array andt is a scalar between 0 and 1.

That is, first sort all the deformation values, and then ob-
tain the deformation at the position that is a function of the
number of values. For instance, to generate the regions in
Figure 3(b,c), we usedt = 0.25 andt = 0.75 respectively.
Depending on the threshold, disconnected regions are cre-
ated all across the mesh. We automatically clean up the re-
gions by absorbing isolated regions into larger regions and
minimizing concavity of the regions. Finally, each region is
extended by one vertex all around its boundary, in order to
create an overlap with the neighboring regions. The result

c© The Eurographics Association 2003.

Joshi et al /

is a large, least-deformed region (i.e. the background), and a
number of overlapping regions where there is generally more
significant deformation in the range of expressions. These
latter regions (see Figure 3(b,c)) correspond to vertices that
generally undergo similar deformation: locally, each region
deforms in a quasi-rigid way. Thus, linear blending in each
of these regions will reconstruct much more detail of the tar-
get face expression as demonstrated in the next two sections.

3. Animation with Motion Capture

We express the motion in the motion capture data using the
blend shape model. That is, we assume that the motion (or
the per-frame position) of a motion marker can be expressed
as a linear combination of corresponding points in the blend
shapes. Namely:

M j =
n

∑
i=1

αi V i j

whereM j is a location on the face whose motion was
recorded andV i j is the corresponding location in blendshape
i. m is the number of motion markers andn the number of
blend shapes (as in Choe et. al.3)

Given several such equations, we find the blending
weightsαi . We recast this as a minimization problem, where
we need to minimize the sum of the differences:

m

∑
j=1

[M j − (
n

∑
i=1

αi Vi j)]
2 (2)

The whole system is a linear system of equations where
the unknownsαi are the weights in the blend shape combina-
tion. By using an iterative quadratic programming solver11,
we obtain the optimal values of the blending weightsαi in
the least squares sense. Solving this system is equivalent
to orthogonally projecting the motion onto the set of blend
shapes. In general equation 2 does not have an exact solu-
tion, since the motions can be more expressive than what the
set of blend shapes allows. To produce an animated mesh
that follows the motion more precisely we complement the
projection on the blend shape basis by translating the ver-
tices in the mesh by the residual (M j −∑n

i=1 αi ·Vi j). The
residual, which is only known for a small set of points, is
interpolated to the rest of the facial mesh using radial basis
functions10. The final coordinates,V j , of a vertex on the
face are then constructed using:

V j = P j +RBF(P j)

whereP j is the projection on the set of blend shape:

P j =
n

∑
i=1

αi Vi j

andRBF(P j) is the interpolated residual at vertexP j :

RBF(P j) =
m

∑
i=1

exp(−‖Mi −P j‖) Ci (3)

In equation 3 the vectorsCi are computed using the known
values of the residual atMi . Since the system of equations is
linear in the unknowns, using linear least-squares provides
an estimate of the unknowns14. Note that only applying the
residual would have a different effect; by first projecting on
the set of blend shapes we obtain a face geometry that re-
flects the blend shapes, then we apply the residual which
brings the geometry closer to the motion. Choe et al3’s ap-
proach to mapping motion onto a set of blend shapes is very
similar. The main difference is how the residual is taken into
account. In their approach the blend shapes are modified to
adapt them to the motions. We, on the other hand, use radial
basis functions to modify the geometry on a per-frame basis.
Their method would probably be more effective for process-
ing a large quantity of motions, whereas ours would perform
better on a small dataset.

Instead of solving the above system for the entire model,
we solve for each region created using our automatic seg-
mentation process. Doing so gives us localized control over
the face mesh and results in better satisfaction of the spatial
constraints. This also allows us to express a wide range of
motion using only a limited number of blend shapes (ten, in
our case).

For every frame and for every region, we construct the
above minimization problem and obtain blending weights.
The same weights are then used to obtain, for all vertices of
the region, new positions that match the motion. Thus, for
every frame of motion, we can solve a minimization prob-
lem to obtain the blending weights and consequently the face
mesh that follows the motion capture data.

4. Keyframe Editing

Using our blend shape model, we can interactively construct
face meshes that can be used as keyframes in a keyframing-
based facial animation tool.

Creating Keyframes Creating a keyframe is similar to pro-
ducing a frame in a motion capture sequence in that we need
to specify control points (markers), their respective map-
pings, and spatial constraints (i.e. the positions of the mark-
ers). In our interface, the user can interactively specify all
the above by clicking and dragging with the mouse on the
face model. As in the process used in the motion capture
application (see Eq. 2), we construct a minimization prob-
lem using the interactively specified constraints and obtain
blending weights.

Regions and Region Hierarchy We can segment the blend
shape model into regions using our automatic segmentation

c© The Eurographics Association 2003.

Joshi et al /

Figure 2: Successive keyframe editing from coarse (left) to fine (right) level of details.

technique. In order to allow keyframe editing at various lev-
els of detail, we build a hierarchy of regions. This hierar-
chy is created by first running the segmentation algorithm
described in section 2 with a high threshold value so as to
generate small and localized regions. These regions consti-
tute the lowermost region level. We can then merge regions
iteratively so that contiguous regions are merged togetheras
we generate higher region levels.

Motion Damping Some of the locations on the face do not
move significantly throughout the set of blend shapes (e.g.
tip of the nose). If we were to select such a location and
try to deform it, using the interface describe so far, a small
motion of the mouse would trigger a dramatic change in the
facial expression. To reduce the sensitivity of the system we
scale the displacement of the mouse according to a factor
that is inversely proportional to the maximum displacement
in the blend shape model at the selected point on the mesh.

Fig. 2 displays a sequence of manipulations performed on
a keyframe. The successive keyframe editing is performed
with increasing level of details to refine the facial expression
in a localized manner.

5. Rendering Realistic Blend Shapes

Basic Process Rendering the blend shape model is pretty
straightforward and can be done in two steps: first the con-
sensus geometry is evaluated, and then it is rendered as many
times as there are blend shapes in the model to blend the
texture maps. This latter step is done by assigning to each
vertex’ alpha channel the corresponding weight for a given
blend shape. To improve our renderings we decided not to
blend the texture maps on the parts of the face whose tex-
ture should not vary as a function of the facial expression,
in particular, in the hair, neck, and ears area. These areas are
textured using the texture map of any blend shape (usually
one corresponding to the neutral expression).

Realistic Textures Texture misregistration is a common
problem with blend shape rendering for realistic facial an-
imation. If the textures do not correspond at each point on

the face geometry, combining them linearly will result in a
blurred rendering. Thus, the frequency content of the ren-
dered face images varies as a function of time. Figure 4 pro-
vides an illustration of this phenomenon. The leftmost im-
age shows our model rendered with only one contributing
blend shape. The middle image shows the rendered model
with seven equally contributing blend shapes. In the middle
rendering a lot of the details of the face texture have disap-
peared.

To alleviate this problem, we borrow an approach from
the image processing community2: we base our blending
on a band-pass decomposition of the textures. More specif-
ically, we build a two level laplacian image pyramid out of
each blend shape texture map. This results in the creation of
two texture maps for each blend shape: the first is a low-pass
version of the original texture, and the second is a signed
detail texture. We then render the blend shape model as fol-
low: we first render the lowpass texture maps and blend them
together. Then we render the detail texture map of a single
blend shape using the consensus geometry and add it to the
previous rendering. The result is a rendering that both, bet-
ter preserves the original spectral content of the blend shape
textures and maintains the high frequency content constant
throughout the animation. The rightmost rendering in fig-
ure 4 illustrates the improvement obtained by using this tech-
nique.

6. Results

We demonstrate the techniques described in this paper with a
set of blend shapes modeled to capture the facial expression
of an actor. We created ten blend shapes corresponding to ex-
treme expressions. We used an image-based modeling tech-
nique similar to the one developed by Pighin et al14. Three
photographs of the actor were processed to model each blend
shape: front facing, 30 degree right, and 30 degree left. All
the animations shown in the video were computed and ren-
dered in real-time (30Hz) on a 1GhZ PC equipped with an
NVidia GeForce 3 graphics card. We decided to animate the
tongue, the lower teeth and the upper teeth in a simple proce-

c© The Eurographics Association 2003.

Joshi et al /

dural manner; they are moved rigidly and follow the motion
of separate sets of manually selected points on the mesh. The
eyeballs are moved rigidly according to the rigid motion of
the head.

Motion Capture As described in section 3, we can project
recorded motion onto the blend shape model. The accompa-
nying video includes a few animated sequences that demon-
strate this technique. The deformations of the face are very
natural and reflect the actor’s personality. Fig. 5 shows some
of the frames obtained. The example shown uses only 10
blend shapes. To animate speech motion usually a much
larger set of shapes needs to be used. We are able to ani-
mate the lips by using radial basis functions as described in
section 3.

Keyframe Editing Also included in the video is a demon-
stration of the interactive tool described in section 4. Thetool
allows us to sculpt the face in a very intuitive way. We start
manipulating the face with a set of coarse regions and refine
the expression by using increasingly finer segmentations.

7. Future Work

We would like to improve our results in different ways.
In particular, we feel our rendering algorithm would bene-
fit from a more principled frequency analysis of the blend
shapes texture maps. Using a feature preserving filter to sep-
arate the high frequency data might lead to better results. It
would be interesting to try this technique on a non-human
character; one for which segmenting the face might be more
challenging and non-intuitive. We would also like to test our
technique on a larger dataset of blend shapes. Finally, our
segmentation technique only takes into account geometric
information. We would like to extend it to also take advan-
tage of the texture information.

Acknowledgements

The authors would like to thank J.P. Lewis for discussions
about blend shape animation and Andrew Gardner for its ini-
tial development. This project was supported in part by Na-
tional Science Foundation (CCR-0133983, DMS- 0221666,
DMS-0221669, EEC-9529152) and the U.S. Army Research
Institute for the Behavioral and Social Sciences under ARO
contract number DAAD 19-99-D-0046. Any opinions, find-
ings, conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the
views of the Department of the Army.

References

1. T. Blanz and T. Vetter. A morphable model for the syn-
thesis of 3d faces. InSIGGRAPH 99 Conference Pro-
ceedings. ACM SIGGRAPH, August 1999.

2. P.J. Burt and E.H. Adelson. A multiresolution spline
with application to image mosaics.ACM Transaction
on Graphics, 2(4), October 1983.

3. B. Choe, H. Lee, and H. Ko. Performance-driven
muscle-based facial animation. InProceedings of Com-
puter Animation, volume 12, pages 67–79, May 2001.

4. G. Debunne, M. Desbrun, M. Cani, and A. Barr. Adap-
tive simulation of soft bodies in real-time. InProceed-
ings of Computer Animation 2000, pages 15–20, May
2000.

5. P. Ekman and W.V. Friesen.Unmasking the face.
A guide to recognizing emotions fron facial clues.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1975.

6. J. Fordham. Middle earth strikes back.Cinefex,
(92):71–142, 2003.

7. R.M. Haralick. Image segmentation survey.Funda-
mentals in Computer Vision, 1983.

8. J. Kleiser. A fast, efficient, accurate way to represent
the human face. InSIGGRAPH ’89 Course Notes 22:
State of the Art in Facial Animation, 1989.

9. A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Mul-
tiresolution mesh morphing. InProceedings of SIG-
GRAPH 99, pages 343–350, August 1999.

10. G.M. Nielson. Scattered data modeling.IEEE Com-
puter Graphics and Applications, 13(1):60–70, January
1993.

11. J. Nocedal and S.J. Wright.Numerical Optimization.
Springer, New York, 1999.

12. F.I. Parke. Computer generated animation of faces.
Proceedings ACM annual conference., August 1972.

13. F.I. Parke.A parametric model for human faces. PhD
thesis, University of Utah, Salt Lake City, Utah, De-
cember 1974. UTEC-CSc-75-047.

14. F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and
D.H. Salesin. Synthesizing realistic facial expressions
from photographs. InSIGGRAPH 98 Conference Pro-
ceedings, pages 75–84. ACM SIGGRAPH, July 1998.

15. F. Pighin, R. Szeliski, and D.H. Salesin. Resynthesiz-
ing facial animation through 3d model-based tracking.
In Proceedings, International Conference on Computer
Vision, 1999.

16. D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin,
and W. Sweldens. Subdivision for modeling and ani-
mation. InSIGGRAPH 2000 Course Notes. ACM SIG-
GRAPH, May 2000.

c© The Eurographics Association 2003.

Joshi et al /

(a) (b) (c)

Figure 3: Automatically generated regions: (a) Deformation map (thedeformation in X, Y and Z directions is expressed as a
respective RGB triplet) (b) Segmentation for a low threshold (c) and for a high threshold.

(a) (b) (c)

Figure 4: Blend shape renderings (a) a single contributing blend shape (b) seven equally contributing blend shapes without
detail texture (c) seven equally contributing blend shapeswith detail texture

Figure 5: Mapping motion capture data on a set of blend shapes

c© The Eurographics Association 2003.

Making Faces

Brian Guentery Cindy Grimmy Daniel Woodz

Henrique Malvary Fredrick Pighinz
yMicrosoft Corporation zUniversity of Washington

ABSTRACT

We have created a system for capturing both the three-dimensional
geometry and color and shading information for human facial ex-
pressions. We use this data to reconstruct photorealistic, 3D ani-
mations of the captured expressions. The system uses a large set
of sampling points on the face to accurately track the three dimen-
sional deformations of the face. Simultaneously with the tracking
of the geometric data, we capture multiple high resolution, regis-
tered video images of the face. These images are used to create a
texture map sequence for a three dimensional polygonal face model
which can then be rendered on standard 3D graphics hardware. The
resulting facial animation is surprisingly life-like and looks very
much like the original live performance. Separating the capture of
the geometry from the texture images eliminates much of the vari-
ance in the image data due to motion, which increases compression
ratios. Although the primary emphasis of our work is not compres-
sion we have investigated the use of a novel method to compress
the geometric data based on principal components analysis. The
texture sequence is compressed using an MPEG4 video codec. An-
imations reconstructed from 512x512 pixel textures look good at
data rates as low as 240 Kbits per second.

CR Categories: I.3.7 [Computer Graphics]: Three Dimen-
sional Graphics and Realism: Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling

1 Introduction

One of the most elusive goals in computer animation has been the
realistic animation of the human face. Possessed of many degrees
of freedom and capable of deforming in many ways the face has
been difficult to simulate accurately enough to convince the average
person that a piece of computer animation is actually an image of a
real person.

We have created a system for capturing human facial expres-
sion and replaying it as a highly realistic 3D “talking head” con-
sisting of a deformable 3D polygonal face model with a changing
texture map. The process begins with video of a live actor’s face,
recorded from multiple camera positions simultaneously. Fluores-
cent colored 1/8” circular paper fiducials are glued on the actor’s
face and their 3D position reconstructed over time as the actor talks
and emotes. The 3D fiducial positions are used to distort a 3D
polygonal face model in mimicry of the distortions of the real face.
The fiducials are removed using image processing techniques and
the video streams from the multiple cameras are merged into a sin-
gle texture map. When the resulting fiducial-free texture map is ap-
plied to the 3D reconstructed face mesh the result is a remarkably

life-like 3D animation of facial expression. Both the time varying
texture created from the video streams and the accurate reproduc-
tion of the 3D face structure contribute to the believability of the
resulting animation.

Our system differs from much previous work in facial anima-
tion, such as that of Lee [10], Waters [14], and Cassel [3], in that
we are not synthesizing animations using a physical or procedu-
ral model of the face. Instead, we capture facial movements in
three dimensions and then replay them. The systems of [10], [14]
are designed to make it relatively easy to animate facial expression
manually. The system of [3] is designed to automatically create
a dialog rather than faithfully reconstruct a particular person’s fa-
cial expression. The work of Williams [15] is most similar to ours
except that he used a single static texture image of a real person’s
face and tracked points only in 2D. The work of Bregler et al [2]
is somewhat less related. They use speech recognition to locate
visemes1 in a video of a person talking and then synthesize new
video, based on the original video sequence, for the mouth and jaw
region of the face to correspond with synthetic utterances. They do
not create a three dimensional face model nor do they vary the ex-
pression on the remainder of the face. Since we are only concerned
with capturing and reconstructing facial performances out work is
unlike that of [5] which attempts to recognize expressions or that
of [4] which can track only a limited set of facial expressions.

An obvious application of this new method is the creation of
believable virtual characters for movies and television. Another
application is the construction of a flexible type of video compres-
sion. Facial expression can be captured in a studio, delivered via
CDROM or the internet to a user, and then reconstructed in real
time on a user’s computer in a virtual 3D environment. The user
can select any arbitrary position for the face, any virtual camera
viewpoint, and render the result at any size.

One might think the second application would be difficult to
achieve because of the huge amount of video data required for the
time varying texture map. However, since our system generates ac-
curate 3D deformation information, the texture image data is pre-
cisely registered from frame to frame. This reduces most of the
variation in image intensity due to geometric motion, leaving pri-
marily shading and self shadowing effects. These effects tend to
be of low spatial frequency and can be compressed very efficiently.
The compressed animation looks good at data rates of 240 kbits
per second for texture image sizes of 512x512 pixels, updating at
30 frames per second.

The main contributions of the paper are a method for robustly
capturing both a 3D deformation model and a registered texture im-
age sequence from video data. The resulting geometric and texture
data can be compressed, with little loss of fidelity, so that storage

1Visemes are the visual analog of phonemes.

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

Figure 1: The six camera views of our actress’ face.

requirements are reasonable for many applications.
Section 2 of the paper explains the data capture stage of the

process. Section 3 describes the fiducial correspondence algorithm.
In Section 4 we discuss capturing and moving the mesh. Sections 5
and 6 describe the process for making the texture maps. Section 7
of the paper describes the algorithm for compressing the geometric
data.

2 Data Capture

We used six studio quality video cameras arranged in the pattern
shown in Plate 1 to capture the video data. The cameras were syn-
chronized and the data saved digitally. Each of the six cameras
was individually calibrated to determine its intrinsic and extrinsic
parameters and to correct for lens distortion. The details of the
calibration process are not germane to this paper but the interested
reader can find a good overview of the topic in [6] as well as an
extensive bibliography.

We glued 182 dots of six different colors onto the actress’ face.
The dots were arranged so that dots of the same color were as far
apart as possible from each other and followed the contours of the
face. This made the task of determining frame to frame dot corre-
spondence (described in Section 3.3) much easier. The dot pattern
was chosen to follow the contours of the face (i.e., outlining the
eyes, lips, and nasio-labial furrows), although the manual applica-
tion of the dots made it difficult to follow the pattern exactly.

The actress’ head was kept relatively immobile using a padded
foam box; this reduced rigid body motions and ensured that the
actress’ face stayed centered in the video images. Note that rigid
body motions can be captured later using a 3D motion tracker, if
desired.

The actress was illuminated with a combination of visible and
near UV light. Because the dots were painted with fluorescent pig-
ments the UV illumination increased the brightness of the dots sig-
nificantly and moved them further away in color space from the
colors of the face than they would ordinarily be. This made them
easier to track reliably. Before the video shoot the actress’ face was
digitized using a cyberware scanner. This scan was used to create
the base 3D face mesh which was then distorted using the positions
of the tracked dots.

3 Dot Labeling

The fiducials are used to generate a set of 3D points which act as
control points to warp the cyberware scan mesh of the actress’ head.
They are also used to establish a stable mapping for the textures
generated from each of the six camera views. This requires that
each dot have a unique and consistent label over time so that it is
associated with a consistent set of mesh vertices.

Cyber ware scan
of actress’ head

Video capture
of actress
6 cameras

Make color class
images from
frame zero

Mark pixels
by color

Triangulate to
find 3D

frame dots

Automatic
alignment

with frame 0
3Ddots

Match
reference dots
to frame dots

Select dots
on mesh

Cyber
dots Color

classifier

3D dot
movements
over time

Create color
classifier

Reference
dots

Hand align
with frame 0

3D dots

Combine marked
pixels to find

2D dots

Done once

Done once

Done for all frames

Manual step
done only once

Automatic
step

Output
data

Data capture

Six images, all frames

Frame zero

3D data, all frames

Data

Legend

Figure 2: The sequence of operations needed to produce the labeled
3D dot movements over time.

The dot labeling begins by first locating (for each camera view)
connected components of pixels which correspond to the fiducials.
The 2D location for each dot is computed by finding the two dimen-
sional centroid of each connected component. Correspondence be-
tween 2D dots in different camera views is established and potential
3D locations of dots reconstructed by triangulation. We construct
a reference set of dots and pair up this reference set with the 3D
locations in each frame. This gives a unique labeling for the dots
that is maintained throughout the video sequence.

A flowchart of the dot labeling process is shown in Figure 2.
The left side of the flowchart is described in Section 3.3.1, the
middle in Sections 3.1, 3.2, and 3.3.2, and the right side in Sec-
tion 3.1.1.

3.1 Two-dimensional dot location

For each camera view the 2D coordinates of the centroid of each
colored fiducial must be computed. There are three steps to this
process: color classification, connected color component genera-
tion, and centroid computation.

First, each pixel is classified as belonging to one of the six dot
colors or to the background. Then depth first search is used to lo-
cate connected blobs of similarly colored pixels. Each connected
colored blob is grown by one pixel to create a mask used to mark
those pixels to be included in the centroid computation. This pro-
cess is illustrated in Figure 4.

The classifier requires the manual marking of the fiducials for
one frame for each of the six cameras. From this data a robust color
classifier is created (exact details are discussed in Section 3.1.1).
Although the training set was created using a single frame of a 3330
frame sequence, the fiducial colors are reliably labeled throughout
the sequence. False positives are quite rare, with one major ex-
ception, and are almost always isolated pixels or two pixel clusters.
The majority of exceptions arise because the highlights on the teeth
and mouth match the color of the white fiducial training set. Fortu-
nately, the incorrect white fiducial labelings occur at consistent 3D
locations and are easily eliminated in the 3D dot processing stage.

The classifier generalizes well so that even fairly dramatic changes

in fiducial color over time do not result in incorrect classification.
For example, Figure 5(b) shows the same green fiducial in two dif-
ferent frames. This fiducial is correctly classified as green in both
frames.

The next step, finding connected color components, is com-
plicated by the fact that the video is interlaced. There is signif-
icant field to field movement, especially around the lips and jaw,
sometimes great enough so that there is no spatial overlap at all
between the pixels of a fiducial in one field and the pixels of the
same fiducial in the next field. If the two fields are treated as a sin-
gle frame then a single fiducial can be fragmented, sometimes into
many pieces.

One could just find connected color components in each field
and use these to compute the 2D dot locations. Unfortunately,
this does not work well because the fiducials often deform and
are sometimes partially occluded. Therefore, the threshold for the
number of pixels needed to classify a group of pixels as a fiducial
has to be set very low. In our implementation any connected com-
ponent which has more than three pixels is classified as a fiducial
rather than noise. If just the connected pixels in a single field are
counted then the threshold would have to be reduced to one pixel.
This would cause many false fiducial classifications because there
are typically a few 1 pixel false color classifications per frame and
2 or 3 pixel false clusters occur occasionally. Instead, we find con-
nected components and generate lists of potential 2D dots in each
field. Each potential 2D dot in field one is then paired with the
closest 2D potential dot in field two. Because fiducials of the same
color are spaced far apart, and because the field to field movement
is not very large, the closest potential 2D dot is virtually guaran-
teed to be the correct match. If the sum of the pixels in the two
potential 2D dots is greater than three pixels then the connected
components of the two 2D potential dots are merged, and the re-
sulting connected component is marked as a 2D dot.

The next step is to find the centroid of the connected compo-
nents marked as 2D dots in the previous step. A two dimensional
gradient magnitude image is computed by passing a one dimen-
sional first derivative of Gaussian along thex andy directions and
then taking the magnitude of these two values at each pixel. The
centroid of the colored blob is computed by taking a weighted sum
of positions of the pixel(x; y) coordinates which lie inside the gra-
dient mask, where the weights are equal to the gradient magnitude.

3.1.1 Training the color classifier

We create one color classifier for each of the camera views, since
the lighting can vary greatly between cameras. In the following
discussion we build the classifier for a single camera.

The data for the color classifier is created by manually marking
the pixels of frame zero that belong to a particular fiducial color.
This is repeated for each of the six colors. The marked data is
stored as 6color class images, each of which is created from the
original camera image by setting all of the pixelsnotmarked as the
given color to black (we use black as an out-of-class label because
pure black never occurred in any of our images). A typical color
class image for the yellow dots is shown in Figure 3. We generated
the color class images using the “magic wand” tool available in
many image editing programs.

A seventh color class image is automatically created for the
background color (e.g., skin and hair) by labeling as out-of-class
any pixel in the image which was previously marked as a fiducial
in any of the fiducial color class images. This produces an image
of the face with black holes where the fiducials were.

The color classifier is a discrete approximation to a nearest
neighbor classifier [12]. In a nearest neighbor classifier the item

Figure 3: An image of the actress’s face. A typical training set for
the yellow dots, selected from the image on the left.

to be classified is given the label of the closest item in the training
set, which in our case is the color data contained in the color class
images. Because we have 3 dimensional data we can approximate
the nearest neighbor classifier by subdividing the RGB cube uni-
formly into voxels, and assigning class labels to each RGB voxel.
To classify a new color you quantize its RGB values and then index
into the cube to extract the label.

To create the color classifier we use the color class images to
assign color classes to each voxel. Assume that the color class
image for color classCi hasn distinct colors,c1:::cn. Each of
the voxels corresponding to the colorcj is labeled with the color
classCi. Once the voxels for all of the known colors are labeled,
the remaining unlabeled voxels are assigned labels by searching
through all of the colors in each color classCi and finding the color
closest top in RGB space. The colorp is given the label of the
color class containing the nearest color. Nearness in our case is the
Euclidean distance between the two points in RGB space.

If colors from different color classes map to the same sub-cube,
we label that sub-cube with the background label since it is more
important to avoid incorrect dot labeling than it is to try to label
every dot pixel. For the results shown in this paper we quantized
the RGB color cube into a 32x32x32 lattice.

3.2 Camera to camera dot correspondence and
3D reconstruction

In order to capture good images of both the front and the sides of
the face the cameras were spaced far apart. Because there are such
extreme changes in perspective between the different camera views,
the projected images of the colored fiducials are very different. Fig-
ure 5 shows some examples of the changes in fiducial shape and
color between camera views. Establishing fiducial correspondence
between camera views by using image matching techniques such as
optical flow or template matching would be difficult and likely to
generate incorrect matches. In addition, most of the camera views
will only see a fraction of the fiducials so the correspondence has to
be robust enough to cope with occlusion of fiducials in some of the
camera views. With the large number of fiducials we have placed
on the face false matches are also quite likely and these must be
detected and removed. We used ray tracing in combination with
a RANSAC [7] like algorithm to establish fiducial correspondence
and to compute accurate 3D dot positions. This algorithm is robust
to occlusion and to false matches as well.

First, all potential point correspondences between cameras are
generated. If there arek cameras, andn 2D dots in each camera

view then
�

k

2

�
n2 point correspondences will be tested. Each

correspondence gives rise to a 3D candidate point defined as the
closest point of intersection of rays cast from the 2D dots in the

Image

Classified
pixels

Field 1

Field 2 Connected components
in fields 1 & 2

Merging with
closet neighbor

Figure 4: Finding the 2D dots in the images.

two camera views. The 3D candidate point is projected into each
of the two camera views used to generate it. If the projection is
further than a user-defined epsilon, in our case two pixels, from the
centroid of either 2D point then the point is discarded as a potential
3D point candidate. All the 3D candidate points which remain are
added to the 3D point list.

Each of the points in the 3D point list is projected into a refer-
ence camera view which is the camera with the best view of all the
fiducials on the face. If the projected point lies within two pixels of
the centroid of a 2D dot visible in the reference camera view then
it is added to the list of potential 3D candidate positions for that 2D
dot. This is the list of potential 3D matches for a given 2D dot.

For each 3D point in the potential 3D match list,
�

n

3

�
possi-

ble combinations of three points in the 3D point list are computed
and the combination with the smallest variance is chosen as the true
3D position. Then all 3D points which lie within a user defined
distance, in our case the sphere subtended by a cone two pixels
in radius at the distance of the 3D point, are averaged to generate
the final 3D dot position. This 3D dot position is assigned to the
corresponding 2D dot in the reference camera view.

This algorithm could clearly be made more efficient because
many more 3D candidate points are generated then necessary. One
could search for potential camera to camera correspondences only
along the epipolar lines and use a variety of space subdivision tech-
niques to find 3D candidate points to test for a given 2D point.
However, because the number of fiducials in each color set is small
(never more than40) both steps of this simple and robust algorithm
are reasonably fast, taking less than a second to generate the 2D dot
correspondences and 3D dot positions for six camera views. The
2D dot correspondence calculation is dominated by the time taken
to read in the images of the six camera views and to locate the 2D
dots in each view. Consequently, the extra complexity of more ef-
ficient stereo matching algorithms does not appear to be justified.

3.3 Frame to frame dot correspondence and la-
beling

We now have a set of unlabeled 3D dot locations for each frame.
We need to assign, across the entire sequence, consistent labels to
the 3D dot locations. We do this by defining a reference set of
dotsD and matching this set to the 3D dot locations given for each
frame. We can then describe how the reference dots move over time
as follows: Letdj 2 D be the neutral location for the reference dot
j. We define the position ofdj at framei by an offset, i.e.,

d
i
j = dj + ~v

i
j (1)

Because there are thousands of frames and 182 dots in our data

Figure 5: Dot variation. Left: Two dots seen from three different
cameras (the purple dot is occluded in one camera’s view). Right:
A single dot seen from a single camera but in two different frames.

set we would like the correspondence computation to be automatic
and quite efficient. To simplify the matching we used a fiducial
pattern that separates fiducials of a given color as much as possi-
ble so that only a small subset of the unlabeled 3D dots need be
checked for a best match. Unfortunately, simple nearest neighbor
matching fails for several reasons: some fiducials occasionally dis-
appear, some 3D dots may move more than the average distance
between 3D dots of the same color, and occasionally extraneous 3D
dots appear, caused by highlights in the eyes or teeth. Fortunately,
neighboring fiducials move similarly and we can exploit this fact,
modifying the nearest neighbor matching algorithm so that it is still
efficient but also robust.

For each framei we first move the reference dots to the loca-
tions found in the previous frame. Next, we find a (possibly incom-
plete) match between the reference dots and the 3D dot locations
for framei. We then move each matched reference dot to the loca-
tion of its corresponding 3D dot. If a reference dot does not have
a match we “guess” a new location for it by moving it in the same
direction as its neighbors. We then perform a final matching step.

3.3.1 Acquiring the reference set of dots

The cyberware scan was taken with the dots glued onto the face.
Since the dots are visible in both the geometric and color informa-
tion of the scan, we can place the reference dots on the cyberware
model by manually clicking on the model. We next need to align
the reference dots and the model with the 3D dot locations found in
frame zero. The coordinate system for the cyberware scan differs
from the one used for the 3D dot locations, but only by a rigid body
motion plus a uniform scale. We find this transform as follows: we
first hand-align the 3D dots from frame zero with the reference dots
acquired from the scan, then call the matching routine described in
Section 3.3.2 below to find the correspondence between the 3D dot
locations,fi, and the reference dots,di. We use the method de-
scribed in [9] to find the exact transform,T , between the two sets
of dots. Finally, we replace the temporary locations of the reference
dots withdi = fi.
and useT�1 to transform the cyberware model into the coordinate
system of the video 3D dot locations.

3.3.2 The matching routine

The matching routine is run twice per frame. We first perform a
conservative match, move the reference dots (as described below in
Section 3.3.3), then perform a second, less conservative, match. By
moving the reference dots between matches we reduce the problem
of large 3D dot position displacements.

0

1

3

2

Reference dot

3D dot

a

b

c

d

Connected components
of edge graph

Sort and pair

0

1

3

2

1

3

2

0

a

b

c

d

a

b

c

d

Figure 6: Matching dots.

Missing 3D dot

Big
epsilon

Small
epsilon

Extra 3D dotReference dot

3D dot

Big
epsilon

Small
epsilon

Big
epsilon

Small
epsilon

Figure 7: Examples of extra and missing dots and the effect of
different values for�.

The matching routine can be thought of as a graph problem
where an edge between a reference dot and a frame dot indicates
that the dots are potentially paired (see Figure 6). The matching
routine proceeds in several steps; first, for each reference dot we
add an edge for every 3D dot of the same color that is within a given
distance�. We then search for connected components in the graph
that have an equal number of 3D and reference dots (most con-
nected components will have exactly two dots, one of each type).
We sort the dots in the vertical dimension of the plane of the face
and use the resulting ordering to pair up the reference dots with the
3D dot locations (see Figure 6).

In the video sequences we captured, the difference in the 3D dot
positions from frame to frame varied from zero to about1:5 times
the average distance separating closest dots. To adjust for this, we
run the matching routine with several values of� and pick the run
that generates the most matches. Different choices of� produce
different results (see Figure 7): if� is too small we may not find
matches for 3D dots that have moved a lot. If� is too large then
the connected components in the graph will expand to include too
many 3D dots. We try approximately five distances ranging from
0:5 to 1:5 of the average distance between closest reference dots.

If we are doing the second match for the frame we add an ad-
ditional step to locate matches where a dot may be missing (or ex-
tra). We take those dots which have not been matched and run the
matching routine on them with smaller and smaller� values. This
resolves situations such as the one shown on the right of Figure 7.

3.3.3 Moving the dots

We move all of the matched reference dots to their new locations
then interpolate the locations for the remaining, unmatched refer-
ence dots by using their nearest, matched neighbors. For each ref-
erence dot we define a valid set of neighbors using the routine in
Section 4.2.1, ignoring the blending values returned by the routine.

To move an unmatched dotdk we use a combination of the
offsets of all of its valid neighbors (refer to Equation 1). Letnk �
D be the set of neighbor dots for dotdk. Let n̂k be the set of
neighbors that have a match for the current framei. Provided̂nk 6=
;, the offset vector for dotdik is calculated as follows: let~vij =

dij � dj be the offset of dotj (recall thatdj is the initial position
for the reference dotj).

~v
i
k =

1

jjn̂kjj

X
di
j
2n̂k

~v
i
j

If the dot has no matched neighbors we repeat as necessary, treating
the moved, unmatched reference dots as matched dots. Eventually,
the movements will propagate through all of the reference dots.

4 Mesh construction and deformation

4.1 Constructing the mesh

To construct a mesh we begin with a cyberware scan of the head.
Because we later need to align the scan with the 3D video dot data,
we scanned the head with the fiducials glued on. The resulting scan
suffers from four problems:

� The fluorescent fiducials caused “bumps” on the mesh.

� Several parts of the mesh were not adequately scanned, namely,
the ears, one side of the nose, the eyes, and under the chin.
These were manually corrected.

� The mesh does not have an opening for the mouth.

� The scan has too many polygons.

The bumps caused by the fluorescent fiducials were removed by
selecting the vertices which were out of place (approximately 10-30
surrounding each dot) and automatically finding new locations for
them by blending between four correct neighbors. Since the scan
produces a rectangular grid of vertices we can pick the neighbors
to blend between in(u; v) space, i.e., the nearest valid neighbors in
the positive and negativeu andv direction.

The polygons at the mouth were split and then filled with six
rows of polygons located slightly behind the lips. We map the teeth
and tongue onto these polygons when the mouth is open.

We reduced the number of polygons in the mesh from approxi-
mately460; 000 to 4800 using Hoppe’s simplification method [8].

4.2 Moving the mesh

The vertices are moved by a linear combination of the offsets of
the nearest dots (refer to Equation 1). The linear combination for
each vertexvj is expressed as a set of blend coefficients,�

j
k, one

for each dot, such that
P

dk2D
�jk = 1 (most of the�jks will be

zero). The new locationpij of the vertexvj at framei is then

p
i
j = pj +

X
k

�
j
kjjd

i
k � dkjj

wherepj is the initial location of the vertexvj .
For most of the vertices the�jks are a weighted average of the

closest dots. The vertices in the eyes, mouth, behind the mouth,
and outside of the facial area are treated slightly differently since,
for example, we do not want the dots on the lower lip influencing
vertices on the upper part of the lip. Also, although we tried to keep
the head as still as possible, there is still some residual rigid body
motion. We need to compensate for this for those vertices that are
not directly influenced by a dot (e.g., the back of the head).

We use a two-step process to assign the blend coefficients to
the vertices. We first find blend coefficients for a grid of points
evenly distributed across the face, then use this grid of points to

Figure 8: Left: The original dots plus the extra dots (in white). The
labeling curves are shown in light green. Right: The grid of dots.
Outline dots are green or blue.

assign blend coefficients to the vertices. This two-step process is
helpful because both the fluorescent fiducials and the mesh vertices
are unevenly distributed across the face, making it difficult to get
smoothly changing blend coefficients.

The grid consists of roughly1400 points, evenly distributed and
placed by hand to follow the contours of the face (see Figure 8).
The points along the nasolabial furrows, nostrils, eyes, and lips are
treated slightly differently than the other points to avoid blending
across features such as the lips.

Because we want the mesh movement to go to zero outside of
the face, we add another set of unmoving dots to the reference set.
These new dots form a ring around the face (see Figure 8) enclosing
all of the reference dots. For each frame we determine the rigid
body motion of the head (if any) using a subset of those reference
dots which are relatively stable. This rigid body transformation is
then applied to the new dots.

We label the dots, grid points, and vertices as beingabove, be-
low, or neither with respect to each of the eyes and the mouth.
Dots which areabovea given feature can not be combined with
dots which arebelowthat same feature (or vice-versa). Labeling is
accomplished using three curves, one for each of the eyes and one
for the mouth. Dots directly above (or below) a curve are labeled
asabove(or below) that curve. Otherwise, they are labeledneither.

4.2.1 Assigning blends to the grid points

The algorithm for assigning blends to the grid points first finds the
closest dots, assigns blends, then filters to more evenly distribute
the blends.

Finding the ideal set of reference dots to influence a grid point
is complicated because the reference dots are not evenly distributed
across the face. The algorithm attempts to find two or more dots
distributed in a rough circle around the given grid point. To do
this we both compensate for the dot density, by setting the search
distance using the two closest dots, and by checking for dots which
will both “pull” in the same direction.

To find the closest dots to the grid pointpwe first find�1 and�2,
the distance to the closest and second closest dot, respectively. Let
Dn � D be the set of dots within1:8 �1+�2

2
distance ofp whose

labels do not conflict withp’s label. Next, we check for pairs of
dots that are more or less in the same direction fromp and remove
the furthest one. More precisely, letv̂i be the normalized vector
from p to the dotdi 2 Dn and letv̂j be the normalized vector from
p to the dotdj 2 Dn. If v̂1 � v̂2 > 0:8 then remove the furthest of
di anddj from the setDn.

We assign blend values based on the distance of the dots from
p. If the dot is not inDn then its corresponding� value is0. For

Figure 9: Masks surrounding important facial features. The gradi-
ent of a blurred version of this mask is used to orient the low-pass
filters used in the dot removal process.

the dots inDn let li = 1:0
jjdi�pjj

. Then the corresponding�’s are

�i =
li

(
P

di2Dn
li)

We next filter the blend coefficients for the grid points. For each
grid point we find the closest grid points – since the grid points
are distributed in a rough grid there will usually be4 neighboring
points – using the above routine (replacing the dots with the grid
points). We special case the outlining grid points; they are only
blended with other outlining grid points. The new blend coeffi-
cients are found by taking0:75 of the grid point’s blend coefficients
and0:25 of the average of the neighboring grid point’s coefficients.
More formally, letgi = [�0; : : : ; �n] be the vector of blend co-
efficients for the grid pointi. Then the new vectorg0i is found as
follows, whereNi is the set of neighboring grid points for the grid
point i:

g
0
i = 0:75gi +

0:25

jjNijj

X
j2Ni

gj

We apply this filter twice to simulate a wide low pass filter.
To find the blend coefficients for the vertices of the mesh we

find the closest grid point with the same label as the vertex and copy
the blend coefficients. The only exception to this is the vertices for
the polygons inside of the mouth. For these vertices we take� of
the closest grid point on the top lip and1:0 � � of the closest grid
point on the bottom lip. The� values are0:8, 0:6, 0:4, 0:25, and
0:1 from top to bottom of the mouth polygons.

5 Dot removal

Before we create the textures, the dots and their associated illumi-
nation effects have to be removed from the camera images. Inter-
reflection effects are surprisingly noticeable because some parts of
the face fold dramatically, bringing the reflective surface of some
dots into close proximity with the skin. This is a big problem along
the naso-labial furrow where diffuse interreflection from the col-
ored dots onto the face significantly alters the skin color.

First, the dot colors are removed from each of the six camera
image sequences by substituting skin texture for pixels which are
covered by colored dots. Next, diffuse interreflection effects and
any remaining color casts from stray pixels that have not been prop-
erly substituted are removed.

The skin texture substitution begins by finding the pixels which
correspond to colored dots. The nearest neighbor color classifier

Figure 10: Standard cylindrical texture map. Warped texture map
that focuses on the face, and particularly on the eyes and mouth.
The warp is defined by the line pairs shown in white.

described in Section 3.1.1 is used to mark all pixels which have
any of the dot colors. A special training set is used since in this
case false positives are much less detrimental than they are for the
dot tracking case. Also, there is no need to distinguish between dot
colors, only between dot colors and the background colors. The
training set is created to capture as much of the dot color and the
boundary region between dots and the background colors as possi-
ble.

A dot mask is generated by applying the classifier to each pixel
in the image. The mask is grown by a few pixels to account for any
remaining pixels which might be contaminated by the dot color.
The dot mask marks all pixels which must have skin texture substi-
tuted.

The skin texture is broken into low spatial frequency and high
frequency components. The low frequency components of the skin
texture are interpolated by using a directional low pass filter ori-
ented parallel to features that might introduce intensity discontinu-
ities. This prevents bleeding of colors across sharp intensity bound-
aries such as the boundary between the lips and the lighter colored
regions around the mouth. The directionality of the filter is con-
trolled by a two dimensional mask which is the projection into the
image plane of a three dimensional polygon mask lying on the 3D
face model. Because the polygon mask is fixed on the 3D mesh,
the 2D projection of the polygon mask stays in registration with
the texture map as the face deforms.

All of the important intensity gradients have their own polygon
mask: the eyes, the eyebrows, the lips, and the naso-labial furrows
(see 9). The 2D polygon masks are filled with white and the re-
gion of the image outside the masks is filled with black to create an
image. This image is low-pass filtered. The intensity of the result-
ing image is used to control how directional the filter is. The filter
is circularly symmetric where the image is black, i.e., far from in-
tensity discontinuities, and it is very directional where the image
is white. The directional filter is oriented so that its long axis is
orthogonal to the gradient of this image.

The high frequency skin texture is created from a rectangular
sample of skin texture taken from a part of the face that is free
of dots. The skin sample is highpass filtered to eliminate low fre-
quency components. At each dot mask pixel location the highpass
filtered skin texture is first registered to the center of the 2D bound-
ing box of the connected dot region and then added to the low fre-
quency interpolated skin texture.

The remaining diffuse interreflection effects are removed by
clamping the hue of the skin color to a narrow range determined
from the actual skin colors. First the pixel values are converted
from RGB to HSV space and then any hue outside the legal range
is clamped to the extremes of the range. Pixels in the eyes and

mouth, found using the eye and lip masks shown in Figure 9, are
left unchanged.

Some temporal variation remains in the substituted skin texture
due to imperfect registration of the high frequency texture from
frame to frame. A low pass temporal filter is applied to the dot mask
regions in the texture images, because in the texture map space
the dots are relatively motionless. This temporal filter effectively
eliminates the temporal texture substitution artifacts.

6 Creating the texture maps

Figure 11 is a flowchart of the texture creation process. We create
texture maps for every frame of our animation in a four-step pro-
cess. The first two steps are performed only once per mesh. First
we define a parameterization of the mesh. Second, using this pa-
rameterization, we create ageometry mapcontaining a location on
the mesh for each texel. Third, for every frame, we create six pre-
liminary texture maps, one from each camera image, along with
weight maps. The weight maps indicate the relative quality of the
data from the different cameras. Fourth, we take a weighted aver-
age of these texture maps to make our final texture map.

We create an initial set of texture coordinates for the head by
tilting the mesh back 10 degrees to expose the nostrils and pro-
jecting the mesh vertices onto a cylinder. A texture map generated
using this parametrization is shown on the left of Figure 10. We
specify a set of line pairs and warp the texture coordinates using
the technique described by Beier and Neely[1]. This parametriza-
tion results in the texture map shown on the right of Figure 10.
Only the front of the head is textured with data from the six video
streams.

Next we create the geometry map containing a mesh location
for each texel. A mesh location is a triple(k; �1; �2) specifying
a trianglek and barycentric coordinates in the triangle (�1, �2,
1 � �1 � �2). To find the triangle identifierk for texel (u; v) we
exhaustively search through the mesh’s triangles to find the one that
contains the texture coordinates(u; v). We then set the�is to be
the barycentric coordinates of the point(u; v) in the texture coordi-
nates of the trianglek. When finding the mesh location for a pixel
we already know in which triangles its neighbors above and to the
left lie. Therefore, we speed our search by first searching through
these triangles and their neighbors. However, the time required for
this task is not critical as the geometry map need only be created
once.

Next we create preliminary texture maps for framef one for
each camera. This is a modified version of the technique described
in [11]. To create the texture map for camerac, we begin by de-
forming the mesh into its framef position. Then, for each texel,
we get its mesh location,(k; �1; �2), from the geometry map. With
the 3D coordinates of trianglek’s vertices and the barycentric coor-
dinates�i, we compute the texel’s 3D locationt. We transformt by
camerac’s projection matrix to obtain a location,(x; y), on camera
c’s image plane. We then color the texel with the color from cam-
erac’s image at(x; y). We set the texel’s weight to the dot product
of the mesh normal att, n̂, with the direction back to the camera,
d̂ (see Figure 12). Negative values are clamped to zero. Hence,
weights are low where the camera’s view is glancing. However,
this weight map is not smooth at triangle boundaries, so we smooth
it by convolving it with a Gaussian kernel.

Last, we merge the six preliminary texture maps. As they do
not align perfectly, averaging them blurs the texture and loses de-
tail. Therefore, we use only the texture map of our bottom, center
camera for the center 46 % of the final texture map. We smoothly
transition (over 23 pixels) to using a weighted average of each pre-
liminary texture map at the sides.

Color
classifier

Cyber ware scan
of actress’ head

Video capture
of actress
6 cameras

Draw mask
curves

Adjust
texture map

Reduce mesh

Cylindrical
projection
of mesh

Remove dots
from images

Project images
onto deformed

meshDeform mesh

Combine
images into
texture map

Clean up mesh
Split mouth Mask

curves

Deform
mask curves and

project

3D dot
movements
over time

Texture
coordinates;

Geometry map

Texture
maps for

each frame

Mesh

Done once

Manual step
done only once

Automatic
step

Output
data

Data capture

Six images, all frames

3D data, all frames

Frame zero

Data

Legend

Video capture of
calibration pattern

6 cameras

Mark corners

Calibrate
cameras

Camera
parameters

Done once

Figure 11: Creating the texture maps.

We texture the parts of the head not covered by the aforemen-
tioned texture maps with the captured reflectance data from our Cy-
berware scan, modified in two ways. First, because we replaced the
mesh’s ears with ears from a stock mesh (Section 4.1), we moved
the ears in the texture to achieve better registration. Second, we
set the alpha channel to zero (with a soft edge) in the region of the
texture for the front of the head. Then we render in two passes to
create an image of the head with both texture maps applied.

7 Compression

7.1 Principal Components Analysis

The geometric and texture map data have different statistical char-
acteristics and are best compressed in different ways. There is sig-
nificant long-term temporal correlation in the geometric data since
similar facial expressions occur throughout the sequence. The short
term correlation of the texture data is significantly increased over
that of the raw video footage because in the texture image space
the fiducials are essentially motionless. This eliminates most of the
intensity changes associated with movement and leaves primarily
shading changes. Shading changes tend to have low spatial fre-
quencies and are highly compressible. Compression schemes such
as MPEG, which can take advantage of short term temporal corre-
lation, can exploit this increase in short term correlation.

For the geometric data, one way to exploit the long term corre-
lation is to use principal component analysis. If we represent our
data set as a matrixA, where framei of the data maps columni of
A, then the first principal component ofA is

max
u

(AT
u)T (AT

u) (2)

Theu which maximizes Equation 2 is the eigenvector associated
with the largest eigenvalue ofAAT , which is also the value of the
maximum. Succeeding principal components are defined similarly,
except that they are required to be orthogonal to all preceding prin-
cipal components, i.e.,uTi uj = 0 for j 6= i. The principal com-
ponents form an orthonormal basis set represented by the matrixU
where the columns ofU are the principal components ofA ordered
by eigenvalue size with the most significant principal component in
the first column ofU .

The data in theA matrix can be projected onto the principal
component basis as follows:

W = U
T
A

Rowi of W is the projection of columnAi onto the basis vectorui.
More precisely, thejth element in rowi of W corresponds to the
projection of framej of the original data onto theith basis vector.
We will call the elements of theW matrix projectioncoefficients.

Similarly,A can be reconstructed exactly fromW by multipli-
cation by the basis set, i.e.,A = UW .
The most important property of the principal components for our
purposes is that they are the best linear basis set for reconstruction
in thel2 norm sense. For any given matrixUk, wherek is the num-
ber of columns of the matrix andk < rank(A), the reconstruction
error

e = jjA� UkU
T
k Ajj

2

F (3)

wherejjBjj2F is the Frobenius norm defined to be

jjBjj2F =

mX
i=1

nX
j=1

b
2
ij (4)

will be minimized ifUk is the matrix containing thek most signif-
icant principal components ofA.

We can compress a data setA by quantizing the elements of its
correspondingW andU matrices and entropy coding them. Since
the compressed data cannot be reconstructed without the principal
component basis vectors both theW andU matrices have to be
compressed. The basis vectors add overhead that is not present
with basis sets that can be computed independent of the original
data set, such as the DCT basis.

For data sequences that have no particular structure the extra
overhead of the basis vectors would probably out-weigh any gain in
compression efficiency. However, for data sets with regular frame
to frame structure the residual error for reconstruction with the
principal component basis vectors can be much smaller than for
other bases. This reduction in residual error can be great enough to
compensate for the overhead bits of the basis vectors.

The principal components can be computed using the singular
value decomposition (SVD) [13]. Efficient implementations of this
algorithm are widely available. The SVD of a matrixA is

Figure 12: Creating the preliminary texture map.

A = U�V T (5)

where the columns ofU are the eigenvectors ofAAT , the singular
values,�i, along the diagonal matrix� are the square roots of the
eigenvalues ofAAT , and the columns ofV are the eigenvectors
of ATA. The ith column ofU is the ith principal component of
A. Computing the firstk left singular vectors ofA is equivalent to
computing the firstk principal components.

7.2 Geometric Data

The geometric data has the long term temporal coherence proper-
ties mentioned above since the motion of the face is highly struc-
tured. The overhead of the basis vectors for the geometric data is
fixed because there are only182 fiducials on the face. The maxi-
mum number of basis vectors is182 � 3 since there are three num-
bers,x, y, andz, associated with each fiducial. Consequently, the
basis vector overhead steadily diminishes as the length of the ani-
mation sequence increases.

The geometric data is mapped to matrix form by taking the 3D
offset data for theith frame and mapping it theith column of the
data matrixAg. The firstk principal components,Ug , of Ag are
computed andAg is projected into theUg basis to give the projec-
tion coefficientsWg.

There is significant correlation between the columns of projec-
tion coefficients because the motion of the dots is relatively smooth
over time. We can reduce the entropy of the quantized projection
coefficients by temporally predicting the projection coefficients in
columni from columni�1, i.e.,ci = ci�1+�i where we encode
�i.

For our data set, only the projection coefficients associated with
the first 45 principal components, corresponding to the first 45 rows
of Wg, have significant temporal correlation so only the first 45
rows are temporally predicted. The remaining rows are entropy
coded directly. After the temporal prediction the entropy is reduced
by about 20 percent (Figure 13).

The basis vectors are compressed by choosing a peak error rate
and then varying the number of quantization levels allocated to each
vector based on the standard deviation of the projection coefficients
for each vector.

We visually examined animation sequences withWg andUg
compressed at a variety of peak error rates and chose a level which
resulted in undetectable geometric jitter in reconstructed animation.
The entropy ofWg for this error level is 26 Kbits per second and
the entropy ofUg is 13 kbits per second for a total of 40 kbits per
second for all the geometric data. These values were computed for
our 3330 frame animation sequence.

8 Results

Figure 16 shows some typical frames from a reconstructed sequence
of 3D facial expressions. These frames are taken from a 3330 frame

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Coefficient index

E
nt

ro
py

, b
its

/s
am

pl
e

Without prediction

With prediction

Figure 13: Reduction in entropy after temporal prediction.

animation in which the actress makes random expressions while
reading from a script2.

The facial expressions look remarkably life-like. The anima-
tion sequence is similarly striking. Virtually all evidence of the
colored fiducials and diffuse interreflection artifacts is gone, which
is surprising considering that in some regions of the face, especially
around the lips, there is very little of the actress’ skin visible – most
of the area is covered by colored fiducials.

Both the accurate 3D geometry and the accurate face texture
contribute to the believability of the reconstructed expressions. Oc-
clusion contours look correct and the subtle details of face geom-
etry that are very difficult to capture as geometric data show up
well in the texture images. Important examples of this occur at
the nasolabial furrow which runs from just above the nares down
to slightly below the lips, eyebrows, and eyes. Forehead furrows
and wrinkles also are captured. To recreate these features using
geometric data rather than texture data would require an extremely
detailed 3D capture of the face geometry and a resulting high poly-
gon count in the 3D model. In addition, shading these details prop-
erly if they were represented as geometry would be difficult since it
would require computing shadows and possibly even diffuse inter-
reflection effects in order to look correct. Subtle shading changes
on the smooth parts of the skin, most prominent at the cheekbones,
are also captured well in the texture images.

There are still visible artifacts in the animation, some of which
are polygonization or shading artifacts, others of which arise be-
cause of limitations in our current implementation.

Some polygonization of the face surface is visible, especially
along the chin contour, because the front surface of the head con-
tains only4500 polygons. This is not a limitation of the algorithm –
we chose this number of polygons because we wanted to verify that
believable facial animation could be done at polygon resolutions
low enough to potentially be displayed in real time on inexpensive
($200) 3D graphics cards3. For film or television work, where real
time rendering is not an issue, the polygon count can be made much
higher and the polygonization artifacts will disappear. As graphics
hardware becomes faster the differential in quality between offline
and online rendered face images will diminish.

Several artifacts are simply the result of our current implemen-
tation. For example, occasionally the edge of the face, the tips
of the nares, and the eyebrows appear to jitter. This usually oc-
curs when dots are lost, either by falling below the minimum size
threshold or by not being visible to three or more cameras. When
a dot is lost the algorithm synthesizes dot position data which is

2The rubber cap on the actress’ head was used to keep her hair out of her face.
3 In this paper we have not addressed the issue of real time texture decompression

and rendering of the face model, but we plan to do so in future work

usually incorrect enough that it is visible as jitter. More cameras,
or better placement of the cameras, would eliminate this problem.
However, overall the image is extremely stable.

In retrospect, a mesh constructed by hand with the correct ge-
ometry and then fit to the cyberware data [10] would be much sim-
pler and possibly reduce some of the polygonization artifacts.

Another implementation artifact that becomes most visible when
the head is viewed near profile is that the teeth and tongue appear
slightly distorted. This is because we do not use correct 3D models
to represent them. Instead, the texture map of the teeth and tongue
is projected onto a sheet of polygons stretching between the lips. It
is possible that the teeth and tongue could be tracked using more
sophisticated computer vision techniques and then more correct ge-
ometric models could be used.

Shading artifacts represent an intrinsic limitation of the algo-
rithm. The highlights on the eyes and skin remain in fixed positions
regardless of point of view, and shadowing is fixed at the time the
video is captured. However, for many applications this should not
be a limitation because these artifacts are surprisingly subtle. Most
people do not notice that the shading is incorrect until it is pointed
out to them, and even then frequently do not find it particularly ob-
jectionable. The highlights on the eyes can probably be corrected
by building a 3D eye model and creating synthetic highlights ap-
propriate for the viewing situation. Correcting the skin shading and
self shadowing artifacts is more difficult. The former will require
very realistic and efficient skin reflectance models while the lat-
ter will require significant improvements in rendering performance,
especially if the shadowing effect of area light sources is to be ade-
quately modeled. When both these problems are solved then it will
no longer be necessary to capture the live video sequence – only the
3D geometric data and skin reflectance properties will be needed.

The compression numbers are quite good. Figure 14 shows
a single frame from the original sequence, the same frame com-
pressed by the MPEG4 codec at 460 Kbps and at 260 KBps. All
of the images look quite good. The animated sequences also look
good, with the 260 KBps sequence just beginning to show notice-
able compression artifacts. The 260 KBps video is well within the
bandwidth of single speed CDROM drives. This data rate is proba-
bly low enough that decompression could be performed in real time
in software on the fastest personal computers so there is the poten-
tial for real time display of the resulting animations. We intend to
investigate this possibility in future work.

There is still room for significant improvement in our compres-
sion. A better mesh parameterization would significantly reduce
the number of bits needed to encode the eyes, which distort signif-
icantly over time in the texture map space. Also the teeth, inner
edges of the lips, and the tongue could potentially be tracked over
time and at least partially stabilized, resulting in a significant re-
duction in bit rate for the mouth region. Since these two regions
account for the majority of the bit budget, the potential for further
reduction in bit rate is large.

9 Conclusion

The system produces remarkably lifelike reconstructions of facial
expressions recorded from live actors’ performances. The accurate
3D tracking of a large number of points on the face results in an
accurate 3D model of facial expression. The texture map sequence
captured simultaneously with the 3D deformation data captures de-
tails of expression that would be difficult to capture any other way.
By using the 3D deformation information to register the texture
maps from frame to frame the variance of the texture map sequence
is significantly reduced which increases its compressibility. Image
quality of 30 frame per second animations, reconstructed at approx-

imately 300 by 400 pixels, is still good at data rates as low as 240
Kbits per second, and there is significant potential for lowering this
bit rate even further. Because the bit overhead for the geometric
data is low in comparison to the texture data one can get a 3D talk-
ing head, with all the attendant flexibility, for little more than the
cost of a conventional video sequence. With the true 3D model of
facial expression, the animation can be viewed from any angle and
placed in a 3D virtual environment, making it much more flexible
than conventional video.

References

[1] BEIER, T., AND NEELY, S. Feature-based image metamor-
phosis. InComputer Graphics (SIGGRAPH ’92 Proceedings)
(July 1992), E. E. Catmull, Ed., vol. 26, pp. 35–42.

[2] BREGLER, C., COVELL, M., AND SLANEY, M. Video
rewrite: Driving visual speech with audio.Computer Graph-
ics 31, 2 (Aug. 1997), 353–361.

[3] CASSELL, J., PELACHAUD, C., BADLER, N., STEEDMAN,
M., ACHORN, B., BECKET, T., DOUVILLE , B., PREVOST,
S., AND STONE, M. Animated conversation: Rule-based
generation of facial expression, gesture and spoken intona-
tion for multiple conversational agents.Computer Graphics
28, 2 (Aug. 1994), 413–420.

[4] DECARLO, D., AND METAXAS, D. The integration of op-
tical flow and deformable models with applications to human
face shape and motion estimation.Proceedings CVPR(1996),
231–238.

[5] ESSA, I., AND PENTLAND, A. Coding, analysis, interpreta-
tion and recognition of facial expressions.IEEE Transactions
on Pattern Analysis and Machine Intelligence 19, 7 (1997),
757–763.

[6] FAUGERAS, O. Three-dimensional computer vision. MIT
Press, Cambridge, MA, 1993.

[7] FISCHLER, M. A., AND BOOLES, R. C. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography.Communications
of the ACM 24, 6 (Aug. 1981), 381–395.

[8] HOPPE, H. Progressive meshes. InSIGGRAPH 96 Con-
ference Proceedings(Aug. 1996), H. Rushmeier, Ed., An-
nual Conference Series, ACM SIGGRAPH, Addison Wesley,
pp. 99–108. held in New Orleans, Louisiana, 04-09 August
1996.

[9] HORN, B. K. P. Closed-form solution of absolute orienta-
tion using unit quaternions.Journal of the Optical Society of
America 4, 4 (Apr. 1987).

[10] LEE, Y., TERZOPOULOS, D., AND WATERS, K. Realistic
modeling for facial animation.Computer Graphics 29, 2 (July
1995), 55–62.

[11] PIGHIN, F., AUSLANDER, J., LISHINSKI, D., SZELISKI , R.,
AND SALESIN, D. Realistic facial animation using image
based 3d morphing. Tech. Report TR-97-01-03, Department
of Computer Science and Engineering, University of Wash-
ington, Seattle, Wa, 1997.

[12] SCHÜRMANN, J. Pattern Classification: A Unified View of
Statistical and Neural Approaches. John Wiley and Sons, Inc.,
New York, 1996.

Figure 14: Left to Right: Mesh with uncompressed textures, compressed to 400 kbits/sec, and compressed to 200 kbits/sec

[13] STRANG. Linear Algebra and its Application. HBJ, 1988.

[14] WATERS, K. A muscle model for animating three-
dimensional facial expression. InComputer Graphics (SIG-
GRAPH ’87 Proceedings)(July 1987), M. C. Stone, Ed.,
vol. 21, pp. 17–24.

[15] WILLIAMS , L. Performance-driven facial animation.Com-
puter Graphics 24, 2 (Aug. 1990), 235–242.

Figure 15: Face before and after dot removal, with details showing the steps in the dot removal process. From left to right, top to bottom:
Face with dots, dots replaced with low frequency skin texture, high frequency skin texture added, hue clamped.

Figure 16: Sequence of rendered images of textured mesh.

Synthesizing Realistic Facial Expressions from Photographs

Frédéric Pighin Jamie Hecker Dani Lischinskiy Richard Szeliskiz David H. Salesin

University of Washington yThe Hebrew University zMicrosoft Research

Abstract

We present new techniques for creating photorealistic textured 3D
facial models from photographs of a human subject, and for creat-
ing smooth transitions between different facial expressions by mor-
phing between these different models. Starting from several uncali-
brated views of a human subject, we employ a user-assisted tech-
nique to recover the camera poses corresponding to the views as
well as the 3D coordinates of a sparse set of chosen locations on the
subject’s face. A scattered data interpolation technique is then used
to deform a generic face mesh to fit the particular geometry of the
subject’s face. Having recovered the camera poses and the facial ge-
ometry, we extract from the input images one or more texture maps
for the model. This process is repeated for several facial expressions
of a particular subject. To generate transitions between these facial
expressions we use 3D shape morphing between the corresponding
face models, while at the same time blending the corresponding tex-
tures. Using our technique, we have been able to generate highly re-
alistic face models and natural looking animations.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing — Modeling and recovery of physical attributes; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics — Animation; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics — Color, shading, shadowing and
texture.

Additional Keywords: facial modeling, facial expression generation, facial
animation, photogrammetry, morphing, view-dependent texture-mapping

1 Introduction

There is no landscape that we know as well as the human
face. The twenty-five-odd square inches containing the fea-
tures is the most intimately scrutinized piece of territory
in existence, examined constantly, and carefully, with far
more than an intellectual interest. Every detail of the nose,
eyes, and mouth, every regularity in proportion, every vari-
ation from one individual to the next, are matters about
which we are all authorities.

— Gary Faigin [14],
from The Artist’s Complete Guide to Facial Expression

Realistic facial synthesis is one of the most fundamental problems in
computer graphics — and one of the most difficult. Indeed, attempts
to model and animate realistic human faces date back to the early
70’s [34], with many dozens of research papers published since.

The applications of facial animation include such diverse fields as
character animation for films and advertising, computer games [19],
video teleconferencing [7], user-interface agents and avatars [44],
and facial surgery planning [23, 45]. Yet no perfectly realistic facial
animation has ever been generated by computer: no “facial anima-
tion Turing test” has ever been passed.

There are several factors that make realistic facial animation so elu-
sive. First, the human face is an extremely complex geometric form.
For example, the human face models used in Pixar’s Toy Story had
several thousand control points each [10]. Moreover, the face ex-
hibits countless tiny creases and wrinkles, as well as subtle varia-
tions in color and texture — all of which are crucial for our compre-
hension and appreciation of facial expressions. As difficult as the
face is to model, it is even more problematic to animate, since fa-
cial movement is a product of the underlying skeletal and muscu-
lar forms, as well as the mechanical properties of the skin and sub-
cutaneous layers (which vary in thickness and composition in dif-
ferent parts of the face). All of these problems are enormously mag-
nified by the fact that we as humans have an uncanny ability to read
expressions — an ability that is not merely a learned skill, but part
of our deep-rooted instincts. For facial expressions, the slightest de-
viation from truth is something any person will immediately detect.

A number of approaches have been developed to model and ani-
mate realistic facial expressions in three dimensions. (The reader is
referred to the recent book by Parke and Waters [36] for an excel-
lent survey of this entire field.) Parke’s pioneering work introduced
simple geometric interpolation between face models that were dig-
itized by hand [34]. A radically different approach is performance-
based animation, in which measurements from real actors are used
to drive synthetic characters [4, 13, 47]. Today, face models can also
be obtained using laser-based cylindrical scanners, such as those
produced by Cyberware [8]. The resulting range and color data can
be fitted with a structured face mesh, augmented with a physically-
based model of skin and muscles [29, 30, 43, 46]. The animations
produced using these face models represent the state-of-the-art in
automatic physically-based facial animation.

For sheer photorealism, one of the most effective approaches to date
has been the use of 2D morphing between photographic images [3].
Indeed, some remarkable results have been achieved in this way —
most notably, perhaps, the Michael Jackson video produced by PDI,
in which very different-looking actors are seemingly transformed
into one another as they dance. The production of this video, how-
ever, required animators to painstakingly specify a few dozen care-
fully chosen correspondences between physical features of the ac-
tors in almost every frame. Another problem with 2D image morph-
ing is that it does not correctly account for changes in viewpoint or
object pose. Although this shortcoming has been recently addressed
by a technique called “view morphing” [39], 2D morphing still lacks
some of the advantages of a 3D model, such as the complete free-
dom of viewpoint and the ability to composite the image with other
3D graphics. Morphing has also been applied in 3D: Chen et al. [6]
applied Beier and Neely’s 2D morphing technique [3] to morph be-
tween cylindrical laser scans of human heads. Still, even in this case
the animator must specify correspondences for every pair of expres-
sions in order to produce a transition between them. More recently,

Bregler et al. [5] used morphing of mouth regions to lip-synch ex-
isting video to a novel sound-track.

In this paper, we show how 2D morphing techniques can be com-
bined with 3D transformations of a geometric model to automati-
cally produce 3D facial expressions with a high degree of realism.
Our process consists of several basic steps. First, we capture multi-
ple views of a human subject (with a given facial expression) using
cameras at arbitrary locations. Next, we digitize these photographs
and manually mark a small set of initial corresponding points on
the face in the different views (typically, corners of the eyes and
mouth, tip of the nose, etc.). These points are then used to automat-
ically recover the camera parameters (position, focal length, etc.)
corresponding to each photograph, as well as the 3D positions of the
marked points in space. The 3D positions are then used to deform
a generic 3D face mesh to fit the face of the particular human sub-
ject. At this stage, additional corresponding points may be marked
to refine the fit. Finally, we extract one or more texture maps for the
3D model from the photos. Either a single view-independent tex-
ture map can be extracted, or the original images can be used to
perform view-dependent texture mapping. This whole process is re-
peated for the same human subject, with several different facial ex-
pressions. To produce facial animations, we interpolate between two
or more different 3D models constructed in this way, while at the
same time blending the textures. Since all the 3D models are con-
structed from the same generic mesh, there is a natural correspon-
dence between all geometric points for performing the morph. Thus,
transitions between expressions can be produced entirely automati-
cally once the different face models have been constructed, without
having to specify pairwise correspondences between any of the ex-
pressions.

Our modeling approach is based on photogrammetric techniques
in which images are used to create precise geometry [31, 40]. The
earliest such techniques applied to facial modeling and animation
employed grids that were drawn directly on the human subject’s
face [34, 35]. One consequence of these grids, however, is that the
images used to construct geometry can no longer be used as valid
texture maps for the subject. More recently, several methods have
been proposed for modeling the face photogrammetrically without
the use of grids [20, 24]. These modeling methods are similar in
concept to the modeling technique described in this paper. How-
ever, these previous techniques use a small predetermined set of fea-
tures to deform the generic face mesh to the particular face being
modeled, and offer no mechanism to further improve the fit. Such
an approach may perform poorly on faces with unusual features or
other significant deviations from the normal. Our system, by con-
trast, gives the user complete freedom in specifying the correspon-
dences, and enables the user to refine the initial fit as needed. An-
other advantage of our technique is its ability to handle fairly arbi-
trary camera positions and lenses, rather than using a fixed pair that
are precisely oriented. Our method is similar, in concept, to the work
done in architectural modeling by Debevec et al. [9], where a set of
annotated photographs are used to model buildings starting from a
rough description of their shape. Compared to facial modeling meth-
ods that utilize a laser scanner, our technique uses simpler acquisi-
tion equipment (regular cameras), and it is capable of extracting tex-
ture maps of higher resolution. (Cyberware scans typically produce
a cylindrical grid of 512 by 256 samples). The price we pay for these
advantages is the need for user intervention in the modeling process.

We employ our system not only for creating realistic face models,
but also for performing realistic transitions between different ex-
pressions. One advantage of our technique, compared to more tra-
ditional animatable models with a single texture map, is that we can
capture the subtle changes in illumination and appearance (e.g., fa-
cial creases) that occur as the face is deformed. This degree of re-
alism is difficult to achieve even with physically-based models, be-

cause of the complexity of skin folding and the difficulty of simu-
lating interreflections and self-shadowing [18, 21, 32].

This paper also presents several new expression synthesis tech-
niques based on extensions to the idea of morphing. We develop a
morphing technique that allows for different regions of the face to
have different “percentages” or “mixing proportions” of facial ex-
pressions. We also introduce a painting interface, which allows users
to locally add in a little bit of an expression to an existing compos-
ite expression. We believe that these novel methods for expression
generation and animation may be more natural for the average user
than more traditional animation systems, which rely on the manual
adjustments of dozens or hundreds of control parameters.

The rest of this paper is organized as follows. Section 2 describes
our method for fitting a generic face mesh to a collection of si-
multaneous photographs of an individual’s head. Section 3 de-
scribes our technique for extracting both view-dependent and view-
independent texture maps for photorealistic rendering of the face.
Section 4 presents the face morphing algorithm that is used to an-
imate the face model. Section 5 describes the key aspects of our
system’s user interface. Section 6 presents the results of our experi-
ments with the proposed techniques, and Section 7 offers directions
for future research.

2 Model fitting

The task of the model-fitting process is to adapt a generic face model
to fit an individual’s face and facial expression. As input to this pro-
cess, we take several images of the face from different viewpoints
(Figure 1a) and a generic face model (we use the generic face model
created with AliasjWavefront [2] shown in Figure 1c). A few fea-
tures points are chosen (13 in this case, shown in the frames of Fig-
ure 1a) to recover the camera pose. These same points are also used
to refine the generic face model (Figure 1d). The model can be fur-
ther refined by drawing corresponding curves in the different views
(Figure 1b). The output of the process is a face model that has been
adapted to fit the face in the input images (Figure 1e), along with
a precise estimate of the camera pose corresponding to each input
image.

The model-fitting process consists of three stages. In the pose re-
covery stage, we apply computer vision techniques to estimate the
viewing parameters (position, orientation, and focal length) for each
of the input cameras. We simultaneously recover the 3D coordinates
of a set of feature points on the face. These feature points are se-
lected interactively from among the face mesh vertices, and their
positions in each image (where visible) are specified by hand. The
scattered data interpolation stage uses the estimated 3D coordinates
of the feature points to compute the positions of the remaining face
mesh vertices. In the shape refinement stage, we specify additional
correspondences between facial vertices and image coordinates to
improve the estimated shape of the face (while keeping the camera
pose fixed).

2.1 Pose recovery

Starting with a rough knowledge of the camera positions (e.g.,
frontal view, side view, etc.) and of the 3D shape (given by the
generic head model), we iteratively improve the pose and the 3D
shape estimates in order to minimize the difference between the pre-
dicted and observed feature point positions. Our formulation is
based on the non-linear least squares structure-from-motion algo-
rithm introduced by Szeliski and Kang [41]. However, unlike the
method they describe, which uses the Levenberg-Marquardt algo-
rithm to perform a complete iterative minimization over all of the
unknowns simultaneously, we break the problem down into a series
of linear least squares problems that can be solved using very simple

2

(a)

(b) (c) (d) (e)

Figure 1 Model-fitting process: (a) a set of input images with marked feature points, (b) facial features annotated using a set of curves, (c)
generic face geometry (shaded surface rendering), (d) face adapted to initial 13 feature points (after pose estimation) (e) face after 99 additional
correspondences have been given.

and numerically stable techniques [16, 37].

To formulate the pose recovery problem, we associate a rotation ma-
trix Rk and a translation vector tk with each camera pose k. (The
three rows of Rk are rk

x, rk
y, and rk

z , and the three entries in tk are tk
x ,

tk
y , tk

z .) We write each 3D feature point as pi, and its 2D screen coor-
dinates in the k-th image as (xk

i , yk
i).

Assuming that the origin of the (x, y) image coordinate system lies
at the optical center of each image (i.e., where the optical axis inter-
sects the image plane), the traditional 3D projection equation for a
camera with a focal length f k (expressed in pixels) can be written as

xk
i = f k rk

x � pi + tk
x

rk
z � pi + tk

z
yk

i = f k rk
y � pi + tk

y

rk
z � pi + tk

z
(1)

(This is just an explicit rewriting of the traditional projection equa-
tion xk

i / Rkpi + tk where xk
i = (xk

i , yk
i , f k).)

Instead of using (1) directly, we reformulate the problem to estimate
inverse distances to the object [41]. Let �k = 1=tk

z be this inverse dis-
tance and sk = f k�k be a world-to-image scale factor. The advantage
of this formulation is that the scale factor sk can be reliably estimated
even when the focal length is long, whereas the original formulation
has a strong coupling between the f k and tk

z parameters.

Performing these substitution, we obtain

xk
i = sk rk

x � pi + tk
x

1 + �krk
z � pi

yk
i = sk rk

y � pi + tk
y

1 + �krk
z � pi

.

If we let wk
i = (1 + �k(rk

z � pi))
�1 be the inverse denominator, and

collect terms on the left-hand side, we get

wk
i

�
xk

i + xk
i �

k(rk
z � pi) � sk(rk

x � pi + tk
x)
�

= 0 (2)

wk
i

�
yk

i + yk
i �

k(rk
z � pi) � sk(rk

y � pi + tk
y)
�

= 0

Note that these equations are linear in each of the unknowns that we
wish to recover, i.e., pi, tk

x, tk
y, �k, sk, and Rk, if we ignore the vari-

ation of wk
i with respect to these parameters. (The reason we keep

the wk
i term, rather than just dropping it from these equations, is so

that the linear equations being solved in the least squares step have
the same magnitude as the original measurements (xk

i , yk
i). Hence,

least-squares will produce a maximum likelihood estimate for the
unknown parameters [26].)

Given estimates for initial values, we can solve for different sub-
sets of the unknowns. In our current algorithm, we solve for the un-
knowns in five steps: first sk, then pi, Rk, tk

x and tk
y, and finally �k.

This order is chosen to provide maximum numerical stability given
the crude initial pose and shape estimates. For each parameter or set
of parameters chosen, we solve for the unknowns using linear least
squares (Appendix A). The simplicity of this approach is a result of
solving for the unknowns in five separate stages, so that the parame-
ters for a given camera or 3D point can be recovered independently
of the other parameters.

2.2 Scattered data interpolation

Once we have computed an initial set of coordinates for the fea-
ture points pi, we use these values to deform the remaining vertices
on the face mesh. We construct a smooth interpolation function that
gives the 3D displacements between the original point positions and
the new adapted positions for every vertex in the original generic
face mesh. Constructing such an interpolation function is a standard
problem in scattered data interpolation. Given a set of known dis-
placements ui = pi � p(0)

i away from the original positions p(0)
i at

every constrained vertex i, construct a function that gives the dis-
placement uj for every unconstrained vertex j.

There are several considerations in choosing the particular data in-
terpolant [33]. The first consideration is the embedding space, that
is, the domain of the function being computed. In our case, we use
the original 3D coordinates of the points as the domain. (An alterna-
tive would be to use some 2D parameterization of the surface mesh,
for instance, the cylindrical coordinates described in Section 3.) We
therefore attempt to find a smooth vector-valued function f (p) fitted

3

to the known data ui = f (pi), from which we can compute uj = f (pj).

There are also several choices for how to construct the interpolating
function [33]. We use a method based on radial basis functions, that
is, functions of the form

f (p) =
X

i

ci�(kp � pik),

where �(r) are radially symmetric basis functions. A more general
form of this interpolant also adds some low-order polynomial terms
to model global, e.g., affine, deformations [27, 28, 33]. In our sys-
tem, we use an affine basis as part of our interpolation algorithm, so
that our interpolant has the form:

f (p) =
X

i

ci�(kp � pik) + Mp + t, (3)

To determine the coefficients ci and the affine components M and t,
we solve a set of linear equations that includes the interpolation
constraints ui = f (pi), as well as the constraints

P
i ci = 0 andP

i cipi
T = 0, which remove affine contributions from the radial ba-

sis functions.

Many different functions for �(r) have been proposed [33]. After
experimenting with a number of functions, we have chosen to use
�(r) = e�r=64, with units measured in inches.

Figure 1d shows the shape of the face model after having inter-
polated the set of computed 3D displacements at 13 feature points
shown in Figure 1 and applied them to the entire face.

2.3 Correspondence-based shape refinement

After warping the generic face model into its new shape, we can fur-
ther improve the shape by specifying additional correspondences.
Since these correspondences may not be as easy to locate correctly,
we do not use them to update the camera pose estimates. Instead,
we simply solve for the values of the new feature points pi using a
simple least-squares fit, which corresponds to finding the point near-
est the intersection of the viewing rays in 3D. We can then re-run
the scattered data interpolation algorithm to update the vertices for
which no correspondences are given. This process can be repeated
until we are satisfied with the shape.

Figure 1e shows the shape of the face model after 99 additional cor-
respondences have been specified. To facilitate the annotation pro-
cess, we grouped vertices into polylines. Each polyline corresponds
to an easily identifiable facial feature such as the eyebrow, eyelid,
lips, chin, or hairline. The features can be annotated by outlining
them with hand-drawn curves on each photograph where they are
visible. The curves are automatically converted into a set of feature
points by stepping along them using an arc-length parametrization.
Figure 1b shows annotated facial features using a set of curves on
the front view.

3 Texture extraction

In this section we describe the process of extracting the texture maps
necessary for rendering photorealistic images of a reconstructed
face model from various viewpoints.

The texture extraction problem can be defined as follows. Given a
collection of photographs, the recovered viewing parameters, and
the fitted face model, compute for each point p on the face model
its texture color T(p).

Each point p may be visible in one or more photographs; therefore,
we must identify the corresponding point in each photograph and
decide how these potentially different values should be combined

kI

(x ,y)k k

(u,v)

p

Figure 2 Geometry for texture extraction

(blended) together. There are two principal ways to blend values
from different photographs: view-independent blending, resulting in
a texture map that can be used to render the face from any viewpoint;
and view-dependent blending, which adjusts the blending weights at
each point based on the direction of the current viewpoint [9, 38].
Rendering takes longer with view-dependent blending, but the re-
sulting image is of slightly higher quality (see Figure 3).

3.1 Weight maps

As outlined above, the texture value T(p) at each point on the face
model can be expressed as a convex combination of the correspond-
ing colors in the photographs:

T(p) =

P
k mk(p) Ik(xk, yk)P

k mk(p)
.

Here, Ik is the image function (color at each pixel of the k-th photo-
graph,) and (xk, yk) are the image coordinates of the projection of p
onto the k-th image plane. The weight map mk(p) is a function that
specifies the contribution of the k-th photograph to the texture at
each facial surface point.

The construction of these weight maps is probably the trickiest and
the most interesting component of our texture extraction technique.
There are several important considerations that must be taken into
account when defining a weight map:

1. Self-occlusion: mk(p) should be zero unless p is front-facing with
respect to the k-th image and visible in it.

2. Smoothness: the weight map should vary smoothly, in order to
ensure a seamless blend between different input images.

3. Positional certainty: mk(p) should depend on the “positional cer-
tainty” [24] of p with respect to the k-th image. The positional
certainty is defined as the dot product between the surface nor-
mal at p and the k-th direction of projection.

4. View similarity: for view-dependent texture mapping, the weight
mk(p) should also depend on the angle between the direction of
projection of p onto the j-th image and its direction of projection
in the new view.

Previous authors have taken only a subset of these considerations
into account when designing their weighting functions. For ex-
ample, Kurihara and Arai [24] use positional certainty as their
weighting function, but they do not account for self-occlusion. Aki-
moto et al. [1] and Ip and Yin [20] blend the images smoothly,
but address neither self-occlusion nor positional certainty. De-
bevec et al. [9], who describe a view-dependent texture mapping
technique for modeling and rendering buildings from photographs,
do address occlusion but do not account for positional certainty. (It
should be noted, however, that positional certainty is less critical in
photographs of buildings, since most buildings do not tend to curve
away from the camera.)

4

To facilitate fast visibility testing of points on the surface of the face
from a particular camera pose, we first render the face model us-
ing the recovered viewing parameters and save the resulting depth
map from the Z-buffer. Then, with the aid of this depth map, we
can quickly classify the visibility of each facial point by applying
the viewing transformation and comparing the resulting depth to the
corresponding value in the depth map.

3.2 View-independent texture mapping

In order to support rapid display of the textured face model from
any viewpoint, it is desirable to blend the individual photographs to-
gether into a single texture map. This texture map is constructed on
a virtual cylinder enclosing the face model. The mapping between
the 3D coordinates on the face mesh and the 2D texture space is de-
fined using a cylindrical projection, as in several previous papers
[6, 24, 29].

For view-independent texture mapping, we will index the weight
map mk by the (u, v) coordinates of the texture being created. Each
weight mk(u, v) is determined by the following steps:

1. Construct a feathered visibility map Fk for each image k. These
maps are defined in the same cylindrical coordinates as the tex-
ture map. We initially set Fk(u, v) to 1 if the corresponding facial
point p is visible in the k-th image, and to 0 otherwise. The result
is a binary visibility map, which is then smoothly ramped (feath-
ered) from 1 to 0 in the vicinity of the boundaries [42]. A cubic
polynomial is used as the ramping function.

2. Compute the 3D point p on the surface of the face mesh whose
cylindrical projection is (u, v) (see Figure 2). This computation
is performed by casting a ray from (u, v) on the cylinder towards
the cylinder’s axis. The first intersection between this ray and the
face mesh is the point p. (Note that there can be more than one
intersection for certain regions of the face, most notably the ears.
These special cases are discussed in Section 3.4.) Let Pk(p) be the
positional certainty of p with respect to the k-th image.

3. Set weight mk(u, v) to the product Fk(u, v) Pk(p).

For view-independent texture mapping, we will compute each pixel
of the resulting texture T(u, v) as a weighted sum of the original im-
age functions, indexed by (u, v).

3.3 View-dependent texture mapping

The main disadvantage of the view-independent cylindrical texture
map described above is that its construction involves blending to-
gether resampled versions of the original images of the face. Be-
cause of this resampling, and also because of slight registration er-
rors, the resulting texture is slightly blurry. This problem can be al-
leviated to a large degree by using a view-dependent texture map [9]
in which the blending weights are adjusted dynamically, according
to the current view.

For view-dependent texture mapping, we render the model several
times, each time using a different input photograph as a texture
map, and blend the results. More specifically, for each input photo-
graph, we associate texture coordinates and a blending weight with
each vertex in the face mesh. (The rendering hardware performs
perspective-correct texture mapping along with linear interpolation
of the blending weights.)

Given a viewing direction d, we first select the subset of pho-
tographs used for the rendering and then assign blending weights to
each of these photographs. Pulli et al. [38] select three photographs
based on a Delaunay triangulation of a sphere surrounding the ob-
ject. Since our cameras were positioned roughly in the same plane,

Figure 3 Comparison between view-independent (left) and view-
dependent (right) texture mapping. Higher frequency details are vis-
ible in the view-dependent rendering.

we select just the two photographs whose view directions d` and
d`+1 are the closest to d and blend between the two.

In choosing the view-dependent term Vk(d) of the blending weights,
we wish to use just a single photo if that photo’s view direction
matches the current view direction precisely, and to blend smoothly
between the nearest two photos otherwise. We used the simplest
possible blending function having this effect:

Vk(d) =

�
d � dk � d` � d`+1 if ` � k � ` + 1

0 otherwise

For the final blending weights mk(p, d), we then use the product of
all three terms Fk(xk , yk) Pk(p) Vk(d).

View-dependent texture maps have several advantages over cylin-
drical texture maps. First, they can make up for some lack of de-
tail in the model. Second, whenever the model projects onto a cylin-
der with overlap, a cylindrical texture map will not contain data for
some parts of the model. This problem does not arise with view-
dependent texture maps if the geometry of the mesh matches the
photograph properly. One disadvantage of the view-dependent ap-
proach is its higher memory requirements and slower speed due to
the multi-pass rendering. Another drawback is that the resulting im-
ages are much more sensitive to any variations in exposure or light-
ing conditions in the original photographs.

3.4 Eyes, teeth, ears, and hair

The parts of the mesh that correspond to the eyes, teeth, ears, and
hair are textured in a separate process. The eyes and teeth are usually
partially occluded by the face; hence it is difficult to extract a tex-
ture map for these parts in every facial expression. The ears have an
intricate geometry with many folds and usually fail to project with-
out overlap on a cylinder. The hair has fine-detailed texture that is
difficult to register properly across facial expressions. For these rea-
sons, each of these facial elements is assigned an individual texture
map. The texture maps for the eyes, teeth, and ears are computed by
projecting the corresponding mesh part onto a selected input image
where that part is clearly visible (the front view for eyes and teeth,
side views for ears).

The eyes and the teeth are usually partially shadowed by the eye-
lids and the mouth respectively. We approximate this shadowing by
modulating the brightness of the eye and teeth texture maps accord-
ing to the size of the eyelid and mouth openings.

5

Figure 4 A global blend between “surprised” (left) and “sad” (cen-
ter) produces a “worried” expression (right).

Figure 5 Combining the upper part of a “neutral” expression (left)
with the lower part of a “happy” expression (center) produces a
“fake smile” (right).

4 Expression morphing

A major goal of this work is the generation of continuous and re-
alistic transitions between different facial expressions. We achieve
these effects by morphing between corresponding face models.

In general the problem of morphing between arbitrary polygonal
meshes is a difficult one [22], since it requires a set of correspon-
dences between meshes with potentially different topology that can
produce a reasonable set of intermediate shapes. In our case, how-
ever, the topology of all the face meshes is identical. Thus, there is
already a natural correspondence between vertices. Furthermore, in
creating the models we attempt to mark facial features consistently
across different facial expressions, so that the major facial features
correspond to the same vertices in all expressions. In this case, a sat-
isfactory 3D morphing sequence can be obtained using simple linear
interpolation between the geometric coordinates of corresponding
vertices in each of the two face meshes.

Together with the geometric interpolation, we need to blend the as-
sociated textures. Again, in general, morphing between two images
requires pairwise correspondences between images features [3]. In
our case, however, correspondences between the two textures are
implicit in the texture coordinates of the two associated face meshes.
Rather than warping the two textures to form an intermediate one,
the intermediate face model (obtained by geometric interpolation)
is rendered once with the first texture, and again with the second.
The two resulting images are then blended together. This approach
is faster than warping the textures (which typically have high resolu-
tion), and it avoids the resampling that is typically performed during
warping.

4.1 Multiway blend and localized blend

Given a set of facial expression meshes, we have explored ways to
enlarge this set by combining expressions. The simplest approach
is to use the morphing technique described above to create new fa-
cial expressions, which can be added to the set. This idea can be
generalized to an arbitrary number of starting expressions by tak-
ing convex combinations of them all, using weights that apply both
to the coordinates of the mesh vertices and to the values in the tex-
ture map. (Extrapolation of expressions should also be possible by
allowing weights to have values outside of the interval [0, 1]; note,
however, that such weights might result in colors outside of the al-
lowable gamut.)

We can generate an even wider range of expressions using a local-
ized blend of the facial expressions. Such a blend is specified by a
set of blend functions, one for each expression, defined over the ver-
tices of the mesh. These blend functions describe the contribution of
a given expression at a particular vertex.

Although it would be possible to compute a texture map for each
new expression, doing so would result in a loss of texture quality.
Instead, the weights for each new blended expression are always
factored into weights over the vertices of the original set of expres-

sions. Thus, each blended expression is rendered using the texture
map of an original expression, along with weights at each vertex,
which control the opacity of that texture. The opacities are linearly
interpolated over the face mesh using Gouraud shading.

4.2 Blend specification

In order to design new facial expressions easily, the user must be
provided with useful tools for specifying the blending functions.
These tools should satisfy several requirements. First, it should be
possible to edit the blend at different resolutions. Moreover, we
would like the specification process to be continuous so that small
changes in the blend parameters do not trigger radical changes in
the resulting expression. Finally, the tools should be intuitive to the
user; it should be easy to produce a particular target facial expres-
sion from an existing set.

We explored several different ways of specifying the blending
weights:

� Global blend. The blending weights are constant over all vertices.
A set of sliders controls the mixing proportions of the contribut-
ing expressions. Figure 4 shows two facial expressions blended
in equal proportions to produce a halfway blend.

� Regional blend. According to studies in psychology, the face can
be split into several regions that behave as coherent units [11].
Usually, three regions are considered: one for the forehead (in-
cluding the eyebrows), another for the eyes, and another for the
lower part of the face. Further splitting the face vertically down
the center results in six regions and allows for asymmetric ex-
pressions. We similarly partition the face mesh into several (softly
feathered) regions and assign weights so that vertices belonging
to the same region have the same weights. The mixing proportions
describing a selected region can be adjusted by manipulating a set
of sliders. Figure 5 illustrates the blend of two facial expressions
with two regions: the upper part of the face (including eyes and
forehead) and the lower part (including nose, mouth, and chin.)

� Painterly interface. The blending weights can be assigned to the
vertices using a 3D painting tool. This tool uses a palette in which
the “colors” are facial expressions (both geometry and color), and
the “opacity” of the brush controls how much the expression con-
tributes to the result. Once an expression is selected, a 3D brush
can be used to modify the blending weights in selected areas of
the mesh. The fraction painted has a gradual drop-off and is con-
trolled by the opacity of the brush. The strokes are applied directly
on the rendering of the current facial blend, which is updated in
real-time. To improve the rendering speed, only the portion of the
mesh that is being painted is re-rendered. Figure 7 illustrates the
design of a debauched smile: starting with a neutral expression,
the face is locally modified using three other expressions. Note
that in the last step, the use of a partially transparent brush with
the “sleepy” expression results in the actual geometry of the eye-
lids becoming partially lowered.

6

Figure 6 Animation interface. On the left is the “expression
gallery”; on the right an expression is being designed. At the bottom
expressions and poses are scheduled on the timeline.

Combining different original expressions enlarges the repertoire of
expressions obtained from a set of photographs. The expressions in
this repertoire can themselves be blended to create even more ex-
pressions, with the resulting expression still being representable as
a (locally varying) linear combination of the original expressions.

5 User interface

We designed an interactive tool to fit a 3D face mesh to a set of im-
ages. This tool allows a user to select vertices on the mesh and mark
where these curves or vertices should project on the images. After a
first expression has been modeled, the set of annotations can be used
as an initial guess for subsequent expressions. These guesses are au-
tomatically refined using standard correlation-based search. Any re-
sulting errors can be fixed up by hand. The extraction of the texture
map does not require user intervention, but is included in the inter-
face to provide feedback during the modeling phase.

We also designed a keyframe animation system to generate facial
animations. Our animation system permits a user to blend facial ex-
pressions and to control the transitions between these different ex-
pressions (Figure 6). The expression gallery is a key component
of our system; it is used to select and display (as thumbnails) the
set of facial expressions currently available. The thumbnails can be
dragged and dropped onto the timeline (to set keyframes) or onto
the facial design interface (to select or add facial expressions). The
timeline is used to schedule the different expression blends and the
changes in viewing parameters (pose) during the animation. The
blends and poses have two distinct types of keyframes. Both types
of keyframes are linearly interpolated with user-controlled cubic
Bézier curves. The timeline can also be used to display intermedi-
ate frames at low resolution to provide a quick feedback to the ani-
mator. A second timeline can be displayed next to the composition
timeline. This feature is helpful for correctly synchronizing an ani-
mation with live video or a soundtrack. The eyes are animated sepa-
rately from the rest of the face, with the gaze direction parameterized
by two Euler angles.

6 Results

In order to test our technique, we photographed both a man (J. R.)
and a woman (Karla) in a variety of facial expressions. The photog-

Figure 7 Painterly interface: design of a debauched smile. The right
column shows the different stages of the design; the left column
shows the portions of the original expressions used in creating the
final expression. The “soft brush” used is shown at the bottom-right
corner of each contributing expression.

7

raphy was performed using five cameras simultaneously. The cam-
eras were not calibrated in any particular way, and the lenses had
different focal lengths. Since no special attempt was made to illu-
minate the subject uniformly, the resulting photographs exhibited
considerable variation in both hue and brightness. The photographs
were digitized using the Kodak PhotoCD process. Five typical im-
ages (cropped to the size of the subject’s head) are shown in Fig-
ure 1a.

We used the interactive modeling system described in Sections 2
and 3 to create the same set of eight face models for each subject:
“happy,” “amused,” “angry,” “surprised,” “sad,” “sleepy,” “pained,”
and “neutral.”

Following the modeling stage, we generated a facial animation for
each of the individuals starting from the eight original expressions.
We first created an animation for J. R. We then applied the very same
morphs specified by this animation to the models created for Karla.
For most frames of the animation, the resulting expressions were
quite realistic. Figure 8 shows five frames from the animation se-
quence for J. R. and the purely automatically generated frames in
the corresponding animation for Karla. With just a small amount
of additional retouching (using the blending tools described in Sec-
tion 4.2), this derivative animation can be made to look as good as
the original animation for J. R.

7 Future work

The work described in this paper is just the first step towards build-
ing a complete image-based facial modeling and animation system.
There are many ways to further enhance and extend the techniques
that we have described:

Color correction. For better color consistency in facial textures ex-
tracted from photographs, color correction should be applied to si-
multaneous photographs of each expression.

Improved registration. Some residual ghosting or blurring artifacts
may occasionally be visible in the cylindrical texture map due to
small misregistrations between the images, which can occur if ge-
ometry is imperfectly modeled or not detailed enough. To improve
the quality of the composite textures, we could locally warp each
component texture (and weight) map before blending [42].

Texture relighting. Currently, extracted textures reflect the light-
ing conditions under which the photographs were taken. Relighting
techniques should be developed for seamless integration of our face
models with other elements.

Automatic modeling. Our ultimate goal, as far as the facial model-
ing part is concerned, is to construct a fully automated modeling sys-
tem, which would automatically find features and correspondences
with minimal user intervention. This is a challenging problem in-
deed, but recent results on 2D face modeling in computer vision [25]
give us cause for hope.

Modeling from video. We would like to be able to create face mod-
els from video or old movie footage. For this purpose, we would
have to improve the robustness of our techniques in order to syn-
thesize face meshes and texture maps from images that do not cor-
respond to different views of the same expression. Adding anthro-
pomorphic constraints to our face model might make up for the lack
of coherence in the data [48].

Complex animations. In order to create complex animations, we
must extend our vocabulary for describing facial movements be-
yond blending between different expressions. There are several po-
tential ways to attack this problem. One would be to adopt an
action-unit-based system such as the Facial Action Coding System

(a) (b)

Figure 8 On the left are frames from an original animation, which
we created for J. R. The morphs specified in these frames were then
directly used to create a derivative animation for Karla, shown on the
right.

8

(FACS) [12]. Another possibility would be to apply modal analysis
(principal component analysis) techniques to describe facial expres-
sion changes using a small number of motions [25]. Finding natural
control parameters to facilitate animation and developing realistic-
looking temporal profiles for such movements are also challenging
research problems.

Lip-synching. Generating speech animation with our keyframe an-
imation system would require a large number of keyframes. How-
ever, we could use a technique similar to that of Bregler et al. [5] to
automatically lip-synch an animation to a sound-track. This would
require the synthesis of face models for a wide range of visemes. For
example, such database of models could be constructed using video
footage to reconstruct face models automatically [17].

Performance-driven animation. Ultimately, we would also like to
support performance-driven animation, i.e., the ability to automati-
cally track facial movements in a video sequence, and to automat-
ically translate these into animation control parameters. Our cur-
rent techniques for registering images and converting them into
3D movements should provide a good start, although they will
probably need to be enhanced with feature-tracking techniques and
some rudimentary expression-recognition capabilities. Such a sys-
tem would enable not only very realistic facial animation, but also a
new level of video coding and compression techniques (since only
the expression parameters would need to be encoded), as well as
real-time control of avatars in 3D chat systems.

8 Acknowledgments

We would like to thank Katrin Petersen and Andrew Petty for mod-
eling the generic face model, Cassidy Curtis for his invaluable ad-
vice on animating faces, and Joel Auslander and Jason Griffith for
early contributions to this project. This work was supported by an
NSF Presidential Faculty Fellow award (CCR-9553199), an ONR
Young Investigator award (N00014-95-1-0728), and industrial gifts
from Microsoft and Pixar.

References

[1] Takaaki Akimoto, Yasuhito Suenaga, and Richard S. Wallace. Auto-
matic Creation of 3D Facial Models. IEEE Computer Graphics and
Applications, 13(5):16–22, September 1993.

[2] Alias jWavefront, Toronto, Ontario. Alias V7.0, 1995.

[3] Thaddeus Beier and Shawn Neely. Feature-based Image Metamorpho-
sis. In SIGGRAPH 92 Conference Proceedings, pages 35–42. ACM
SIGGRAPH, July 1992.

[4] Philippe Bergeron and Pierre Lachapelle. Controlling Facial Ex-
pressions and Body Movements in the Computer-Generated Animated
Short “Tony De Peltrie”. In SIGGRAPH 85 Advanced Computer Ani-
mation seminar notes. July 1985.

[5] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video
Rewrite: Driving Visual Speech with Audio. In SIGGRAPH 97 Confer-
ence Proceedings, pages 353–360. ACM SIGGRAPH, August 1997.

[6] David T. Chen, Andrei State, and David Banks. Interactive Shape
Metamorphosis. In 1995 Symposium on Interactive 3D Graphics,
pages 43–44. ACM SIGGRAPH, April 1995.

[7] Chang S. Choi, Kiyoharu, Hiroshi Harashima, and Tsuyoshi Takebe.
Analysis and Synthesis of Facial Image Sequences in Model-Based
Image Coding. In IEEE Transactions on Circuits and Systems for
Video Technology, volume 4, pages 257 – 275. June 1994.

[8] Cyberware Laboratory, Inc, Monterey, California. 4020/RGB 3D
Scanner with Color Digitizer, 1990.

[9] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and
Rendering Architecture from Photographs: A Hybrid Geometry- and
Image-Based Approach. In SIGGRAPH 96 Conference Proceedings,
pages 11–20. ACM SIGGRAPH, August 1996.

[10] Eben Ostby, Pixar Animation Studios. Personal communication, Jan-
uary 1997.

[11] Paul Ekman and Wallace V. Friesen. Unmasking the Face. A guide to
recognizing emotions fron facial clues. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1975.

[12] Paul Ekman and Wallace V. Friesen. Manual for the Facial Action
Coding System. Consulting Psychologists Press, Inc., Palo Alto, Cali-
fornia, 1978.

[13] Irfan Essa, Sumit Basu, Trevor Darrell, and Alex Pentland. Modeling,
Tracking and Interactive Animation of Faces and Heads Using Input
from Video. In Computer Animation Conference, pages 68–79. June
1996.

[14] Gary Faigin. The Artist’s Complete Guide to Facial Expression.
Watson-Guptill Publications, New York, 1990.

[15] Olivier Faugeras. Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, Cambridge, Massachusetts, 1993.

[16] G. Golub and C. F. Van Loan. Matrix Computation, third edition. The
John Hopkins University Press, Baltimore and London, 1996.

[17] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and
Frédéric Pighin. Making Faces. In SIGGRAPH 98 Conference Pro-
ceedings. ACM SIGGRAPH, July 1998.

[18] Pat Hanrahan and Wolfgang Krueger. Reflection from Layered Sur-
faces Due to Subsurface Scattering. In SIGGRAPH 93 Conference
Proceedings, volume 27, pages 165–174. ACM SIGGRAPH, August
1993.

[19] Bright Star Technologies Inc. Beginning Reading Software. Sierra On-
Line, Inc., 1993.

[20] Horace H. S. Ip and Lijun Yin. Constructing a 3D Individualized Head
Model from Two Orthogonal Views. The Visual Computer, 12:254–
266, 1996.

[21] Gregory Ward J., Francis M. Rubinstein, and Robert D. Clear. A Ray
Tracing Solution for Diffuse Interreflection. In SIGGRAPH 88 Con-
ference Proceedings, volume 22, pages 85–92. August 1988.

[22] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape Trans-
formation for Polyhedral Objects. In SIGGRAPH 92 Proceedings Con-
ference, volume 26, pages 47–54. ACM SIGGRAPH, July 1992.

[23] Rolf M. Koch, Markus H. Gross, Friedrich R. Carls, Daniel F. von
Büren, George Fankhauser, and Yoav I. H. Parish. Simulating Facial
Surgery Using Finite Element Methods. In SIGGRAPH 96 Conference
Proceedings, pages 421–428. ACM SIGGRAPH, August 1996.

[24] Tsuneya Kurihara and Kiyoshi Arai. A Transformation Method for
Modeling and Animation of the Human Face from Photographs. In
Nadia Magnenat Thalmann and Daniel Thalmann, editors, Computer
Animation 91, pages 45–58. Springer-Verlag, Tokyo, 1991.

[25] A. Lanitis, C. J. Taylor, and T. F. Cootes. A Unified Approach for
Coding and Interpreting Face Images. In Fifth International Confer-
ence on Computer Vision (ICCV 95), pages 368–373. Cambridge, Mas-
sachusetts, June 1995.

[26] C. L. Lawson and R. J. Hansen. Solving Least Squares Problems.
Prentice-Hall, Englewood Cliffs, 1974.

[27] Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, and George
Wolberg. Image Metamorphosis Using Snakes and Free-Form Defor-
mations. In SIGGRAPH 95 Conference Proceedings, pages 439–448.
ACM SIGGRAPH, August 1995.

[28] Seung-Yong Lee, George Wolberg, Kyung-Yong Chwa, and
Sung Yong Shin. Image Metamorphosis with Scattered Feature
Constraints. IEEE Transactions on Visualization and Computer
Graphics, 2(4), December 1996.

[29] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic
Modeling for Facial Animation. In SIGGRAPH 95 Conference Pro-
ceedings, pages 55–62. ACM SIGGRAPH, August 1995.

[30] Yuencheng C. Lee, Demetri Terzopoulos, and Keith Waters. Con-
structing Physics-Based Facial Models of Individuals. In Proceedings
of Graphics Interface 93, pages 1–8. May 1993.

[31] Francis H. Moffitt and Edward M. Mikhail. Photogrammetry. Harper
& Row, New York, 3 edition, 1980.

9

[32] Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from In-
terreflections. International Journal of Computer Vision, 6:173–195,
1991.

[33] Gregory M. Nielson. Scattered Data Modeling. IEEE Computer
Graphics and Applications, 13(1):60–70, January 1993.

[34] Frederic I. Parke. Computer Generated Animation of Faces. Proceed-
ings ACM annual conference., August 1972.

[35] Frederic I. Parke. A Parametric Model for Human Faces. PhD thesis,
University of Utah, Salt Lake City, Utah, December 1974. UTEC-CSc-
75-047.

[36] Frederic I. Parke and Keith Waters. Computer Facial Animation. A K
Peters, Wellesley, Massachusetts, 1996.

[37] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, Cambridge, England, second edition, 1992.

[38] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda
Shapiro, and Werner Stuetzle. View-based rendering: Visualizing real
objects from scanned range and color data. In Proc. 8th Eurographics
Workshop on Rendering. June 1997.

[39] Steven M. Seitz and Charles R. Dyer. View Morphing. In SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 21–30.
ACM SIGGRAPH, August 1996.

[40] Chester C. Slama, editor. Manual of Photogrammetry. American So-
ciety of Photogrammetry, Falls Church, Virginia, fourth edition, 1980.

[41] Richard Szeliski and Sing Bing Kang. Recovering 3D Shape and Mo-
tion from Image Streams using Nonlinear Least Squares. Journal of
Visual Communication and Image Representation, 5(1):10–28, March
1994.

[42] Richard Szeliski and Heung-Yeung Shum. Creating Full View
Panoramic Image Mosaics and Texture-Mapped Models. In SIG-
GRAPH 97 Conference Proceedings, pages 251–258. ACM SIG-
GRAPH, August 1997.

[43] Demetri Terzopoulos and Keith Waters. Physically-based Facial Mod-
eling, Analysis, and Animation. Journal of Visualization and Com-
puter Animation, 1(4):73–80, March 1990.

[44] Kristinn R. Thórisson. Gandalf: An Embodied Humanoid Capable of
Real-Time Multimodal Dialogue with People. In First ACM Interna-
tional Conference on Autonomous Agents. 1997.

[45] Michael W. Vannier, Jeffrey F. Marsh, and James O. Warren. Three-
dimentional Computer Graphics for Craniofacial Surgical Planning
and Evaluation. In SIGGRAPH 83 Conference Proceedings, vol-
ume 17, pages 263–273. ACM SIGGRAPH, August 1983.

[46] Keith Waters. A Muscle Model for Animating Three-Dimensional
Facial Expression. In SIGGRAPH 87 Conference Proceedings), vol-
ume 21, pages 17–24. ACM SIGGRAPH, July 1987.

[47] Lance Williams. Performance-Driven Facial Animation. In SIG-
GRAPH 90 Conference Proceedings, volume 24, pages 235–242. Au-
gust 1990.

[48] Z. Zhang, K. Isono, and S. Akamatsu. Euclidean Structure from Uncal-
ibrated Images Using Fuzzy Domain Knowledge: Application to Fa-
cial Images Synthesis. In Proc. International Conference on Computer
Vision (ICCV’98). January 1998.

A Least squares for pose recovery

To solve for a subset of the parameters given in Equation (2), we use linear
least squares. In general, given a set of linear equations of the form

aj � x� bj = 0, (4)

we solve for the vector x by minimizingX
j

(aj � x� bj)
2. (5)

Setting the partial derivative of this sum with respect to x to zero, we obtainX
j

(aja
T
j)x� bjaj = 0, (6)

i.e., we solve the set of normal equations [16] X
j

ajaT
j

!
x =
X

j

bjaj . (7)

More numerically stable methods such as QR decomposition or Singular
Value Decomposition [16] can also be used to solve the least squares prob-
lem, but we have not found them to be necessary for our application.

To update one of the parameters, we simply pull out the relevant linear co-
efficient aj and scalar value bj from Equation (2). For example, to solve for
pi, we set

a2k+0 = wk
i (xk

i �
krk

z � skrk
x), b2k+0 = wk

i (sktkx � xk
i)

a2k+1 = wk
i (yk

i �
krk

z � skrk
y), b2k+1 = wk

i (sktky � yk
i).

For a scalar variable like sk, we obtain scalar equations

a2k+0 = wk
i (rk

x � pi + tkx), b2k+0 = wk
i

�
xk

i + xk
i �

k(rk
z � pi)

�
a2k+1 = wk

i (rk
y � pi + tky), b2k+1 = wk

i

�
yk

i + yk
i �

k(rk
z � pi)

�
.

Similar equations for aj and bj can be derived for the other parameters tkx , tky ,

and �k . Note that the parameters for a given camera k or 3D point i can be
recovered independently of the other parameters.

Solving for rotation is a little trickier than for the other parameters, since R
must be a valid rotation matrix. Instead of updating the elements in Rk di-
rectly, we replace the rotation matrix Rk with R̃Rk [42], where R̃ is given by
Rodriguez’s formula [15]:

R̃(n̂, �) = I + sin �X(n̂) + (1� cos �)X2(n̂), (8)

where � is an incremental rotation angle, n̂ is a rotation axis, and X(v) is the
cross product operator

X(v) =

"
0 �vz vy
vz 0 �vx
�vy vx 0

#
. (9)

A first order expansion of R̃ in terms of the entries in v = �n̂ = (vx, vy, vz) is
given by I + X(v).

Substituting into Equation (2) and letting qi = Rkpi, we obtain

wk
i

�
xk

i + xk
i �

k(r̃k
z � qi)� sk(r̃k

x � qi + tkx)
�

= 0 (10)

wk
i

�
yk

i + yk
i �

k(r̃k
z � qi)� sk(r̃k

y � qi + tky)
�

= 0,

where r̃k
x = (1,�vz, vy), r̃k

y = (vz , 1,�vx), r̃k
z = (�vy, vx, 1), are the rows

of [I + X(v)]. This expression is linear in (vx, vy, vz), and hence leads to a
3�3 set of normal equations in (vx , vy, vz). Once the elements of v have been
estimated, we can compute � and n̂, and update the rotation matrix using

Rk R̃(n̂k, �k)Rk.

10

Universal Capture – Image-based Facial Animation for “The Matrix Reloaded”
George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz

ESC Entertainment

Introduction
The VFX R&D stage for The Matrix Reloaded was kicked off in
January 2000 with the challenge to create realistic human faces. We
believed that traditional facial animation approaches like muscle
deformers or blend shapes would simply never work, both because of
the richness of facial movement and because of the human viewer’s
extreme sensitivity to facial nuances. Our task was further complicated
as we had to recreate familiar actors such as Keanu Reeves and
Lawrence Fishburne. Our team had been very successful at applying
image-based techniques for photorealistic film set/location rendering,
so we decided to approach the problem from the image-based side
again. We wanted to produce a 3-d recording of the real actor's
performance and be able to play it back from different angles and
under different lighting conditions. Just as we can extract geometry,
texture, or light from images, we are now able to extract movement.
Universal Capture combines two powerful computer vision
techniques: optical flow and photogrammetry.

HiDef Capture Setup
We used a carefully placed array of five synchronized cameras that
captured the actor's performance in ambient lighting. For the best
image quality we deployed a sophisticated arrangement of
Sony/Panavision HDW-F900 cameras and computer workstations
that captured the images in uncompressed digital format straight to
hard disks at data rates close to 1G/sec.

Optical Flow + Photogrammetry
We use optical flow to track each pixel's motion over time in each
camera view. The result of this process is then combined with a
cyberscan model of a neutral expression of the actor and with
photogrammetric reconstruction of the camera positions. The
algorithm works by projecting a vertex of the model into each of the
cameras and then tracking the motion of that vertex in 2-d using the
optical flow where at each frame the 3-d position is estimated using
triangulation. The result is an accurate reconstruction of the path of
each vertex though 3-d space over time.

Keyshaping, Adapt, Removing Global Motion
Optical flow errors can accumulate over time, causing an undesirable
drift in the 3-d reconstruction. To minimize the drift we make use of
reverse optical flow. On this production the problem was eliminated
by introducing a manual keyshaping step: when the flow error
becomes unacceptably large the geometry is manually corrected and
the correction is then algorithmically propagated to previous frames.

The reconstructed motion contains the global "rigid" head
movement. In order to attach facial performances to CG bodies or
blend between different performances this movement must be
removed. We estimate the rigid transformation using a least squares fit
of a neutral face and then subtract this motion to obtain the non-rigid
deformation.

Texture Map Extraction
No believable facial rendering can be done without varying the face
texture over time. The fact that we did not use any markers on the face
to assist feature tracking gave us the important advantage that we
could combine the images from the multiple camera views over time
to produce animated seamless UV color maps capturing important

textural variation across the face, such as the forming of fine wrinkles or
changes in color due to strain, in high-res detail on each side of the face.

Rendering
Although the extracted facial animation had most of the motion nuances
it lacked the small-scale surface detail like pores and wrinkles. We
obtained that by using a highly detailed 100-micron scan of the actor’s
face. The detail is then extracted in a bump (displacement) map.
Dynamic wrinkles were identified by image processing on the texture
maps; these are then isolated and layered over the static bump map. We
then combine these with image-based skin BRDF estimation, subsurface
scattering approximation, and real-world lighting reconstruction for the
highly photorealistic human face renderings below.

Acknowledgments: Steve Avoujageli, Ken Faiman, Steve Rembuskos, Mike Dalzell, John
Llewellyn, Ryan Schnizlein, Paul Ryan, John Jack, Kim Libreri, and John Gaeta

Analysis and Synthesis of Facial Expressions
with Hand-Generated Muscle Actuation Basis

Byoungwon Choe� Hyeong-Seok Ko

School of Electrical Engineering and Computer Science
Seoul National University, Seoul, KOREA

Abstract

We present a performance-driven facial animation sys-
tem for analyzing captured expressions to find muscle actu-
ation and synthesizing expressions with the actuation val-
ues. Significantly different approach of our work is that we
let artists sculpt the initial draft of the actuation basis—the
basic facial shapes corresponding to the isolated actuation
of individual muscles, instead of calculating skin surface
deformation entirely relying on the mathematical models
such as finite element methods. We synthesize expressions
by linear combinations of the basis elements, and analyze
expressions by finding the weights for the combinations.
Even though the hand-generated actuation basis represents
the essence of the subject’s characteristic expressions, it is
not accurate enough to be used in the subsequent computa-
tional procedures. We also describe an iterative algorithm
to increase the accuracy of the actuation basis. The exper-
imental results suggest that our artist-in-the-loop method
produces more predictable and controllable outcome than
pure mathematical models, thus can be a quite useful tool
in animation productions.

1. Introduction

Since Williams’ pioneering work on performance-driven
facial animation [23], applying facial expressions from
human faces to computer-generated characters has been
widely studied [9, 3, 24, 12, 19]. To control facial move-
ment, facial expressions were analyzed into the position
of feature points [9, 3, 24] or the weights for blending
pre-modeled expressions [12, 19]. Another fascinating ap-
proach, which we took in this work, is finding muscle ac-
tuation parameters from facial expressions [21, 6, 1]. Ex-
pressions can be easily modified by editing muscle actua-
tion curves [1], and the actuation values can be converted

�133-316, Seoul National University, Shillim-dong, Gwanak-gu, Seoul,
151-742, KOREA. drei@graphics.snu.ac.kr

to other control parameters such as the values of Actuation
Units in Facial Action Coding System [4] without much ef-
fort.

Terzopoulos et al. [21] and Essa et al. [6] analyzed the
expressions recorded in video footage into muscle actuation
values for facial expression recognition. They also synthe-
sized facial expressions with the actuation values. The syn-
thetic expressions, however, showed only conspicuous ones
such as ‘opening mouth’ or ‘raising eyebrows’, which were
not yet to be used in high quality animation production. Re-
cently, Choe et al. [1] proposed an algorithm to find muscle
actuation values from the trajectory of feature points gen-
erated by an optical capture system. They could reproduce
delicate facial movements by extracting complicated set of
muscle actuation values with a linear finite element model,
and showed the possibility of practical use in character an-
imation. Still, the heuristic muscle model could misinter-
pret the original expressions, and simplified finite element
model occasionally produced unnatural artifacts in skin de-
formation.

In this work, instead of relying entirely on the mathe-
matical models to compute the 3D facial shape, we include
the artists’ modeling capability as an integral part of the
method. According to our previous tests, the result of pure
mathematical modeling was usually distant from what was
expected.1 Such expectation cannot be quantitatively stated;
we thought that an artist may be able to form the expected
(or desired) facial shape. Thus we made the artists sculpt
manually a set of expressions called the muscle actuation
basis, and let the computer program synthesize expressions
based on the basis elements. Each element of the actuation
basis corresponds to the facial shape when a single expres-
sion muscle is fully actuated and the rest are left relaxed.

We can synthesize a facial expression by the linear com-
bination of the basis elements on the same principle as the
linear muscle model [1]. Then our algorithm is basically re-

1Some of the reasons might be that we could not calibrate the muscle
size and layout of the computer model with those of the subject being cap-
tured, and we made too many simplifying assumptions to use mathematical
models.

duced to the methods that synthesize expressions by blend-
ing pre-modeled expressions, which was experimented by
Kouadio et al. [12] and Pighin et al. [18, 19]. Our method
is different from theirs in the pre-modeled expression set:
we use an artificial but functional set of expressions instead
of using real human expression samples such as ‘happi-
ness’ or ‘sadness’. Using the actuation basis rather than real
human expression samples has an important consequence.
The elements in the actuation basis are orthogonal to each
other, and form a meaningful basis for the facial expression
space—the actuation basis can produce (or in mathemat-
ical terms, span) the complete set of human expressions.
When real human expressions are used, on the other hand,
the linear combinations of them cannot generally guarantee
to produce the complete set of expressions.2

We can summarize our facial animation process into two
major steps: modeling to set up the neutral face and the ac-
tuation basis of a subject and analysis to find muscle con-
tractions from the subject’s performance using the actuation
basis. We can synthesize expressions by applying the ana-
lyzed muscle contractions to any computer model with an
equivalent muscle structure.

In order to model the actuation basis, we first obtain
the neutral face of the subject using a 3D scanning device.
Starting from the neutral face, we let an artist sculpt the
basis elements considering the human facial anatomy [2].
The work of Faigin [7], which illustrates the facial shape
corresponding to the actuation of each individual muscle,
serves a good guide for the job. It could be expected that
the first hand-generated draft would not give a satisfactory
result. Moreover, considering that the accuracy of the ac-
tuation basis greatly affects the result of the analysis, we
need to develop a procedure for improving the basis. The
improvement procedure (described in Section 4.2), in turn,
refers to the result of the analysis on some trial data; the
procedure takes the form of fixed point iteration between
modeling and analysis.

Once the actuation basis of a subject is ready, we can
start analyzing the expressions captured from the subject.
We approximate each frame of the facial performance by
a linear combination of the basis elements. Finding the
best approximation can be formulated as a constrained
quadratic programming, and the coefficients in the resulting
solution are interpreted as the muscle contraction values.

The rest of this paper is organized as follows. Section 2
reviews related work in facial animation. Section 3 and
Section 4 present the modeling and analysis procedures re-

2There have been efforts to resolve the correlation among human ex-
pression samples and map the expressions into an orthogonal domain [14].
A popular domain studied first in psychology was a two-dimensional space
represented by pleasure and arousal axes [8]. However, the quantitative
use of the parameters (e.g., for expression synthesis) does not seem suitable
since the dimension is quite limited and assigning the coordinate values is
done in a subjective manner.

spectively. Section 5 shows the experimental results of our
method, and Section 6 concludes the paper.

2. Background

This section reviews the state-of-the-art techniques on
performance-driven facial animation and muscle-based fa-
cial modeling. More topics on facial modeling and anima-
tion can be found in [17].

Williams [23] introduced a performance-driven facial
animation system which synthesized expressions by chang-
ing texture coordinates calculated from the position of fea-
ture points on the face. Guenter et al. [9] captured both
the 3D geometry and shading information of a human face,
and reproduced photorealistic expressions. Eisert and Girod
[3] modeled a face with a triangular B-spline surface, and
analyzed facial expressions by estimating the facial anima-
tion parameters of MPEG-4 standard. Pighin et al. [18] re-
constructed the geometry and texture of an individual face
from five photo images of the subject. With this method,
they modeled basic expressions such as ‘joy’ or ‘surprise’,
and synthesized novel expressions by blending them. The
result was photo-realistic, showing detailed wrinkles and
creases. Later, they proposed an algorithm to find the blend-
ing weights from the video recording of a performance [19].
Kouadio et al. [12] animated a synthetic character by the
linear combination of previously modeled 3D facial expres-
sions by extracting the interpolation weights from the fea-
ture points traced by an optical capture device.

Waters [22] introduced an anatomically based muscle
model which was kinematically formulated. Terzopoulos
et al. [20, 13] represented the mesh of the skin surface
by a mass-spring model, and calculated skin deformation
due to muscle actuation. Koch et al. predicted the geom-
etry of skin surface due to the skull shape change using a
finite-element model [11], and synthesized expressions by
embedding expression muscles [10].

Terzopoulos and Waters [21] developed a method to ex-
tract muscle contractions from the expressions recorded in
video footage based on a dynamic muscle model. Essa et
al. [5, 6] developed a system to estimate muscle actuation
corresponding to a given expression using feedback control
theory. Choe et al. [1] calculated muscle actuation values
based on the finite element skin model and linear muscle
model.

3. Modeling Muscle Actuation Basis

Muscle actuation basis is a set of expressions
fE1;E2; : : : ;Emg, each of which represents the 3D facial
shape when a single expression muscle is fully actuated and
the others are relaxed. Figure 1 shows an example of the
actuation basis.

2

(1,2) Frontalis (3,4) Corrugator (5,6) Orbicularis oculi

(7,8) Levator labii
superioris

(9,10) Zygomatic major (11,12) Risorius

(13) Depressor
anguli oris

(14) Orbi-
cularis oris

(16) Jaw
rotation

(15) Lips
pressor

Expression Muscles

(1)

(3)
(5)

(8)
(10)

(12)

(13)

(14,15)

(2)

(4)
(6)

(7)
(9)

(11)

Neutral

Figure 1. Expression muscles and the corresponding basis elements in the actuation basis.

Once we have the actuation basis, we can synthesize
facial expressions by linear combinations of the basis ele-
ments if we assume the linear muscle model [1]. Let E0

denote the neutral expression—the position of about 1,500
vertices that constitute the facial surface. Let ei = Ei�E0

(i = 1; 2; : : : ;m) be the difference between the basis el-
ement and the neutral expression, where m is the num-
ber of the basis elements. When the muscle contractions
x1; x2; : : : ; xm are given, we synthesize an expression E

by

E = E0 +

mX
i=1

xiei: (1)

We normally expect the muscle contractions have the value
in [0; 1] since each basis element embodies the full actuation
of an expression muscle.

In this work, we used an actuation basis of 16 elements
as shown in Figure 1: six for the muscles in the upper region
around the eyebrows (Figure 1 (1)�(6)), ten for the muscles
in the lower region around the mouth (Figure 1 (7)�(16)).
We get the reduced set of 16 basis elements to represent the
operation of not less than 26 expression muscles in the hu-
man face. The operation of several muscles can be merged
into a single basis element if they are dependent on each
other, and the operation of a single muscle should be rep-
resented by multiple basis elements if the actuation of the
muscle can produce multiple distinct shapes:

� Merging: We merge the operation of the muscles into

a single basis element if they usually actuate simul-
taneously. For example, we merge the three muscles
Levator labii superioris alaeque nasi, Levator labii su-
perioris, and Zygomatic minor which are known as the
sneering muscles (see Figure 1 (7, 8)) into the single
basis element Levator labii superioris. The basis ele-
ments Corrugator (Figure 1 (3, 4)), Risorius (Figure 1
(11, 12)), and Depressor anguli oris (Figure 1 (13))
are also the results of merging the operation of two or
three muscles.

� Mouth: The operation of Orbicularis oris around the
mouth is very complicated, and the full actuation of
the muscle can generate many different shapes. In
this work, we created two basis elements to repre-
sent the operation of the muscle: normal Orbicularis
oris which corresponds to the mouth shape when pro-
nouncing /u/ sound (Figure 1 (14)), and the Lips pres-
sor which corresponds to the protruded (upset) mouth
(Figure 1 (15)).3 Gentle closing of the mouth is cov-
ered by the neutral expression E0.

� Eyes: Orbicularis oculi, the sphincter muscle at the
eyes, consists of the palpebral and orbital parts. In this

3Orbicularis oris was an obvious choice for the basis, but the inclusion
of Lips pressor was based upon our experiences: without the Lips pressor,
we observed the elements Risorius and Orbicularis oris had to combine
frequently to produce the shape of Lips pressor, which was quite unnatural
in the operation of human expression muscles.

3

work, we implemented only the operation of the palpe-
bral part (gentle closing of the eyes) as a basis element
(Figure 1 (5, 6)). Therefore emphatic closing of the
eyes cannot be generated.

We let artists model the basis elements considering the
size and location of expression muscles [2]. Faigin [7] illus-
trated the facial expressions resulting from the actuation of a
single or multiple expression muscles, which served an ex-
cellent guide to the modeling job. The actuation basis only
used for expression synthesis does not need to come from a
human subject. However, the actuation basis for expression
analysis should accurately reflect the operation of expres-
sion muscles of the subject because it affects drastically the
result of expression analysis (Section 4.1). Therefore artists
were asked to watch carefully the video recording of the
subject (or the training data in Section 4.2) where the sub-
ject was asked to make all kinds of expressions including
the extreme actuation of each muscle.

It would be impractical to assume that the hand-
generated actuation basis is accurate enough. Fortunately,
there is a way to evaluate the given basis: we simply run
the expression analysis procedure on the training data, then
we can infer that the basis is not accurate when the result-
ing muscle contractions go far beyond the expected range
[0; 1]. In such a case, we ask the artists to re-model the ba-
sis elements. We repeat the step until a reasonable basis
is obtained. However, it would be still impractical to as-
sume that the resulting basis is accurate enough to start our
computational steps of expression analysis. We present an
algorithm that improves further the actuation basis (at this
time without the help of artists) by taking iterations between
the expression analysis and basis modification procedures.
The algorithm cannot be fully described until the expres-
sion analysis procedure is understood, so the description is
deferred to the end of the next section.

4. Analysis of Facial Expressions

This section presents the procedures to extract muscle
contractions from facial performances, and shows how the
procedure can be used for improving the hand-generated ac-
tuation basis.

4.1. Extracting Muscle Contractions

We analyze the facial expressions by finding muscle con-
tractions to reproduce optimally the marker trajectories gen-
erated by optical capture systems. We improved the algo-
rithm proposed by Choe et al. [1].

(a) Real Marker (b) Virtual Marker

Markers for the
upper face

Markers for the
lower face

Figure 2. Real markers and corresponding vir-
tual markers on the synthetic model.

4.1.1 Coordinate Alignment

While the 3D geometry of the synthetic face is resolved
in its own local coordinate system fMg (model coordinate
system), the marker points in the performance data are re-
solved in another coordinate system fPg (performance co-
ordinate system). Before calculating the muscle contrac-
tions, we first have to transform the marker points from
the performance coordinate system to the model coordinate
system. We assume the transform from fPg to fMg is an
affine (similarity) transform with scale s, rotation R, and
translation t. We calculate the transform only once at the
first frame of the performance data, and apply the same
transform to all the other frames. In the following, we use
the notation Zp to denote the 3D coordinate of a point p
resolved in the coordinate system fZg

Let the position of the j-th marker be Ppj . We define the
virtual marker Mpj to be the corresponding point in fMg.
Figure 2 shows the real and virtual markers. We want to
find s, R, and t that satisfy the following equations,

Mpj = sR Ppj + t; (j = 1; 2; : : : ; n)

where n is the number of markers. To initiate the compu-
tation, we first manually mark the virtual marker positions
looking at both the first frame of the performance and the
3D model of the face. Then we solve the linear least square
problems to find s, t, and R sequentially, and repeat the
procedure until the least square error is saturated.

The accuracy of s, R, and t solved from the above pro-
cedure is at best limited to the accuracy of hand-marked
position of the virtual markers. We note that, once we have
s, R, and t, then the real markers can now be transformed
to the model coordinate system. But the resulting points
may not lie exactly on the surface of the 3D face model. By
slightly adjusting the points along the normal directions, we
can make the points lie on the surface, and get the next es-
timation of the (virtual) markers. We can further improve
the accuracy of s, R, and t by repeating the least square
procedure with the new position of the markers.

4

The above assumes that the facial shape at the first frame
of the performance is the same with the pre-modeled neu-
tral face. Therefore we asked the actors to make a consis-
tent neutral expression at the beginning of each performance
capture.

4.1.2 Calculating Muscle Contractions

The final position of the virtual marker j in the above pro-
cedure will be a point within one of the triangles that con-
stitute the facial geometry. Thus the marker point p j can
be encoded by the triangle index and the relative position
within the triangle (barycentric coordinates), which do not
depend on the subsequent deformation of the face. But the
marker point will have different 3D position depending on
the current shape of the face.

Let dij be the displacement of pj at basis element Ei

from pj at neutral expression E0. From the synthesis equa-
tion (1), if muscle contractions xi are given, the total dis-
placement dj of pj is given by

dj =

mX
i=1

xidij :

We find the muscle contractions so that dj is closest to the
observed displacement d̂j from the performance by mini-
mizing

nX
j=1

jd̂j � dj j
2
=

nX
j=1

jd̂j �

mX
i=1

xidij j
2
:

Because the muscle contractions should be lie in [0; 1], we
can find the contractions by solving the following optimiza-
tion problem:

minimize

nX
j=1

jd̂j �

mX
i=1

xidij j
2

subject to 0 � xi � 1 (i = 1; 2; : : : ;m)

: (2)

The muscle contraction vector x = [x1; x2; : : : ; xm]
T can

be obtained by solving the constrained quadratic program-
ming

minimize 1
2
xTQx� xT c

subject to 0 � xi � 1 (i = 1; 2; : : : ;m)
; (3)

where

Q = 2

0
BBBBBBBBBBB@

nX
j=1

jd1j j
2

nX
j=1

d1j � d2j � � �

nX
j=1

d1j � dmj

nX
j=1

d2j � d1j

nX
j=1

jd2j j
2

� � �

nX
j=1

d2j � dmj

...
...

...
...

nX
j=1

dmj � d1j

nX
j=1

dmj � d2j � � �

nX
j=1

jdmj j
2

1
CCCCCCCCCCCA

;

c = 2

0
BBBBBBBBBBB@

nX
j=1

d̂j � d1j

nX
j=1

d̂j � d2j

...
nX
j=1

d̂j � dmj

1
CCCCCCCCCCCA

:

We solve this problem using the active set method, and ap-
ply Lagrange method for the sub-problems derived from the
active sets [15]. To make the optimization procedure more
robust, we divided the face into the upper and lower regions.
The contractions of Frontalis, Corrugator, and Orbicularis
oculi were calculated using only the markers in the upper
region, and contractions of the other muscles were calcu-
lated using only the markers in the lower region (Figure 2).
A muscle contraction value larger than one can be thought
of as an exaggerated expression. So, we set only x i � 0 as
the constraints if we need to allow the exaggeration.

4.2. Improving the Actuation Basis

The actuation basis only used for expression synthesis
can be entirely depend on the craftsmanship of the artist.
However, the actuation basis for the subject being captured
needs to have a certain level of accuracy to get reliable ex-
pression analysis results. It is not likely that hand-generated
basis has such an accuracy. Therefore we develop an iter-
ative algorithm that increases the accuracy of an actuation
basis.

The algorithm takes the form of a fixed point iteration
between modeling and analysis—the result of modeling is
used for the analysis, and the result of analysis is in turn
used for improving the actuation basis. For the iteration, we
collect a performance data called training data in which the
actor is asked to make all sorts of expressions. We let the
actor fully contract each individual muscles. Even though
ordinary people cannot make isolated muscle actuation, the
facial expressions generated in the process of trying to use
only a single muscle contain important information about
the operation of the muscles, and helps to find more optimal
basis elements. The training data also includes a significant
amount of ordinary expressions that involve compound ac-
tuation of multiple muscles.

We first calculate muscle contractions at all frames of the
training data by solving (3). Then the following equations
should be satisfied in ideal cases for the marker point pj :

x
(1)

1
d1j + x

(1)

2
d2j + x

(1)

3
d3j + � � �+ x

(1)

m dmj = d̂
(1)

j

x
(2)

1
d1j + x

(2)

2
d2j + x

(2)

3
d3j + � � �+ x

(2)

m dmj = d̂
(2)

j

...
x
(N)

1
d1j + x

(N)

2
d2j + x

(N)

3
d3j + � � �+ x

(N)

m dmj = d̂
(N)

j
;

5

(a)

(d)

(b)

(c)

Figure 3. The four snapshots and plotting of the corresponding muscle contraction vectors

where x

(t)
1 ; : : : ; x

(t)
m are analyzed muscle contractions at

frame t, d̂(t)
j

is the observed displacements at frame t, and
N is the total number of frames in the training data. In real-
ity, however, the equalities do not hold. But, if we solve the
equations for (d1j ; : : : ;dmj), the least square solution can
provide us the improved position of the marker point p j in
each of the basis elements E1; : : : ;Em. If we perform the
above steps for all the marker points pj (j = 1; : : : ; n), we
can get a new (improved) actuation basis.

Thus we get an improved actuation basis from the initial
draft: (1) calculating muscle contractions from the initial
draft, (2) finding new dij (i = 1; 2; : : : ;m, j = 1; 2; : : : ; n)
with the muscle contractions. We repeat the cycle until the
total analysis error

P
t

P
j
jd̂

(t)
j
�d

(t)
j
j2 is saturated, and fi-

nally get the optimized displacements �dij (i = 1; 2; : : : ;m,
j = 1; 2; : : : ; n). Finally, using the scattered data interpola-
tion method with a radial basis function [16], we can form
an optimized actuation basis from �dij and the initial draft
of actuation basis.

5. Experiments

We implemented our algorithms on a PC platform.
For the experiment, we also developed an optical cap-
ture system with five video cameras [1], which gener-
ated 3D trajectory of the markers and gross motion of
the head at 30 frames per second. The experimental re-
sults (demo clips) described in this Section is available at
http://graphics.snu.ac.kr/research/basis/.

First, we 3D-scanned the face of an actor, let an artist
model the actuation basis of it, ran the improvement algo-
rithm described in Section 4.2, and got the final actuation

basis. Then we captured performances and analyzed them
into muscle actuation values. Figure 3 shows four expres-
sion snapshots during a performance: (a) raising eyebrows,
(b) jaw rotation, (c) smiling, and (d) frowning. The graph
in the figure plots the muscle contractions at the snapshots
which were analyzed by the algorithm described in Sec-
tion 4.1. The result agrees well with our anticipation:

� Expression (a): The contractions (about 0.9) of the
left and right Frontalis are dominant in raising eye-
brows.

� Expression (b): We can see the jaw rotation is con-
spicuous.

� Expression (c): The two dominant contractions in the
middle correspond to the left and right Zygomatic ma-
jors, which matches well with the muscle actuation in
real smiling.

� Expression (d): We can see the six muscles are dom-
inant in the last row: the pairs of Corrugator, Orbic-
ularis oculi, and Levator labii superioris. The con-
traction of Corrugator and Levator labii superioris
matches well with the muscle actuation in real frown-
ing. Orbicularis oculi resulted from the close of the
eyes are not directly related to this expression.

Figure 4 shows the result of applying the contractions of the
expressions to the computer model of the actor and other
two cartoon-like characters.

Figure 5 plots the contractions of left Frontalis and Jaw
rotation during the performance of “Tulip Season” con-
tained in the demo clip. The x-axis represents the frame

6

(a)

(b)

(c)

(d)

Figure 4. Results of applying the muscle con-
tractions in Figure 3 to different 3D models.

number and the y-axis represents the muscle contractions
in [0; 1]. The figure also shows per-frame marker error
(
P

n

j=1 jd̂j�dj j)=n, which is measured in centimeters. The
error was computed separately for the upper and lower re-
gions of the face. The error is bigger in the lower region due
to the nonlinear and irregular movement around the mouth,
which is mainly caused by Orbicularis oris muscle.

6. Conclusion

In this paper, we presented a new muscle-based facial an-
imation technique that uses the actuation basis, a set of 3D
facial shapes corresponding to the full actuation of individ-
ual muscles. Instead of completely relying on a mathemat-
ical method, we let artists manually sculpt (the initial draft
of) the basis elements so that we could get more predictable
deformation of the face. To increase the accuracy of the
actuation basis, we developed an iterative algorithm that re-

fined the actuation basis. Once an actuation basis was ready,
a performance could be analyzed quite accurately, and the
result could be applied to any 3D models with equivalent
muscle structures.

An interesting contribution of this paper is that it pro-
posed a technique that includes the artists’ modeling ca-
pability as an integral part of the algorithm. The manual
shaping of the basis elements complemented the pure math-
ematical approach which produced unexpected results oc-
casionally. The proposed method is robust, and we believe
that this artist-in-the-loop method can be quite useful in an-
imation productions until the mathematical models can ac-
curately simulate the operation of the muscles and concomi-
tant movements in the facial tissue and skin.

Acknowledgment

This work was supported by the Brain Korea 21 Project.
This work was also supported by ASRI (The Automation
and Systems Research Institute) at Seoul National Univer-
sity. We thank Eunjeong Kang very much for modeling all
the computer models and basis elements of them used in the
experiments.

References

[1] B. Choe, H. Lee, and H.-S. Ko. Performance-driven muscle-
based facial animation. The Journal of Visualization and
Computer Animation, 12(2):67–79, May 2001.

[2] C. D. Clemente. Anatomy: A Regional Atlas of the Human
Body, 2nd edition. Urban and Schwarzenberg, 1981.

[3] P. Eisert and B. Girod. Analyzing facial expression for vir-
tual conferencing. IEEE Computer Graphics & Applica-
tions, 18(5):70–78, September - October 1998. ISSN 0272-
1716.

[4] P. Ekman and W. V. Friesen. Facial Action Coding System.
Consulting Psychologists Press, Inc., 1978.

[5] I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling,
tracking and interactive animation of faces and heads using
input from video. In Proceedings of Computer Animation
‘96 Conference, June 1996. Geneva, Switzerland.

[6] I. A. Essa and A. P. Pentland. Coding, analysis, in-
terpretation and recognition of facial expressions. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):757–763, July 1997.

[7] G. Faigin. The Artist’s Complete Guide to Facial Expres-
sion. Watson-Guptill Publications, 1990.

[8] M. K. Greenwald, E. W. C. III, and P. J. Lang. Affective
judgment and psychophysiological response: dimensional
covariation in the evaluation of pictorial stimuli. Journal
of Pyschophysiology, 3:51–64, 1989.

[9] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin.
Making faces. In SIGGRAPH 98 Conference Proceedings,
Annual Conference Series, pages 55–66. ACM SIGGRAPH,
Addison Wesley, July 1998.

7

Figure 5. Contractions of ‘left frontalis’ / ‘jaw rotate’ and marker errors.

[10] R. M. Koch, M. H. Gross, and A. Bosshard. Emotion
editing using finite elements. Computer Graphics Forum,
17(3):295–302, 1998. ISSN 1067-7055.

[11] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren,
G. Fankhauser, and Y. Parish. Simulating facial surgery
using finite element methods. In SIGGRAPH 96 Confer-
ence Proceedings, Annual Conference Series, pages 421–
428. ACM SIGGRAPH, Addison Wesley, Aug. 1996.

[12] C. Kouadio, P. Poulin, and P. Lachapelle. Real-time facial
animation based upon a bank of 3D facial expressions. In
Proceedings of Computer Animation ‘98 Conference. IEEE
Computer Society Press, 1998.

[13] Y. Lee, D. Terzopoulos, and K. Waters. Realistic face mod-
eling for animation. In SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 55–62. ACM SIG-
GRAPH, Addison Wesley, Aug. 1995.

[14] J. P. Lewis, M. Cordner, and N. Fong. Pose space defor-
mations: A unified approach to shape interpolation a nd
skeleton-driven deformation. Proceedings of SIGGRAPH
2000, pages 165–172, July 2000. ISBN 1-58113-208-5.

[15] D. G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, 2nd edition, 1984.

[16] G. M. Nielson. Scattered data modeling. IEEE Computer
Graphics and Applications, 13(1):60–70, Jan. 1993.

[17] F. I. Parke and K. Waters. Computer Facial Animation. A K
Peters, 1996. ISBN 1-56881-014-8.

[18] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H.
Salesin. Synthesizing realistic facial expressions from pho-
tographs. In SIGGRAPH 98 Conference Proceedings, An-
nual Conference Series, pages 75–84. ACM SIGGRAPH,
Addison Wesley, July 1998.

[19] F. Pighin, R. Szeliski, and D. H. Salesin. Resynthesizing fa-
cial animation through 3D model-based tracking. In Seventh
International Conference on Computer Vision (ICCV ’99)
Conference Proceedings, pages 143–150, September 1999.
Corfu, Greece.

[20] D. Terzopoulos and K. Waters. Physically-based facial mod-
elling, analysis, and animation. The Journal of Visualization
and Computer Animation, 1:73–80, 1990.

[21] D. Terzopoulos and K. Waters. Analysis and synthesis of
facial image sequences using physical and anatomical mod-
els. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(6):569–579, June 1993.

[22] K. Waters. A muscle model for animating three-dimensional
facial expression. Computer Graphics (Proceedings of SIG-
GRAPH 87), 21(4):17–24, July 1987. Held in Anaheim, Cal-
ifornia.

[23] L. Williams. Performance-driven facial animation. Com-
puter Graphics (Proceedings of SIGGRAPH 90), 24(4):235–
242, August 1990. ISBN 0-201-50933-4. Held in Dallas,
Texas.

[24] J. yong Noh and U. Neumann. Expression cloning. Pro-
ceedings of SIGGRAPH 2001, pages 277–288, August 2001.
ISBN 1-58113-292-1.

8

Expression Cloning

Jun-yong Noh Ulrich Neumann
noh@usc.edu uneumann@usc.edu

Computer Graphics and Immesive Technologies Laboratory
Computer Science Department

Integrated Media Systems Center
University of Southern California

Abstract
We present a novel approach to producing facial expression
animations for new models. Instead of creating new facial
animations from scratch for each new model created, we take
advantage of existing animation data in the form of vertex motion
vectors. Our method allows animations created by any tools or
methods to be easily retargeted to new models. We call this
process expression cloning and it provides a new alternative for
creating facial animations for character models. Expression
cloning makes it meaningful to compile a high-quality facial
animation library since this data can be reused for new models.
Our method transfers vertex motion vectors from a source face
model to a target model having different geometric proportions
and mesh structure (vertex number and connectivity). With the
aid of an automated heuristic correspondence search, expression
cloning typically requires a user to select fewer than ten points in
the model. Cloned expression animations preserve the relative
motions, dynamics, and character of the original facial animations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling – Geometric
Algorithms; I.2.9 [Artificial Intelligence]: Robotics – Kinematics
and dynamics
Keywords: Deformations, Facial animation, Morphing, Neural
Nets

1 Introduction
Facial animation aims at producing expressive and plausible
animations of a 3D face model. Some approaches model the
anatomy of the face, deriving facial animations from the physical
behaviors of the bone and muscle structures [16, 24, 30, 31].
Others focus only on the surface of the face, using smooth surface
deformation mechanisms to create facial expressions [11, 12, 23].
In general, these approaches make little use of existing data for
animating a new model. Each time a new model is created for
animation, a method-specific tuning is inevitable or the animation
is produced from scratch. Animation parameters do not simply
transfer between models. If manual tuning or computational costs
are high in creating animations for one model, creating similar
animations for new models will take similar efforts.
A parametric approach associates the motion of a group of
vertices to a specific parameter [22]. This manual association
must be repeated for models with different mesh structures.
Vector based muscle models place the heuristic muscles under the
surface of the face [30, 31]. This process is repeated for each new
model and no automatic placement strategy has been reported
except for the case where a new model has the same mesh
structure. Muscle contraction values are transferable between
models only when the involved models are equipped with
properly positioned muscles. Even then, problems still arise when
muscle structures or surface shapes are inherently different
between two models, e.g., a human and a cat face. A three-layer
mass-spring-muscle system requires extensive computation [16]
and the final computed parameters are only useful for one model.
Free-form deformation manipulates control points to create facial
expressions [12], but there is no automatic method for mapping
the control points from one model to another. Expression
synthesis from photographs can capture accurate geometry as well
as textures with a painstaking model fitting process for each key
frame [23]. In practice, animators often sculpt key-frame facial
expressions for every three to five frames to achieve the best
quality animations [17]. Obviously, those fitting or sculpting
processes must be repeated for a new model even if the desired
expression sequences are available for other models.

Sample expressions cloned onto Yoda from a model with different geometric proportion and mesh structure
The top row of figure 11 shows the source model.

Our goal is to produce facial animations by reusing motion data.
Once high-quality facial animations are created for any model by
any available mechanisms, expression cloning (EC) reuses the
dense 3D motion vectors of the vertices of the source model to
create similar animations on a new target model. Animations of
completely new characters can be based on existing libraries of
high-quality animations created for many different models. If the
animations of the source are smooth and expressive, the
animations of the target model will also have the same qualities.
Another advantage of EC is the speed of the algorithm; source
animations created by computationally intensive physical
simulations can be quickly cloned to new target models. After
some preprocessing, target model animations are produced in real
time, making EC also useful for interactive control of varied target
models driven from one generic model, e.g., for text-to-speech
applications [21].
Similar to EC, performance driven facial animation (PDFA) and
MPEG-4 both use measured motion data [1, 7, 8, 11, 21, 32]. In
PDFA, 2D or 3D motion vectors are recovered by tracking a live
actor in front of a camera to drive the facial animation. With this
approach, the quality of the animation depends on the quality of
feature tracking and correspondences between the observed face
and target model. MPEG-4 specifies eighty-four feature points.
Accurately identifying corresponding feature points is difficult
and a daunting manual task. Degraded animation is expected if
only a subset of feature points is identified or tracked. In contrast,
EC reuses animations already containing precise dense 3D motion
data. A sophisticated mechanism identifies dense surface
correspondences from a small initial set of correspondences. For
models with typical human facial structure, a completely
automated correspondence search is described in Section 3.

Expression cloning also relates to 3D metamorphosis research
where establishing correspondences between two different shapes
is an important issue [13]. Harmonic mapping is a popular
approach for recovering dense surface correspondences [4].
Difficulty arises, however, when specific points need to be
matched between models. For instance, a naïve harmonic
mapping could easily flip the polygons if a user wanted to match
the tip of the noses or lip corners between the source and target
models. Proposed methods to overcome this problem include
partitioning models into smaller regions [13] or model
simplification [15] before applying harmonic mapping. A
spherical mapping followed by image warping is used in the case
of star shaped models [14]. Our approach to finding dense
correspondences starts with specific feature matches, followed by
a volume morphing and a cylindrical projection.

Our work is also motivated by techniques for retargeting full
body animations from one character to another [9]. While we
consign the creative decisions (how does a cat smile?) to the
user’s choice of the source animation as in [9], our technique of
cloning a facial animation is significantly different in approach
from that dealing with articulated body motions.
In section 2, we detail the methods used to create a cloned
expression animation, followed by the heuristic rules to automate
the correspondence search in section 3. Implementation specifics
and results are shown in section 4. We discuss general issues and
possible extensions in section 5.

2 Expression Cloning
Expression cloning directly maps an expression of the source
model onto the surface of the target model (figure 1). The first
step determines which surface points in the target correspond to
vertices in the source model. No assumptions are made about the
number of vertices or their connectivity in either model. We
compute dense correspondences between the models by using a
small set of initial correspondences to establish an approximate
relationship. Identifying initial correspondences requires manual
selection of fewer than ten (possibly zero) vertices after an
automated search is applied. Without the automated search,
experiments show that fifteen to thirty-five manually selected
vertices are sufficient, depending on the shape and the complexity
of the model. The automatic correspondence search bootstraps
the whole EC process, and heuristic rules are given in section 3.
The second step transfers motion vectors from source model
vertices to target model vertices. The magnitude and direction of
the transferred motions are properly adjusted to account for the
local shape of the model. Using the dense correspondences
computed in the first step, motion transfers are well defined by
linear interpolation using barycentric coordinates.

2.1 Dense Surface Correspondences
Assuming we have n sparse correspondences, dense surface
correspondences are computed by volume morphing with Radial
Basis Functions (RBF) followed by a cylindrical projection.
Volume morphing roughly aligns features of the two models such
as eye sockets, nose ridge, lip corners, and chin points. As shown
in figure 2a, volume morphing with a small set of initial
correspondences does not produce a perfect surface match. A
cylindrical projection of the morphed source model onto the target
model ensures that all the source model vertices are truly

Figure 1 The expression cloning system

Motion Capture
Data or Any
Animation

Mechanism

Deform
Dense Surface

Correspondence

Vertices
Displacements

Cloned
Expressions

Motion
Transfer

Source Model Target Model

 Source Model Animation Target Model Animation

embedded in the target model surface , as shown in figure 2b. See
figure 12 for more examples.

2.1.1 Radial Basis Functions
The family of radial basis functions (RBF) is well known for its
powerful interpolation capability and it is often used for face
model fitting [6, 23, 29]. The network of RBF is of the form

∑
=

=
n

j
ijji xhwxf

1
)()(�� (1)

We employ Hardy multi-quadrics for the basis function,
22||||)(jjiij sxxxh +−= ��� . The variables jw denote the weight

to be computed, n the number of training inputs, x� the input
vector, and)(xf � the estimated output. The distance js is

measured between jx� and the nearest ix� , ||||min jijij xxs �� −=
≠

,

leading to smaller deformations for widely scattered feature points
and larger deformations for closely located points [5]. This
network is trained three times with the 3D coordinates of source
correspondences as ix� , and the x, y, or z values of target
correspondences as iy (ni ,...2,1=). Use of a regularization term
λ minimizes the cost function

wweewC TT ����� λ+=)((2)

where e� is the error vector of the difference between the actual
value and the estimated value, wHye ��� −= , and)(ijij xhH �= .
The regularization parameter is added to avoid overfitting by
penalizing large weights. Plugging e� into equation (2) and
differentiating)(wC � with respect to w� yields

yHAw T1−=� (3)

where IHHA T λ+= and I is the identity matrix.

Generalized cross-validation (GCV) [10], a tool for measuring
prediction error, can be differentiated with respect to λ and set to
zero to derive the iterative estimation formula for λ [20].

 2)(γ−
=

n
eenGCV

T ��

 (4)

wAw
ee

n T

T

��

��

1−−
=

γ
ηλ (5)

The number of correspondence inputs is n ,)21(−− −= AAtr λη ,
and γ is the effective number of parameters [19],

)(1−−= Atrm λγ . The number of basis functions m is the same
as n in our case. Each term in equation (5) can be represented by

the eigenvalues iu , eigenvectors iu� of THH , and the projection

of the target vectors y� onto the eigenvectors, i
T

i uyz ��= [20].

∑
= +

=
n

i i

i

u
u

1
2)(λ

η (6)

∑
= +

=
n

i i

iT

u
z

ee
1

2

22

)(λ
λ�� (7)

∑
=

−

+
=

n

i i

iiT

u
zu

wAw
1

3

2
1

)(λ
�� (8)

 ∑
= +

=−
n

i iu
n

1 λ
λγ (9)

The iteration stops when GCV converges, i.e. the difference
between the previous GCV value and the current value becomes
less than 0.000001. Once the unknowns are computed, the RBF
network smoothly interpolates the remaining non-corresponding
points, mapping the source model onto the target model’s shape.

2.1.2 Cylindrical Projections
After the RBF deformation, each vertex in the source model is
projected onto the target model’s surface to ensure a complete
surface match. A cylindrical projection centerline is established
as a vertical line through the centroid of the head. A ray
perpendicular to the projection centerline is passed through each
vertex in the source model and intersected with triangles in the
target model. The first intersection found is used in cases of
multiple valid intersections. Although this could cause a potential
problem, visual artifacts are not observed with various models in
practice. A reason may be that motions are similar for any of the
valid intersections due to their regional proximity.
To test for intersections within a triangle, compute the barycentric
coordinates of the intersection point with respect to the vertices of
the target triangle. Computing barycentric coordinates is
equivalent to solving a 3 x 3 linear system.

=

i

i

i

z
y
x

b
b
b

zyx
zyx
zyx

3

2

1

333

222

111

 (10)

By a property of barycentric coordinate systems, if
1,,0 321 ≤≤ bbb , then the intersection lies inside the triangle. In

reality, because of numerical precision limits, we subtract and add
0.005 from zero and one, respectively.

(a) After morphing the generic
model to itself with 23 initial
correspondences, some features
are aligned. However, off-
surface edges also arise like
these blue edges over the nose.

(b) Morphing followed by a
cylindrical projection achieves
a complete surface match
between two models.

Figure 2 Surface correspondences by morphing and projection

2.2 Animation with Motion Vectors
A cloned expression animation displaces each target vertex to
match the motion of a corresponding source-model surface point.
Since we have dense source motion vectors, linear interpolation
with barycentric coordinates is sufficient to determine the motion
vectors of the target vertices from the enclosing source triangle
vertices.
Note that although the RBF morphing and cylindrical projection
embed the source model vertices in the target model surface , the
opposite is not necessarily true (figure 3). To obtain the
barycentric coordinates needed for motion interpolation, we also
project the target model vertices onto the source model triangles.
In other words, we do the same operation described in section
2.1.2, but this time reversing the source and target models. The
barycentric coordinates of each target vertex determine both the
enclosing source model triangle and the motion interpolation
coefficients.
Since facial geometry and proportions can vary greatly between
models, source motions cannot simply be transferred without

adjusting the direction and magnitude of each motion vector. As
shown in figure 4, the direction of a source motion vector must be
altered to maintain its angle with the local surface when applied to
the target model. Similarly, the magnitude of a motion vector
must be scaled by the local size variations. Examples are shown in
figure 13.

2.2.1 Motion Vector Direction Adjustment
To facilitate motion vector transfer while preserving the
relationship with the local surface, a local coordinate system is
attached to each vertex in both the original and deformed source
model1. The transformation between these local coordinate
systems defines the motion vector direction adjustment (figure 5).
The local coordinate system is constructed as follows. First, the
X-axis is determined by the average of the surface normals of all
the polygons sharing a vertex. To ensure continuous normal (X-
axis) variations across the surface, a noise filter [25] is applied by
averaging neighbor vertex normals. Second, the Y-axis is defined
by the projection of any edge connected to the vertex onto the
tangent plane whose normal is the just-determined X-axis. Lastly,
the Z-axis is the cross product of the X and Y-axes. To obtain the
deformed motion vector m′� for a given source vector m� (figure
5), the transformation matrices are computed between the two
local coordinate systems and the world coordinate system.

1 A deformed source model is the source model after the morphing

and projection described in section 2.1

Figure 5 Transformation matrix as a means to adjust a
motion vector direction

Y Z

X

Y

T

X

Y

Z

X
Z

m�

m′�

World coordinate
system

Local coordinate system for

(a) an original vertex (b) the same vertex in the deformed model

(a) (b)RO
W

RW
D

RO
D

Local bounding box (a) original (b) transformed (c) deformed

(a) (b) (c)

Figure 6 Local bounding box produces scaling factors.

Target model

Source model

Points in the source are embedded in the target surface.
The opposite is not necessarily true.

Figure 3 Side view of the two models after the projection

Source Model Target Model

Source Motion

Target Motion

Direction needs to
be adjusted to
preserve the motion
angle with respect to
the local surface.

Magnitude
needs to be
adjusted
according to
the local size
variations.

Figure 4 The direction and the magnitude adjustment of
motion vectors

•••
•••
•••

=

owowow

owowow

owowow
O

W

zzzyzx
yzyyyx
xzxyxx

R
������

������

������

 (11)

•••
•••
•••

=

wdwdwd

wdwdwd

wdwdwd
W
D

zzzyzx
yzyyyx
xzxyxx

R
������

������

������

 (12)

The matrix RO
W denotes the rotation from a local source vertex

coordinate axes to the world coordinate axes, and RW
D is the

rotation from world axes to the local deformed model axes. Prior
to the dot product computation in equation (11) and (12), each
component denoting the direction of X, Y, and Z-axes is
normalized. Finally, the transformation from source to target
motion directions is

 RRR O
W

W
D

O
D = (13)

This mapping at each vertex determines the directions of the
deformed source model motion vectors given the source model
motion vectors.

2.2.2 Motion Vector Magnitude Adjustment
If the source and target face models have similar proportions, the
motion vectors may simply be scaled in proportion to the model
sizes. However, to preserve the character of animations for
models with large geometry differences (e.g. the unusually big
ears of Yoda), the magnitude of each motion vector is adjusted by
a local scale factor constrained within a global threshold. Local
scale at a vertex is determined by a bounding box (BB) around the
polygons sharing the vertex. In deforming a source model to fit a
target model, the local geometry around a vertex is often scaled
and rotated. Rotations are eliminated to facilitate a fair
comparison of local scale. The source BB is transformed by the
rotation matrix of equation (13). For each source model vertex in
a BB, we compute its rotated position due to model deformation

 vRv O
D

�� =′ (14)

The local scale change due to deformation is the ratio of the
rotated source BB and the deformed BB (between b and c in
figure 6)

)(
)(

,,

,,
,, dingBoxlLocalBounSourceModesize

gBoxocalBoudinurceModelLDeformedSosize
S

zyx

zyx
zyx =

�

 (15)

A protrusion or noise in the local geometry (e.g., a bump on the
face in either model) can exaggerate motion vector scaling,
making the scaling unnecessarily large or small. One solution is
to limit scale factors by a global threshold such as the standard
deviation of all scale factors. Scale factors greater than the
standard deviation are discarded and replaced by the results of a
noise filter [25] that averages neighboring values. The filter is
then applied over the whole face to ensure smooth continuous
scale factors.
The transformation matrix that accounts both for the direction and
magnitude adjustments of a motion vector is given by

RST O
D= (16)

where

=

z

y

x

S
S

S
S

00
00
00

 from equation (15).

During animation, the motion vector for each deformed model
vertex is obtained by

mTm �� =′ (17)

where m� is the vertex motion of the source model and m′� is the
vertex motion of the deformed model. Finally, a vertex in the
target model tv� is displaced by the following equation

332211 mbmbmbmt ′+′+′= ���� (18)

where 3,2,1b denotes the barycentric coordinates, tm� the target

vertex motion vector, and 3,2,1m′� the enclosing source triangle
motion vectors.

2.3 Lip Contact Line
Our models have lips that touch at a contact line. This contact
line between the upper and lower lips requires special attention.
Although they are closely positioned, motion directions are
usually opposite for upper and lower lip vertices. Severe visual
artifacts occur when a vertex belonging to the lower lip happens
to be controlled by an upper lip triangle, or vice versa. Therefore,
careful alignment of the lip contact lines between the two models
is very important. Misalignment results in misidentification of the
enclosing triangles and subsequent lip vertex motions in the
wrong direction.
Specific processes are followed to produce artifact-free mouth
animations. First, include all the source-model lip contact line
vertices in the initial correspondence set for the RBF morphing
step. Since source vertices do not usually coincide with target
vertices (figure 7a), it is necessary to compute corresponding
points in the target model. Compute the sum of the piecewise
distances between the left and right corners of the lip contact line
and normalize each length to the range [0, 1] for both models.
Corresponding locations on the target lip-line are found at
normalized parameters matching those of the source lip-line
vertices. Label each vertex parameter in the lip contact line as

...3,2,1s and ...3,2,1t for the source and target model, respectively

(figure 7). If parameter ms falls between nt and 1+nt , the
corresponding 3D coordinate c on the target lip is interpolated by

nn

mn
n

nn

nm
n tt

sttD
tt
tstDc

−
−

+
−
−

=
+

+

+
+

1

1

1
1)(3)(3 (19)

With the above correspondences, the RBF morphing in section
2.1.1 brings the source lip vertices into the target model’s surface
as shown in figure 7a. Note that there are duplicate vertices at
each point – one for the upper lip and one for the lower lip. If we
perform the cylindrical projection in section 2.1.2, the duplicate
points represented by 2t , 3t , or 4t in figure 7a will be controlled
by upper-lip source-model triangles since these points are located
above the source-model lip-contact line. Therefore, another step
is necessary to completely align the lip contact lines of the two
models. Temporarily move the vertices of the target-model lip
contact line onto corresponding source-model lip contact points.
These corresponding positions are computed with normalized

parameters and equation (19), as before, but this time the target
vertices are moved onto the source-lip contact line as opposed to
the source vertices moving onto the target-lip contact line. Figure
7b shows final aligned lip lines.
Two issues are noteworthy. First, there is no actual degradation
of the fidelity of the target model from aligning its lip-line vertices
with the source model. Lip-line alignment is only temporary to
facilitate determining the enclosing source-model triangles. The
original target-model lip-vertex coordinates are used for
animation. Second, by manipulating the contact line vertices for
alignment, there may be cases where triangles flip if only the
vertices on the lip contact line move. We recursively propagate
the same displacements in the contact line neighborhood until no
more triangle flipping is detected.
The next step determines which vertex at the lip contact points
belongs to the upper and lower lip so that each can be assigned to
the appropriate enclosing triangle. A naïve barycentric coordinate
test may indicate both the upper and lower-lip triangles as the
enclosing triangles for both points on a lip contact line. We check
the neighborhood of each vertex to see if neighbor vertices are
located above or below the vertex.
Motion-vector transformations also require special attention at the
lip contact line. The matrices could easily be different for each of
the duplicate vertices at a lip contact point due to their different
local neighborhoods. This would cause the two vertices to move
to different positions when driven with the same source motion
vector. To ensure the same transformation matrices for both
vertices on a lip contact point, consider the upper and lower lips
connected. Specifically, the normal computations and local BB
comparisons include neighbors from the upper and lower lips.

3 Automated Correspondence Selection
A small set of correspondences is needed for the RBF morphing.
Since all other EC steps are fully automated, automatic initial
correspondence selection would completely automate expression
cloning. Automatic correspondences not only reduce tedious
manual selection, but also remove the errors and variations
produced by mouse clicking and judgment. We present fifteen
heuristic rules that identify more than twenty correspondences
when applied to most human faces. In some cases, we find that
up to ten additional manual correspondences may be added to
improve the animation quality. In all cases, an animator can
simply edit erroneous automatic correspondences, substituting or
adding their own selections.
Orient the face model to look in the positive z-direction. The y-
axis points through the top of the head, and the x-axis points
through the right ear. The model is assumed to have a neutral
expression initially with the lips together and the contact line
defined by duplicate vertices. For robust behavior during the
heuristic correspondence searches, we skip (ignore) degenerate
triangles that have one very short edge compared to the other two
edges.
Heuristic rules

1. Tip of the nose: Find the vertex with the highest z-
value.

2. Top of the head: Find the vertex with the highest y-
value.

3. Right side of the face (right ear): Find the vertex with
the highest x-value.

4. Left side of the face (left ear): Find the vertex with the
lowest x-value.

5. Top of the nose (between two eyes): From the tip of the
nose, search upward along the ridge of the nose for the
vertex with the local minimum z-value.

6. Left eye socket (near nose): From the top of the nose,
search down to the left side of the nose for the vertex
with the local minimum z-value.

7. Right eye socket (near nose): From the top of the nose,
search down to the right side of the nose for the vertex
with the local minimum z-value.

8. Bottom of the nose (top of the furrow): From the tip of
the nose, search downward to the center of the lips until
reaching the vertex with the local minimum z-value.
The vertex with the biggest angle formed by two
neighbors is the bottom of the nose.

9. Bottom left of the nose: From the tip of the nose, search
downward to the left side of the nose until reaching the
vertex with the local minimum z-value. The vertex with
the biggest angle formed by two neighbors is the bottom
left of the nose.

10. Bottom right of the nose: From the tip of the nose,
search downward to the right side of the nose until
reaching the vertex with the local minimum z-value.
The vertex with the biggest angle formed by two
neighbors is the bottom right of the nose.

Figure 7 Lip contact line alignment

(a) After morphing

(b) Aligned two lip contact lines

Source model lip contact line

Target model lip contact line

Upper lip

Lower lip

11, st

2t
3t 4t

5t
2s

3s

Source Lip Model Target Lip Model

11, st

2s
3t 4t

3s
5t

11. Lip contact line: Find the set of duplicated vertices.
12. Top of the lip: From the center of the upper lip contact

line, search upward along the centerline for the vertex
with the local maximum z-value.

13. Bottom of the lip: From the center of the lower lip,
search downward along the centerline for the vertex
with the local minimum z-value after passing the vertex
with the local maximum z-value.

14. Chin: From the bottom of the lip, search downward
along the centerline for the vertex with the local
maximum z-value.

15. Throat: From the chin, search downward along the
centerline until reaching the vertex with the local minim
z-value. Along the search, find two vertices with two
maximum angles. The one with smaller z value is the
throat (The other one should be near the chin point).

The labels given to these points may not be precise and they are
not important. We only seek to locate corresponding geometric
points in both models. Figure 8 shows the correspondences
automatically found with the above rules.

4 Results
The specifications of the test models are summarized in table 1.
The “source man” model is used as the animation source for all
the expressions that are cloned onto the other models. Source
animations are created by a) an interactive design system for
creating facial animations and b) motion capture data embedded
into the source man model (figure 9). An algorithm similar to
[11] is implemented to animate the source model with the motion
capture data.
For expression cloning onto the woman and man models, only the
twenty-three correspondences from the automated search are used.
This means that the whole EC process is fully automated for these
models. The Yoda model has large eyes and ears. We manually
add three additional points on each eye socket and two points on
each side of the face. The monkey model is handled similarly.
The dog and cat model do not have anything close to human face
geometry. Twelve and eighteen points are manually selected for
the dog and cat, respectively, to replace erroneous automatic
search results. Figure 12 shows the deformed source models
produced to determine dense surface correspondences from these
initial sets of points. The deformations closely approximate each
target model. For example, the bumps on the Yoda eyebrows are
faithfully reproduced on the deformed source model. The source
model cheek is also smoothly bulged for the monkey model. The
eyes are properly positioned for the man and woman model.
Motion vector adjustments are depicted in figure 13. The monkey
model has different local geometry from the source model.
Motions are widely distributed (column 5) and more horizontal
(column 2) in the mouth region. Finer geometry of the forehead
produces denser but smaller motions (column 3).
Figure 11 and 14 show sample expressions from cloned animation
sequences. Although the models have different geometric
proportions and mesh structures, the expressions are well scaled
to fit each model. For instance, the smile and nervous expressions
are effectively transferred to the woman model (column 3 and 4 in
figure 11). Frown and surprise expressions are shown on the cat
model (column 5 and 6). Moderate intensity expressions cause

mostly small motions and these are sometimes hardly
distinguishable from neutral expressions in static images.
Exaggerated expressions are tested in figure 14. A big round
open mouth source expression creates a rectangular mouth shape
for the monkey due to its much longer lip line. An asymmetric
mouth shape is reproduced on the target models and variations
arise from differences in the initial target mesh expressions
(column 4). The use of human source animations creates many
human-like mouth shapes for the dog model rather than
expressions more typical of a real dog (last row).
Assessing the emotional quality of the expressions produced by
EC is clearly subjective, but we can validate the quantitative
accuracy of the algorithm by using the “source man” model as
both the source and target model. The EC algorithm is applied to
find the surface correspondences and adjust the motion vectors to
any local geometry variation. Ideally, the target vertex
displacement should be identical to that of the source model.
Table 2 and figure 10 show error measures for sample
expressions. Staring with the automatically found twenty-three
points, an additional ten points are included for this test, three on
each eye socket and two on each side of the face. These points
produce a more accurate surface match that reduces quantitative
errors. The error measure is defined as the size ratio between the
position error and the size of the motion vector.

)(
)(100%

orMotionVectsize
rorPositionErsizeError = (20)

Figure 10 visually depicts displacement errors such that a vertex
with zero error is yellow and a vertex position error one-tenth of
its motion vector length (10%) is red. Errors between 0 and 10%
are colored by interpolation. Vertices with no motion are colored
blue. Figure 10 shows that central face areas where most
expression motions occur have small errors and boundary regions
generally have higher errors. The larger boundary-area error
percentage occurs because motions are relatively small at the
boundary, making the denominator in equation (20) small. With
very small motions, even numerical errors can adversely affect
this error measure. Table 2 shows the average errors of all the
vertices with motions. To better quantify the visual significance
of the errors, the position error is also measured relative to an
absolute reference, in this case the size of the model.

Table 1 Models used for the experiments

Model Polygons Vertices

Source Man 1954 988

Woman 5416 2859

Man 4314 2227

Rick 927 476

Yoda 3740 1945

Cat 5405 2801

Monkey 2334 1227

Dog 927 476

Baby 1253 2300

)Re(
)(

100%
,,

,,
,, ngBoxgionBoundiFacesize

rorPositionErsize
Error

zyx

zyx
zyx = (21)

Note that in this case the error is computed separately along the
x , y , and z directions. Table 3 indicates that the average errors

relative to the size of the model are negligible. Since the motion
vectors are dense over the whole face, and their errors are small,
visual artifacts are very difficult to perceive, even at high
resolutions.
The experiments are performed on a 550 MHz Pentium-III PC.
Except for the actual animations, all other processes are
performed offline. The automated search takes)(nO to find the
tip of the nose, the top of the head, and other extreme points.
Once those initial points are found, the search of other points (i.e.
the chin) only requires a local search of neighborhood vertices.
Therefore, the feature search is fast, taking only a few seconds in
our experience.
The RBF morphing involves solving for Eigen systems needed for
the regularization parameter and the matrix inversion needed for
the weight vectors. The size of the matrix is typically less than
30x30, so the morphing is also fast. A naive cylindrical
projection to find the correspondence between n source vertices
and m target triangles takes)(nmO . Even with this brute-force
approach, projection takes less than a minute for our models.
This time could be reduced, by using smarter search exploiting,
for instance, spatial coherence. Unnecessary tests in the back of
the head could be prevented by limiting the search to the frontal
face. The transformation matrix to adjust the motion vector
magnitude and direction is constructed per vertex,)(nO . Finally,
the actual animation using already-computed barycentric
coordinates is performed in real time (>30Hz) including rendering
time.

5 Issues and Extensions
The manual intervention required for expression cloning is
minimal, involving at most the selection of a small set of
correspondences. We show that correspondences search can be at
least partially automated by a heuristic analysis of the geometry.
There are some regions, however, for which geometric

descriptions are not practical. For example, locating the boundary
of the face and finding detailed eye features appear difficult using
only geometry. As an extension, automatic search may be
expanded to use textures. Additional rules or methods would help
identify a greater set of correspondences [18, 27]. This could
further automate facial animation cloning and reduce quantitative
errors. The EC method currently transfers only motion vectors,
but it seems possible to include color or texture changes as well
[8].
Our goal is to easily create quality animations and we assume that
dense surface motion vectors are available. However, we also
observe that stick figures and cartoons can convey rich
expressions from a sparse representation. Future research could
explore how sparse source data can become without loss of
expressive animation quality. The issue may be addressed by
locating the points with the most salient information for
conveying the animation while the dense data field is
algorithmically decimated. This knowledge may be useful for
collecting motion capture data, and at that point EC may also be
suitable for applications in compression.
Currently, our efforts are focused on transferring exactly the same
expressions from a source to targets. It would be useful to put
control knobs that amplify or reduce a certain expression on all or
part of a face. The control knobs would directly modulate the
sizes of the motion vectors. The expression motions could also be
transformed to Fourier space where its coefficients could be

46 motion-capture
data points

Motion capture
data embedded into

the source man
model

Figure 9 The motion capture data and its
association with the source model

23 automatically
found feature points
including 9 lip
contact points

Figure 8 The
automated search

results Angry Talking Smiling Nervous Surprised

5.28% 8.56% 4.77% 4.07% 4.56%

Table 2 Average errors relative to the motion vector size

Figure 10 Visually depicted displacement errors

 Angry Talking Smiling Nervous Surprised

No displacement error

10% displacement error

Area with no motion

% error is determined by
equation (20). Colors between
yellow and red represent values
between 0 and 10%.

 Angry Talking Smiling Nervous Surprised
x 0.22% 0.14% 0.13% 0.14% 0.16%
y 0.18% 0.26% 0.16% 0.11% 0.12%

z 0.09% 0.23% 0.06% 0.05% 0.05%

Table 3 Average errors relative to the model size

manipulated [2]. It may also be possible to mix the motions of a
set of expressions to produce a variety of speech and emotion
combinations for any target model. Clearly, the flexibility
provided by control knobs could provide varied target animations
from just a few source animations.
 Tongue and teeth model manipulations are not handled by EC at
this point. If the source model includes tongue animation, we
believe that the EC technique can generate animations for target
tongue models [3, 28]. Similarly, teeth models can be rotated
from source animations providing jaw rotation angles or just
motion vectors for the teeth. Finally, assuming an eyeball as a
separate model, an eyelid could be treated similar to the lip
contact line, or eyelids could be rotated if the rotation angle is
provided.

6 Conclusion
The concept of expression cloning provides an alternative to
creating animations from scratch. We take advantage of the dense
3D data in (possibly painstakingly created) source model
animations to produce animations of different models with similar
expressions. Cloning can be completely automatic, yet animators
can easily alter or add correspondences. Cloning effectively hides
unintuitive low-level parameters from animators while allowing
high-level control through correspondence selection. To naïve
operators, selecting a small number of correspondences is likely to
be much more intuitive and easier than dealing with muscles or
sculpting. Since EC starts with ground truth data spatially (each
frame) and temporally (a sequence of frames), the quality of
output animation is very predictable. Because animations use pre-
computed barycentric weights and transformations to determine
the motion vector of each vertex, the method is fast and produces
real time animations.

7 Acknowledgements
This work received funding from DARPA and the Annenberg
Center at USC. Funding and research facilities are also provided
by the NSF through its ERC funding of the Integrated Media
Systems Center. Other support came from Intel, HP, and
Motorola. We recognize the contributions to this work from all
our colleagues in the USC CGIT laboratory. Special thanks go to
Albin Cheenath for model preparations and Doug Fidaleo for
video editing. We also appreciate J.P. Lewis for his assistance in
providing motion capture data and his many valuable comments.

References
[1] S. Basu, N. Oliver, A. Pentland, 3D Modeling and Tracking

of Human Lip Motions, ICCV, 1998, 337-343

[2] A. Bruderlin, L. Williams, Motion Signal Processing,
SIGGRAPH 95 Proceedings, 1995, 97-104

[3] M. Cohen, D. Massaro, Modeling Co-articulation in
Synthetic Visual Speech. In N. Magnenat-Thalmann, and D.
Thalmann Editors, Model and Technique in Computer
Animation, 1993, 139–156, Springer-Verlag, Tokyo

[4] M. Eck, T. DeRose, T. Duchamp, Multiresolution Analysis
of Arbitrary Meshes, SIGGRAPH 95 Proceedings, 1995,
173-182

[5] M. Eck, Interpolation Methods for Reconstruction of 3D
Surfaces from Sequences of Planar Slices, CAD und
Computergraphik, Vol. 13, No. 5, Feb. 1991, 109 – 120

[6] R. Enciso, J. Li, D. Fidaleo, T-Y. Kim, J-Y.Noh, U.
Neumann, Synthesis of 3D Faces, International Workshop on
Digital and Computational Video, 2000

[7] M. Escher, I. Pandzic, N. Thalmann, Facial Deformations for
MPEG-4, IEEE Computer Animation, 1998, 56 - 62

[8] D. Fidaleo, J-Y. Noh, T. Kim, R. Enciso, U.Neumann,
Classification and Volume Morphing for Performance-
Driven Facial Animation, International Workshop on Digital
and Computational Video, 2000

[9] M. Gleicher, Retargetting Motion to New Characters,
SIGGRAPH 98 Proceedings, 1998, 33 – 42

[10] G.H. Golub, M. Heath, G. Wahba. Generalized Cross-
validation as a Method for Choosing a Good Ridge
Parameter. Technometrics, 21(2):215-223, 1979

[11] B. Guenter, C. Grimm, D. Wood, H. Malvar, F. Pighin,
Making Faces, SIGGRAPH 98 Proceedings, 1998, 55 – 66

[12] P. Kalra, A. Mangili, N. M. Thalmann, D. Thalmann,
Simulation of Facial Muscle Actions Based on Rational Free
From Deformations, Eurographics 1992, vol. 11(3) 59–69

[13] T. Kanai, H. Suzuki, F. Kimura, Metamorphosis of Arbitrary
Triangular Meshes, Computer Graphics and Applications,
March 2000, 62-75

[14] J.R. Kent, W.E. Carlson, R.E. Parent, Shape Transformation
for Polyhedral Objects, SIGGRAPH 92 Proceedings, 1992,
47-54

[15] A.W. F. Lee, D. Dobkin, W. Sweldens, P. Schroder,
Multiresolution Mesh Morphing, SIGGRAPH 99
Proceedings, 1999, 343-350

[16] Y.C. Lee, D. Terzopoulos, K. Waters, Realistic Face
Modeling for Animation. SIGGRAPH 95 Proceedings, 1995,
55-62

[17] J.P. Lewis, M. Cordner, N. Fong, Pose Space Deformation:
A Unified Approach to Shape Interpolation and Skeleton-
Drive Deformation, SIGGRAPH 00 Proceedings, 2000, 165-
172

[18] T. Maurer, C. Malsburg, “Tracking and Learning Graphs and
Pose in Image Sequences of Faces”, ICAFGR 1996, 242-247

[19] J.E. Moody, The Effective Number of Parameters: An
Analysis of Generalization and Regularization in Nonlinear
Learning Systems, Neural Information Processing Systems 4,
847-854, Morgan Kaufmann, California, 1992

[20] M. J. L. Orr, Optimizing the Widths of RBFs, Fifth Brazilian
Symposium on Neural Networks, Brazil, 1998

[21] J. Ostermann, Animation of Synthetic Faces in MPEG-4,
IEEE Computer Animation, 1998, 49 – 55

[22] F.I. Parke, Parameterized Models for Facial Animation.
IEEE Computer Graphics and Applications, 1982, vol. 2(9)
61 – 68

[23] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, D.H. Salesin,
Synthesizing Realistic Facial Expressions from Photographs,
SIGGRAPH 98 Proceedings, 1998, 75-84

[24] S. Platt, N. Badler, Animating facial expression. Computer
Graphics, 1981, vol. 15(3), 245-252

[25] W. Pratt, Digital Image Processing, Second Edition, A
Wiley-Interscience Publication, ISBN 0-471-85766-1, 1991

[26] F. Preparata, M. Shamos, Computational Geometry-An
Introduction. Springer-Verlag, New York, 1985

[27] Y. Shinagawa, T.L. Kunii, Unconstrained Automatic Image
Matching Using Multiresolution Critical-Point Filters, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 9, 1998, 994 – 1010

[28] M. Stone, Toward a Model of Three-Dimensional Tongue
Movement. Journal of Phonetics, 1991, Vol. 19, 309-320

[29] F. Ulgen, A Step Toward Universal Facial Animation via

Volume Morphing, 6th IEEE International Workshop on
Robot and Human communication, 1997, 358-363

[30] K. Waters, J. Frisbie, A Coordinated Muscle Model for
Speech Animation, Graphics Interface, 1995, 163 – 170

[31] K. Waters. A Muscle Model for Animating Three-
Dimensional Facial Expression. In Maureen C. Stone, editor,
Computer Graphics, SIGGRAPH 87 Proceedings, 1987, vol.
21, 17-24

[32] L. Williams, Performance Driven Facial Animation,
SIGGRAPH 90 Proceedings, 1990, 235 – 242

Figure 11 Cloned expressions on various models
First row: The source model and expressions. Rows two, three, and four: Cloned expressions on target models. The

target models have different shapes but the expressions are well proportioned to fit each model.

Figure 12 Deformed models produce dense surface correspondences.
First row: The source model after the RBF morphing followed by the cylindrical projection. Second row: Target models. The

source model is shown in figure 13. Note that although all the source model vertices are embedded in the target model, different
tessellation makes the deformed cat model wireframe appear different from the source. In general, deformed source models

closely reproduce the target model features. For example, look at Yoda’s eyebrows and mouth.

Figure 13 The direction and magnitude adjustments for the motion vector transfer
First row: Source model motions. Second row: Monkey model motions. The left four expressions in figure 14 are
used. The monkey’s wide and bulged mouth has more horizontal motions compared to the source model (orange

circle). Finer geometry of the monkey forehead leads to denser smaller motions (red circle).

Figure 14 Exaggerated expressions cloned on a wide variety of texture-mapped target models
The Yoda model is provided courtesy of Harry Change, http://Avalon.viewpoint.com.

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

An Example-Based Approach for Facial Expression Cloning

Hyewon Pyun1, Yejin Kim2, Wonseok Chae1, Hyung Woo Kang1, and Sung Yong Shin1

1Korea Advanced Institute of Science and Technology
2Electronics and Telecommunications Research Institute

e-mail: 1{hyewon, wschae, henry, syshin}@jupiter.kaist.ac.kr, 2yejink@etri.re.kr

Abstract

In this paper, we present a novel example-based approach for cloning facial expressions of a source model to
a target model while reflecting the characteristic features of the target model in the resulting animation. Our
approach comprises three major parts: key-model construction, parameterization, and expression blending. We
first present an effective scheme for constructing key-models. Given a set of source example key-models and their
corresponding target key-models created by animators, we parameterize the target key-models using the source
key-models and predefine the weight functions for the parameterized target key-models based on radial basis
functions. In runtime, given an input model with some facial expression, we compute the parameter vector of the
corresponding output model, to evaluate the weight values for the target key-models and obtain the output model
by blending the target key-models with those weights. The resulting animation preserves the facial expressions of
the input model as well as the characteristic features of the target model specified by animators. Our method is not
only simple and accurate but also fast enough for various real-time applications such as video games or internet
broadcasting.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation; I.3.5 [Computational Geometry and Object Modeling]: Geometric Algorithms

Keywords: Facial Animation, Facial Expression Cloning, Example-based Synthesis, Scattered Data Interpolation,
Motion Retargetting

1. Introduction

1.1. Motivation

Synthesis by reusing existing data has recently been popular
in a wide spectrum of computer graphics, including shape
modelling 29� 1, image or texture synthesis 16� 32, and motion
generation 8� 19. Inspired by motion retargetting 8� 14� 26, Noh
and Neumann 18 posed the problem of cloning facial expres-
sions of an existing 3D face model to a new model. Based
on 3D geometry morphing, their solution to this problem is
first to compute the motion vectors of the source model and
then deform these to add to the target model. This approach
works well for face models with similar shapes. In general,
it is hard to simulate the imagination (or intention) of an ani-
mator by this rather mechanical manipulation of motion vec-
tors.

There is a stream of research on parameter-driven facial

animation such as facial action coding system or model-
based persona transmission 20. In particular, 3D facial ani-
mation is generated from 2D videos in performance-driven
facial animation, which can be thought of as a process of
transferring parameters from the source space (2D videos)
to the target space (3D face models) 12� 24� 6. In general, the
target animation is obtained by deforming the target model
or blending 3D face models with different expressions, to
match the parameters transferred from the source space. The
parameter-driven facial animation usually experiences time-
consuming optimization in deformation or blending.

Based on the notion of parameter transfer, Bregler et al. 2

proposed an elegant scheme for cartoon motion capture and
retargetting. They chose source example key-shapes from
a given input cartoon animation and modelled their corre-
sponding target key-shapes. Given the shape of an input car-
toon character, they interpret it as a shape interpolated from

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

source key-shapes, which is deformed by an affine transfor-
mation. To capture a snapshot (posture) of cartoon motion,
they extracted the affine transformation parameters together
with the interpolation weight values of source example key-
shapes at every time step by least squares approximation.
They then applied the extracted parameters and weights to
the target example key-shapes for motion retargetting. By al-
lowing animators to model the target key-shapes explicitly,
their imagination can be realized in the resulting cartoon an-
imation.

Based on numerical optimization, their scheme is a lit-
tle too time-consuming to be applied directly to the cloning
problem, in particular, for real-time applications such as
computer games and internet broadcasting. Furthermore, fa-
cial expressions result from local deformations of various
parts of a face model, which may not be reflected properly by
an affine transformation. To address these issues, we propose
a novel scheme for cloning facial expressions of a source
model while preserving the characteristic features of target
expressions specified by animators. Based on scattered data
interpolation, the proposed scheme is not only simple and
efficient but also reflects animators’ intention accurately.

1.2. Related Work

There have been extensive efforts on the development of
3D facial animation techniques since Parke’s pioneering
work 21. An excellent survey of these efforts can be found
in 20. We begin with traditional approaches for generating
facial animation from scratch and then move on to more
recent work directly related to our scheme.

Facial Animation From Scratch: Physically-based ap-
proaches have been used to generate facial expressions
by simulating the physical properties of facial skin and
muscles 15� 25� 30� 31. Parke proposed a parametric approach to
represent the motion of a group of vertices with a parameter
vector and used this approach to generate a wide range of
facial expressions 22. In performance-driven approaches,
facial animations were synthesized based on facial motion
data captured from live actors’ performances 33� 9� 6. Kalra
et al. 11 used free-form deformations to manipulate facial
expressions. Pighin et al. 23 presented an image-based
approach to generate photorealistic 3D facial expressions
from a set of 2D photographs. All of those approaches are
common in that the same process needs to be repeated for
animating a new face model, even when a similar expression
sequence has already been available for a different model.

Retargetting and Cloning: Recently, there have been
rich research results on reusing existing animation data.
Gleicher 8 described a method for retargetting motions to
new characters with different segment proportions. Lee
and Shin 14 enhanced this idea by using a hierarchical

displacement mapping technique based on multilevel
B-spline approximation. Popovic and Witkin 26 presented a
physically-based motion transformation technique that pre-
serves the essential physical properties of a motion by using
the spacetime constraints formulation. The approaches for
motion retargetting focused on skeleton-based articulated
body motions. Noh and Neumann 18 adopted the underlying
idea of motion retargetting for reusing facial animation data.
Based on 3D geometry morphing between the source and
target face models, their approach transfers the facial motion
vectors from a source model to a target model in order
to generate cloned expressions on the target model. This
method is suitable for mutually morphable face models with
a strong shape resemblance to reproduce facial expressions
as intended by animators.

Example-based Motion Synthesis: Example-based motion
synthesis is another stream of research directly related to our
approach. Rose et al. 27 and Sloan et al. 29 proposed example-
based motion blending frameworks, employing scattered
data interpolation with radial basis functions. Park et al. 19

proposed an on-line motion blending scheme for locomo-
tion generation adopting this idea. Lewis et al. 17 introduced
an example-based pose space deformation technique, and
Allen et al. 1 applied a similar technique to range-scan data
for creating a new pose model. While most of the previ-
ous techniques focused on the pure synthesis aspect, Bre-
gler et al. 2 proposed an example-based approach for car-
toon motion capture and retargetting. Based on affine trans-
formations, their approach first extracts the transformation
parameters and the interpolation weights of the source key-
shapes at each frame of the input cartoon animation and then
generates an output shape by applying both the parameters
and weights to the corresponding target key-shapes. This ap-
proach is non-trivially adapted for cloning facial expressions
in our work. We also note that there have been some simi-
lar example-based approaches in the domain of peformance-
driven facial animation, for retargetting facial expressions
from 2D videos to 2D drawings 3 or to 3D models 4.

1.3. Overview

Inspired by cartoon motion capture and retargetting 2, we
adopt an example-based approach for retargetting facial ex-
pressions from one model to another. Figure 1 illustrates
our example-based approach for expression cloning. Given
an input 3D facial animation for a source face model, we
generate a similar animation for a target model by blend-
ing the predefined target models corresponding to the exam-
ple source face models with extreme expressions called the
key-models. Our approach comprises three major parts: key-
model construction, parameterization, and expression blend-
ing. The first two parts are done once at the beginning, and
the last part is repeatedly executed for each input expression
in runtime.

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

Source Key-Models Target Key-Models

Parameters

Source Animation Target Animation

Parameterization Blending

Figure 1: Overview of our example-based cloning

First, we identify a set of example extreme expressions for
a given source model. These expressions should be generic
enough to handle the facial animations of the source model
effectively. Provided with the example extreme expressions,
animators construct the corresponding key-models for both
source and target face models. The source key-models
should reflect the actual extreme expressions of the source
model accurately. However, the animators can breathe their
creativity and imagination into the target key-models while
constructing them. To minimize the time and efforts of an-
imators, we provide a novel scheme for compositing key-
models. Next, the target key-models are parameterized to
apply scattered data interpolation 27� 29. We provide a sim-
ple, elegant parameterization scheme for effective motion
blending. Finally, given an input model with some facial ex-
pression, the parameter vector for the corresponding output
model is analytically computed to evaluate the predefined
weight functions of target key-models. The output model
with the cloned expression is obtained by blending the target
key-models with respect to those weight values.

The remainder of this paper is organized as follows: In
Sections 2, 3, and 4, we describe key-model construction,
parameterization, and expression blending, respectively. We
show experimental results and compare our approach with
the previous one 18 in both quality and efficiency in Sec-
tion 5. Finally, in Section 6 we conclude this paper and dis-
cuss future research issues.

2. Key-Model Construction

The facial expression cloning problem has a quite different
nature than the cartoon motion capture and retargetting prob-
lem. In the latter problem, cartoon characters have the capa-
bility of changing their shapes dynamically while still pre-
serving their identities. Bregler et al. tried to capture those

dynamic shape changes with 2D affine transformations to-
gether with key-shape interpolation. In cartoon animations,
it is hard to identify all generic extreme key-shapes due to
their dynamic nature. Thus, the authors selected extreme
key-shapes from a given source animation.

On the other hand, facial expressions are determined by
a combination of subtle local deformations on a source
face model rather than global shape change. Unlike car-
toon motions, face motions (expressions) have been well
characterized. In particular, we adopt two categories of
key-expressions: emotional key-expressions and verbal key-
expressions. The former category of key-expressions reflect
emotional states, and the latter expressions mainly result
from lip movements for verbal communications. We com-
bine them to define generic key-expressions for a source
model, and then create the corresponding key-models for
both source and target face models, by deforming their
respective base models with neutral expressions. Through
crafting the target key-models, animators can realize their
imaginations.

Referring to the emotion space diagram 28, we choose six
purely emotional key-expressions including neutral, happy,
sad, surprised, afraid, and angry expressions as shown in
Figure 2. The neutral expression is chosen as the base ex-
pression. Based on the notion of visemes�, that is, the dis-
tinct visual mouth expressions observed in speech 7, we take
thirteen visemes as the purely verbal key-expressions as de-
picted in Figure 3. Combining these two categories of key-
expressions, we have 78 (6 � 13) generic key-expressions
together with six purely emotional expressions. Notice that
the purely verbal expressions are regarded as the verbal ex-
pressions combined with the neutral emotional expression.

Neutral Happy Sad Surprised Afraid Angry

Figure 2: Six emotional key-expressions.

To facilitate example-based expression cloning, we need
to have the corresponding 84 key-models for each of the
source and target face models. It is time-consuming to craft
all of them by hand. Instead, we take a semi-automatic ap-
proach: preparing the purely emotional and purely verbal
key-models by hand and then combining them automatically.
Now, our problem of automatic key-model creation is re-
duced to a geometry compositing problem: Given an emo-
tional key-expression and a verbal key-expression, how can
we obtain their combined key-expressions?

� The term ‘viseme’ is the abbreviation of ‘visual phoneme’.

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

uh a ae ch d

e f g i m

o

r

u

Figure 3: Thirteen verbal key-expressions.

Without loss of generality, suppose that the face models
are represented as polygonal meshes (polyhedra). Then, ex-
pressions cause the movements of vertices on a face model.
Analysing the purely emotional and verbal key-models with
respect to the base model, we characterize the vertices in
terms of their contributions to facial expressions. For exam-
ple, vertices near eyes contribute mainly to making emo-
tional expressions. Vertices near the mouth contribute to
both emotional and verbal expressions. However, the move-
ments are mainly constrained by verbal expressions to pro-
duce accurate pronunciations when there are any conflicts
between two types of expressions.

Figure 4: A distribution of importance values.

Based on this observation, we introduce the notion of im-
portance, which measures the relative contribution of each
vertex to the verbal expressions with respect to the emotional
expressions. The importance value αi of every vertex vi is
estimated empirically from the purely emotional and verbal
key-models such that 0�αi � 1 for all i. If αi � 0�5, then the
movement of vi is constrained by the verbal expressions; oth-
erwise, it is constrained by the emotional expressions. Fig-
ure 4 shows the distribution of importance values over a face
model estimated by our scheme as given in the Appendix, to
which we refer readers for details. Brighter regions contain
vertices of higher importance values.

Now, we are ready to explain how to composite an emo-
tional key-model E and a verbal key-model P derived from
the base model B. Let

B � �v1� v2� � � � � vn��

E � �vE
1 � vE

2 � � � �� vE
n �� and

P � �vP
1 � vP

2 � � � � � vP
n��

vE
i and vP

i �1� i� n are obtained by displacing vi, if needed,
and thus the natural correspondence is established for the
vertices with the same subscript. For every vertex vi, we de-
fine displacements ∆vE

i and ∆vP
i as follows:

∆vE
i � vE

i � vi� and

∆vP
i � vP

i � vi�

Let C � �vC
1 � vC

2 � � � � � vC
n � and ∆vC

i � vC
i � vi be the com-

bined key-model and the displacement of a vertex vCi � C,
respectively. Since the problem of computing vC

i can be re-
duced to the compositing of two vectors ∆vE

i and ∆vP
i , we

assume that vC
i lies on the plane spanned by ∆vE

i and ∆vP
i

and containing vi as shown in Figure 5.

C
ivP

iv

E
iv

C
iv∆

E
iv∆

P
iv∆

iv
)(E

ivP ∆
⊥

)()1(E
ii vPα ∆−

⊥

E
i

P
i vv ∆×∆

Figure 5: Composition of the two displacements

Consider a vertex vC
i �1 � i � n of the combined key-

model in C. If αi � 0�5, then the verbal component ∆vP
i

should be preserved in ∆vC
i for accurate pronunciation.

Therefore, letting P��∆vE
i � be the component of ∆vE

i per-
pendicular to ∆vP

i , only this component P��∆vE
i � of ∆vE

i can
make a contribution to ∆vC

i on top of ∆vP
i . That is, we ig-

nore the other component P��∆vE
i � of ∆vE

i which is parallel

to ∆vP
i . Otherwise, the constraints on accurate pronunciation

would not be satisfied when there are conflicts between the
two types of expressions. (see Figure 5). If αi � 0�5, the roles
of ∆vP

i and ∆vE
i are switched. Thus, we have

vC
i �

�
vi ��∆vP

i ��1�αi�P��∆vE
i �� if αi � 0�5

vi ��∆vE
i �αiE��∆vP

i �� otherwise�

where

P��∆vE
i � � ∆vE

i �
∆vE

i �∆vP
i

	∆vP
i 	

2
�∆vP

i � and

E��∆vP
i � � ∆vP

i �
∆vP

i �∆vE
i

	∆vE
i 	

2
�∆vE

i �

Figure 6 shows a combined key-model (Figure 6(c)) con-
structed from a key-model with a verbal expression (Fig-
ure 6(a)) and a key-model with an emotional expression

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

(Figure 6(b)). Note that the verbal expression is preserved
around the mouth and the emotional expression is preserved
in other parts.

(c)(b)(a)

Figure 6: Compositing key-models: (a) verbal key-model
(vowel ‘i’) (b) emotional key-model (‘happy’) (c) combined
key-model.

3. Parameterization

We parameterize the target key-models based on the corre-
spondences between the source base model and the source
key-models. We interactively select a number of feature
points on the source base model and then extract their
displacements to the corresponding points on each of the
source key-models. Concatenating these displacements, the
displacement vector of each source key-model is formed
to parameterize the corresponding target key-model. Most
individual parameter components tend to be correlated to
each other. Thus, based on PCA (principal component anal-
ysis) 10, the dimensionality of the parameter space can be
reduced by removing less significant basis vectors of the re-
sulting eigenspace.

As illustrated in Figure 7, we select about 20 feature
points from the source base model. While the number of fea-
ture points depends on the shape and complexity of the base
model, we believe empirically that two to four feature points
around the facial parts such as the mouth, eyes, eyebrows,
the forehead, the chin, and cheeks are sufficient to repre-
sent distinct facial expressions. Note that we only mark the
feature points on the base model. Then, those on the other
key-models are automatically determined from their vertex
correspondences to the base model.

Figure 7: The source base key-model with 20 manually se-
lected feature points.

Si

SB

Ti

Parameter SpaceExample Models

Ti

vi

Figure 8: The displacement vector of each source key-model
Si is used for parameterizing the corresponding target key-
model Ti.

The displacement vector vi of a source key-model Si from
the source base key-model SB is defined as follows:

vi � si� sB� 1� i�M� (1)

where sB and si are vectors obtained by concatenating, in a
fixed order, the 3D coordinates of feature points on SB and
those on Si, respectively, and M is the number of source key-
models. As shown in Figure 8, vi places each target key-
model Ti in the N-dimensional parameter space, where N is
the number of components, that is, three times the number
of feature points.

Since the dimensionality N of the parameter space is
rather high compared to the number M of key-models, we
employ PCA to reduce it. Given M displacement vectors of
dimension N, we first generate their component covariance
matrix, which is an N � N square matrix, to compute the
eigenvectors of the matrix and the corresponding eigenval-
ues. These eigenvectors are called the principal components
representing the principal axes that characterize the distri-
bution of displacement vectors. The dimensionality of the
parameter space can be reduced by removing less significant
eigenvectors, which have small eigenvalues. In our experi-
ments, we use an empirical threshold value of 0.00001 to
remove those eigenvectors. The removal of such eigenvec-
tors may cause some characteristics of the key-models not
to be parameterized. With our choice of the threshold, we
have observed that the effect is negligible. In experiments,
the dimensionality of the parameter space can be reduced
from 60 to 18 without any difficulty.

Let ei�1 � i � N be the eigenvector corresponding to the
ith largest eigenvalue. Suppose that we choose N̄ eigenvec-
tors as the coordinate axes of the parameter space, where
N̄ � N. To transform an original N-dimensional displace-
ment vector into an N̄-dimensional parameter vector, an

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

N̄�N matrix F called the feature matrix is constructed:

F � �e1 e2 e3 � � �eN̄ �
�
� (2)

Using the feature matrix F, the parameter vector pi corre-
sponding to the displacement vector vi of a target key-model
Ti is derived as follows:

pi � Fvi� 1 � i�M� (3)

which reduces the dimensionality of the parameter space
from N to N̄. This is equivalent to projecting each displace-
ment vector vi onto the eigenspace spanned by the N̄ selected
eigenvectors. We later use this feature matrix F to compute
the parameter vector from a given displacement vector.

4. Expression Blending

With the target key-models thus parameterized, our cloning
problem is transformed to a scattered data interpolation
problem. To solve this problem, our expression blending
scheme predefines the weight functions for each target key-
model based on cardinal basis functions 29, which consist
of linear and radial basis functions. The global shape of a
weight function is first approximated by linear basis func-
tions, and then adjusted locally by radial basis functions to
exactly interpolate the corresponding key-model. Given the
input face model with a facial expression, a novel output
model with the cloned expression is obtained in runtime by
blending the target key-models as illustrated in Figure 9. Our
scheme first computes the displacement vector of the input
face model and then derives the parameter vector of the out-
put model from the displacement vector. Finally, the prede-
fined weight functions are evaluated at this parameter vector
to produce the weight values, and the output model with the
cloned facial expression is generated by blending the target
key-models with respect to those weight values.

The weight function wi��� of each target example model
Ti�1� i�M at a parameter vector p is defined as follows:

wi�p� �
N̄

∑
l�0

ailAl�p��
M

∑
j�1

r jiR j�p�� (4)

where Al�p� and ail are the linear basis functions and their
linear coefficients, respectively. Rj�p� and ri j are the radial
basis functions and their radial coefficients. Let pi�1� i�M
be the parameter vector of a target key-model Ti. To inter-
polate the target key-models exactly, the weight of a target
key-model Ti should be one at pi and zero at p j� i
� j, that
is, wi�pi� � 1 for i � j and wi�p j� � 0 for i
� j.

Ignoring the second term of Equation (4), we solve for the
linear coefficients ail to fix the first term:

wi�p� �
N̄

∑
l�0

ailAl�p�� (5)

The linear bases are simply Al�p� � pl
�1 � l � N̄, where

Sin

SB

Parameter Space

Source Animation Target Animation

pin

TB

Ti

Tnew

Figure 9: Generating a new face model by blending target
key-models

pl is the lth component of p, and A0�p� � 1. Using the pa-
rameter vector pi of each target key-model and its weight
value wi�pi�, we employ a least squares method to evaluate
the unknown linear coefficients ail of the linear bases.

To fix the second term, we compute the residuals for the
target key-models:

w�i�p� � wi�p��
N̄

∑
l�0

ailAl�p� for all i� (6)

The radial basis function Rj�p� is a function of the Euclidean
distance between p and p j in the parameter space:

R j�p� � B

�
� p�p j �

α

�
for 1� j �M� (7)

where B��� is the cubic B-spline function, and α is the dila-
tion factor, which is the separation to the nearest other ex-
ample in the parameter space. The radial coefficients ri j are
obtained by solving the matrix equation,

rR � w�
� (8)

where r is an M�M matrix of the unknown radial coeffi-
cients ri j , and R and w� are the matrices of the same size
defined by the radial bases and the residuals, respectively,
such that Ri j � Ri�p j� and w�

i j � w�i�p j�.

With the weight functions predefined, we are now ready to
explain how to blend the target key-models in runtime. For
the input face model Sin at each frame of an input animation,
the displacement vector din is computed with respect to the
source base model SB:

din � sin� sB (9)

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

Man A

(a) Source models (b) Target Models

Baby Monkey WomanMan B Toy

Figure 10: Models used for the experiments

Man A Man B Baby Monkey Woman Toy

V 988 1192 1253 1227 1220 931

P 1954 2194 2300 2344 2246 957

Table 1: Model specification

(V:Vertices, P:Polygons)

where sin and sB are respectively vectors obtained by con-
catenating the 3D coordinates of feature points on Sin and
SB as explained previously. Given this N-dimensional dis-
placement vector din, we then obtain the corresponding N̄-
dimensional parameter vector pin as follows:

pin � Fdin� (10)

where F is the feature matrix defined in Equation (2).

Using the predefined weight functions for the target key-
models Ti as given in Equation (4), we estimate the weight
values wi�pin� of all target key-models Ti�1 � i � M at the
parameter pin to generate the output face model Tnew�pin�:

Tnew�pin� � TB �
M

∑
i�1

wi�pin��Ti�TB�� (11)

where TB is the target base model corresponding to the
source base key-model SB with the neutral expression.

5. Experimental Results

As shown in Figures 10(a) and 10(b), we used two source
models and four target models in our experiments. Table 1
gives the number of vertices and that of polygons in each
model. We manually selected 20 feature points on each
source model as described in Section 3. As input animations,
we prepared two different facial animations: a facial anima-
tion of Man A with various exaggerated expressions, and a
facial animation of Man B with verbal expressions combined
with emotional expressions.

Our first two experiments were intended to qualitatively
show the effectiveness of our approach. In the first experi-
ment, we used Man A as the source face model and the baby
and monkey models as the target face models. To clone the

facial expression of Man A, we used six key-models for the
source face model as well as the target face model. The first
row of Figure 11 shows the input expressions of Man A sam-
pled from the input animation. The baby and monkey models
with cloned facial expressions are shown in the second and
third rows of Figure 11, respectively. We can observe that
the expressions of the source model were nicely cloned to
the target models while reflecting the characteristic features
of the target models.

Figure 11: Cloning expressions from Man A to the target
models

Figure 12: Cloning expressions from Man B to the target
model

In the second experiment, we used Man B as the
source model and the woman model as the target model
to clone combined expressions. We prepared a total of 84
key-models: six purely emotional key-expressions (neutral,
happy, angry, sad, surprised, and afraid expressions) and
thirteen visemes (seven for vowels and six for consonants)
for each of the six emotional key-expressions. After manu-
ally creating thirteen purely verbal expressions together with
six purely emotional ones, the rest of them are obtained auto-
matically by employing our expression compositing scheme.

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

Figure 13: Cloning expressions from Man B to the topolog-
ically different model

As shown in Figure 12, the combined expressions of the
source model were convincingly reproduced in the target
model. We also cloned emotional expressions of Man B to
the topologically different model as shown in the Figure 13.

Man A � Man A Man B � Man B
Ours Noh et al.’s Ours Noh et al.’s

x 0.110% 0.234% 0.051% 0.176%

y 0.111% 0.196% 0.057% 0.133%

z 0.050% 0.077% 0.100% 0.213%

Table 2: Average errors of cloned animations (source �
source)

Man A � Baby Man B � Woman
Baby � Man A Woman � Man B

Ours Noh et al.’s Ours Noh et al.’s

x 0.112% 2.120% 0.118% 3.076%

y 0.113% 1.936% 0.214% 3.893%

z 0.051% 1.004% 0.268% 4.183%

Table 3: Average errors of cloned animations (source� tar-
get � source)

The next two experiments were intended to quantitatively
measure the effectiveness of our approach. In the third ex-
periment, we used the same face model for both source and
target models, that is, cloning expressions from Man A to
itself and also from Man B to itself. We measured the dif-
ference of the resulting animation from the input animation
for each of the models. The error at each individual frame is
defined as follows:

∑N
j�1 		v j � v�j		

∑N
j�1 		v j		

�100� (12)

where v j and v�j are a vertex of the input model and the cor-
responding vertex of the cloned output model, respectively,
and N is the number of vertices. The average error over all
constituent frames is also computed for making comparisons
with the previous work 18. In the last experiment, we cloned
expressions of Man A to the baby model and then the inter-
mediate results back to Man A. For Man B, we repeated the
same procedure with the woman model as the intermediate
model. The average error is measured between the original
and final animations.

Ideally, the vertex positions of cloned models in the re-
sulting animations should be identical to those of the corre-
sponding models in the input animation. Table 2 and Table 3
show the average errors of cloned animations for the x, y, and
z coordinates in the last two experiments, respectively. In
both experiments, our example-based approach made much
smaller average errors than the previous approach 18. This
was mainly ascribed to the inherent accuracy of radial basis
functions in scattered data interpolation, together with the
fact that the previous method is based on 3D geometric mor-
phing which may compromise the accuracy in trying to find
a full surface correspondence between two models with just
a small number of feature points.

The performance of our approach was summarized and
compared with the same previous approach (see Table 4).
Both schemes were implemented with C++ and OpenGL
on an Intel Pentium� PC (P-4 2.4GHz processor, 512MB
RAM, and GeForce 4�). As shown in the table, our scheme
spent less than 1 millisecond in generating one frame for
all experiments. Thus, the frame rate was over 1000Hz to
guarantee a real-time performance. Compared to the previ-
ous approach, our approach required significantly less time
in both preprocessing and retargetting steps. The efficiency
of our approach was due to the supreme performance of the
scattered data interpolation 29 that we have adopted for ex-
pression blending.

Man A � Baby Man B � Woman
(1201 Frames) (880 Frames)

Ours Noh et al.’s Ours Noh et al.’s

P 0.032 s 197.1 s 0.062 s 217.3 s

R 0.326 s 23.5 s 0.548 s 18.5 s

A 0.27 ms 19.6 ms 0.69 ms 21.0 ms

Table 4: Computation time

(P:Preprocessing, R:Retargetting, A:Average time / frame)

6. Conclusions

We have presented a novel example-based approach for
cloning facial expressions from a source model to a target

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

model while preserving the characteristic features of the tar-
get model. Our approach consists of three parts: key-model
construction, parameterization, and expression blending. For
key-model construction, we present a novel scheme for com-
positing a pair of verbal and emotional key-models. Based
on a simple but effective parameterization scheme, we are
able to place the target key-models in the parameter space.
To predefine the weight functions for the parameterized tar-
get key-models, we adopt multi-dimensional scattered data
interpolation with radial basis functions. In runtime, a cloned
target model is generated by blending the target key-models
using the predefined weight functions. As shown in the ex-
perimental results, our approach has accurately performed
expression cloning with great efficiency.

One limitation of our method might be that it requires an-
imators to prepare a set of key-models for source and target
models as a preprocess, but at the same time it can be thought
of as an advantage in that it allows for human control of the
cloning results so that the characteristics of the target model
are fully reflected. Another limitation is that our method can-
not correctly clone an expression when it falls too far outside
from the basis of the constructed source key-models. In this
case, it would be better to select the source key-models from
the source animation frames as in 2, rather than constructing
them based on generic human facial key-expressions.

In future, we are planning to extend our approach to
region-based expression cloning. According to results in
psychology, a face can be split into several regions that be-
have as coherent units 5. For example, the parts such as eyes,
eyebrows, and forehead are used for emotional expressions,
and those such as mouth, cheeks, and chin are used for verbal
expressions. If we prepare example data for each of the parts
separately, we could generate more diverse expressions with
less example data. To achieve this, we need an effective way
to combine separately-generated facial parts seamlessly.

References

1. B. Allen, B. Curless and Z. Popovic. "Articulated body
deformation from range scan data", In Proceedings of
SIGGRAPH 02, pp. 612-619, 2002.

2. C. Bregler, L. Loeb and E. Chuang and H. Deshpande.
"Turning to the masters: Motion capturing cartoons", In
Proceedings of SIGGRAPH 02, pp. 399-407, 2002.

3. I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. Salesin,
J. Seims, R. Szeliski, and K. Toyama. "Performance-
Driven Hand-Drawn Animation", In Proceedings of
Symposium on Non-Photorealistic Animation and Ren-
dering, 2000.

4. E. Chuang and C. Bregler. "Performance Driven Facial
Animation using Blendshape Interpolation", Standford
University Computer Science Technical Report, CS-
TR-2002-02, April 2002.

5. P. Ekman and W. V. Friesen. "Unmasking the face:
A guide to recognizing emotions from facial clues",
Prentice-Hall Inc., 1975.

6. D. Fidaleo, J-Y. Noh, T. Kim, R. Enciso and U.
Neumann. "Classification and Volume Morphing for
Performance-Driven Facial Animation", In Proceed-
ings of Internatinoal Workshop on Digital and Com-
putational Video, 2000.

7. C. G. Fisher. “Confusions among visually perceived
consonants.”, Jour. Speech and Hearing Research, 11,
pp. 796-804, 1968.

8. M. Gleicher. “Retargetting motion to new Characters”,
ACM SIGGRAPH 98 Conference Proceedings, pp. 33-
42, 1998.

9. B. Guenter, C. Grimm, D. Wood, H. Malvar, and
F. Pighin. “Making Faces”, ACM SIGGRAPH 98 Con-
ference Proceedings, pp. 55-66, July 1998.

10. I. T. Jollife. “Principal components analysis”, New
York: Spinger, 1986.

11. P. Kalra and A. Mangili and N. M. Thalmann and D.
Thalmann. "Simulation of facial muscle actions based
on rational free from deformations", In Proceedings of
Eurographics 92, pp. 59-69, 1992.

12. C. Kouadio and P. Poulin and P. Lachapelle. “Real-
Time Facial Animation Based Upon a Bank of 3D Fa-
cial Expressions”, Proc. Computer Animation, pp. 128-
136, 1998.

13. G. A. Kalberer and L. V. Gool. “Face Animation Based
on Observed 3D Speech Dynamics”, Computer Anima-
tion 2001, pp. 20–27, November 2001.

14. J. Lee and S. Y. Shin. “A hierarchical approach to in-
teractive motion editing for human-like figures”, Pro-
ceedings of SIGGRAPH 99, pp. 39–48, 1999.

15. Y. C. Lee, D. Terzopoulos and K. Waters. "Realistic
modeling for facial animation", In Proceedings of SIG-
GRAPH 95, pp. 55-62, 1995.

16. Marc Levoy and Pat Hanrahan. “Light Field Render-
ing”, Proceedings of SIGGRAPH 96, pp. 31-42, 1996.

17. J. P. Lewis, M. Cordner, and N. Fong. “Pose Space De-
formation: A Unified Approach to Shape Interpolation
and Skeleton-Drive Deformation”, ACM SIGGRAPH
2000 Conference Proceedings, pp. 165-172, July 2000.

18. J. Y. Noh and U. Neumann. "Expression cloning", In
Proceedings of SIGGRAPH 01, pp. 277-288, 2001.

19. S. I. Park, H. J. Shin and S. Y. Shin. "On-line loco-
motion generation based on motion blending", In ACM
SIGGRAPH Symposium on Computer Animation, pp.
105-111, 2002.

c� The Eurographics Association 2003.

Pyun, Kim, Chae, Kang, and Shin / An Example-Based Approach for Facial Expression Cloning

20. F. I. Parke and K. Waters. Computer Facial Animation.
A K Peters, 289 Linden Street, Wellesley, MA 02181,
1996.

21. F. I. Parke. "Computer generated animation of faces",
Master’s thesis, University of Utah, 1972.

22. F. I. Parke. "Parameterized models for facial anima-
tion", In IEEE Computer Graphics and Applications,
Vol. 2, No. 9, pp. 61-68, 1982.

23. F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and
D.H. Salesin. “Synthesizing Realistic Facial Expres-
sions from Photographs”, In ACM SIGGRAPH 98 Con-
ference Proceedings, pp. 75-84, July 1998.

24. F. Pighin, R. Szeliski and D. H. Salesin. “Resynthe-
sizing facial animation through 3D model-based track-
ing”, Proceedings of International Conference on Com-
puter Vision 99, pp. 143-150, July 1999.

25. S. M. Platt and N. I. Badler. "Animating facial expres-
sions", In Computer Graphics, Vol. 15(3), pp. 245-252,
1981.

26. Z. Popovic and A. Witkin. "Physically based motion
transformation", In Proceedings of SIGGRAPH 99, pp.
11-20, 1999.

27. C. Rose, M. F. Cohen and B. Bodenheimer. "Verbs
and adverbs: Multidimensional motion interpolation",
In IEEE Computer Graphics and Applications, Vol.
18(5), pp. 32-40, 1998.

28. J. A. Russel. "A Circomplex Model of Affect", In J.
Personality and Social Psychology, Vol. 39, pp. 1161-
1178, 1980.

29. P. -P. Sloan and C. F. Rose and Michael F. Cohen.
"Shape by example", In Proceedings of 2001 Sympo-
sium on Interactive 3D Graphics, pp. 135-144, 2001.

30. D. Terzopoulos and K. Waters. "Physically-based facial
modeling, analysis, and animation", In Journal of Visu-
alization and Computer Animation, Vol. 1, No. 4, pp.
73-80, 1990.

31. K. Waters. "A muscle model for animating three-
dimensional facial expressions", In Proceedings of
SIGGRAPH 87, pp. 17-24, 1987.

32. Li-Yi Wei and Marc Levoy. "Fast Texture Synthesis Us-
ing Tree-Structured Vector Quantization", In Proceed-
ings of SIGGRAPH 00, pp. 479-488, 2000.

33. L. Williams. "Performance driven facial animation", In
Proceedings of SIGGRAPH 90, pp. 235-242, 1990.

Appendix

To compute the importance value of every vertex, we have
empirically derived the following three rules: First, the im-

portance of a vertex is proportional to the norm of displace-
ment vector. Second, even a vertex with a small displace-
ment is considered to be important if it has a neighboring
vertex with a large displacement. Finally, a vertex of high
importance is constrained by verbal expressions, and a ver-
tex of low importance drives emotional expressions.

According to those rules, we compute the importance of
each vertex in three steps. In the first two steps, two indepen-
dent importance values are computed from the verbal key-
models and the emotional key-models, respectively. Then,
they are combined to give the importance in the final step.
Let p1�vi� and e1�vi�, 1� i� n be the verbal and emotional
importances, respectively. In the first step, these importances
are computed from the maximum norms of the displacement
vectors of each vertex vi over their respective key-models:

p1�vi� � max
j
��v

Pj
i � vi���max

j�k
��v

Pj
k � vk��� and

e1�vi� � max
j
��v

Ej
i � vi���max

j�k
��v

Ej
k � vk���

where v
Pj

i and v
Ej

i respectively denote the vertices in a verbal
key-model Pj and an emotional key-model Ej corresponding
to a vertex vi in the base model. Note that we normalize the
importances so that their values range from 0 to 1. We then
propagate the importance value of each vertex to the neigh-
boring vertices if it is big enough. Thus, in the second step,
the importances p2�vi� and e2�vi� are obtained as follows:

p2�vi� � max��p1�vi����p1�v j� � �vi � v j �� Lp� p1�v j� � S1���

e2�vi� � max��e1�vi����e1�v j� � �vi � v j �� Le� e1�v j�� S1���

where S1, Lp, and Le are control parameters. In the final step,
the importance αi of the vertex vi is obtained as follows:

αi �

�
p2�vi��1� e2�vi��� if p2�vi�� S2

1� �1� p2�vi��e2�vi�� otherwise�
(13)

Equation (13) adjusts importance values so that they are
clustered near both extremes, that is, zero and one. Figure 14
shows the importance distributions for verbal and emotional
expressions after the first, second, and third steps. Brighter
regions indicate higher importance values.

(a) p1(v) (b) e1(v) (c) p2(v) (d) e2(v) (e) α(a) p1(v) (b) e1(v) (c) p2(v) (d) e2(v) (e

Figure 14: Importance distributions

c� The Eurographics Association 2003.

To appear in SIGGRAPH 2005.

Face Transfer with Multilinear Models

Daniel Vlasic∗ † Matthew Brand † Hanspeter Pfister Jovan Popović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

† Mitsubishi Electric Research Laboratories

Figure 1: Face Transfer with multilinear models gives animators decoupled control over facial attributes such as identity, expression, and
viseme. In this example, we combine pose and identity from the first frame, surprised expression from the second, and a viseme (mouth
articulation for a sound midway between ”oo” and ”ee”) from the third. The resulting composite is blended back into the original frame.

Abstract

Face Transfer is a method for mapping videorecorded perfor-
mances of one individual to facial animations of another. It ex-
tracts visemes (speech-related mouth articulations), expressions,
and three-dimensional (3D) pose from monocular video or film
footage. These parameters are then used to generate and drive a
detailed 3D textured face mesh for a target identity, which can be
seamlessly rendered back into target footage. The underlying face
model automatically adjusts for how the target performs facial ex-
pressions and visemes. The performance data can be easily edited
to change the visemes, expressions, pose, or even the identity of
the target—the attributes are separably controllable. This supports
a wide variety of video rewrite and puppetry applications.

Face Transfer is based on a multilinear model of 3D face meshes
that separably parameterizes the space of geometric variations due
to different attributes (e.g., identity, expression, and viseme). Sep-
arability means that each of these attributes can be independently
varied. A multilinear model can be estimated from a Cartesian
product of examples (identities × expressions × visemes) with
techniques from statistical analysis, but only after careful pre-
processing of the geometric data set to secure one-to-one corre-
spondence, to minimize cross-coupling artifacts, and to fill in any
missing examples. Face Transfer offers new solutions to these prob-
lems and links the estimated model with a face-tracking algorithm
to extract pose, expression, and viseme parameters.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.4.9 [Image Processing and
Computer Vision]: Applications;

Keywords: Facial Animation, Computer Vision—Tracking

∗MIT CSAIL, The Stata Center, 32 Vassar Street, Cambridge, MA
02139, USA

1 Introduction

Performance-driven animation has a growing role in film produc-
tion because it allows actors to express content and mood naturally,
and because the resulting animations have a degree of realism that
is hard to obtain from synthesis methods [Robertson 2004]. The
search for the highest quality motions has led to complex, expen-
sive, and hard-to-use systems. This paper introduces new tech-
niques for producing compelling facial animations that are inexpen-
sive, practical, versatile, and well suited for editing performances
and retargeting to new characters.

Face Transfer extracts performances from ordinary video
footage, allowing the transfer of facial action of actors who are
unavailable for detailed measurement, instrumentation, or for re-
recording with specialized scanning equipment. Expressions,
visemes (speech-related mouth articulations), and head motions are
extracted automatically, along with a performance-driven texture
function. With this information in hand, our system can either
rewrite the original footage with adjusted expressions and visemes
or transfer the performance to a different face in a different footage.

Multilinear models are ideally suited for this application because
they can describe face variations with separable attributes that can
be estimated from video automatically. In this paper, we estimate
such a model from a data set of three-dimensional (3D) face scans
that vary according to expression, viseme, and identity. The multi-
linear model decouples the three attributes (i.e., identity or viseme
can be varied while expression remains constant) and encodes them
consistently. Thus the attribute vector that encodes a smile for one
person encodes a smile for every face spanned by the model, re-
gardless of identity or viseme. Yet the model captures the fact that
every person smiles in a slightly different way. Separability and
consistency are the key properties that enable the transfer of a per-
formance from one face to another without a change in content.

Contributions. This paper describes a general, controllable, and
practical system for facial animation. It estimates a multilinear
model of human faces by examining geometric variations between
3D face scans. In principle, given a large and varied data set, the
model can generate any face, any expression, any viseme. As proof
of concept, we estimate the model from a couple of geometric data
sets: one with 15 identities and 10 expressions, and another with

1

To appear in SIGGRAPH 2005.

16 identities, 5 expressions, and 5 visemes. Existing estimation
algorithms require perfect one-to-one correspondence between all
meshes, and a mesh for every possible combination of expression,
viseme, and identity. Because acquiring the full Cartesian product
of meshes and putting them into dense correspondence is extremely
difficult, this paper introduces methods for populating the Cartesian
product from a sparse sampling of faces, and for placing unstruc-
tured face scans into correspondence with minimal cross-coupling
artifacts.

By linking the multilinear model to optical flow, we obtain a
single-camera tracker that estimates performance parameters and
detailed 3D geometry from video recordings. The model defines a
mapping from performance parameters back to 3D shape, thus we
can arbitrarily mix pose, identity, expressions, and visemes from
two or more videos and render the result back into a target video.
As a result, the system provides an intuitive interface for both an-
imators (via separably controllable attributes) and performers (via
acting). And because it does not require performers to wear visible
facial markers or to be recorded by special face-scanning equip-
ment, it is an inexpensive and easy-to-use facial animation system.

2 Related Work

Realistic facial animation remains a fundamental challenge in com-
puter graphics. Beginning with Parke’s pioneering work [1974],
desire for improved realism has driven researchers to extend geo-
metric models [Parke 1982] with physical models of facial anatomy
[Waters 1987; Lee et al. 1995] and to combine them with non-linear
finite element methods [Koch et al. 1996] in systems that could be
used for planning facial surgeries. In parallel, Williams presented a
compelling argument [1990] in favor of performance-driven facial
animation, which anticipated techniques for tracking head motions
and facial expressions in video [Li et al. 1993; Essa et al. 1996;
DeCarlo and Metaxas 1996; Pighin et al. 1999]. A more expensive
alternative could use a 3D scanning technique [Zhang et al. 2004],
if the performance can be re-recorded with such a system.

Much of the ensuing work on face estimation and tracking re-
lied on the observation that variation in faces is well approximated
by a linear subspace of low dimension [Sirovich and Kirby 1987].
These techniques estimate either linear coefficients for known basis
shapes [Bascle and Blake 1998; Brand and Bhotika 2001] or both
the basis shapes and the coefficients, simultaneously [Bregler et al.
2000; Torresani et al. 2001]. In computer graphics, the combina-
tion of accurate 3D geometry with linear texture models [Pighin
et al. 1998; Blanz and Vetter 1999] produced striking results. In
addition, Blanz and Vetter [1999] presented a process for estimat-
ing the shape of a face in a single photograph, and a set of controls
for intuitive manipulation of appearance attributes (thin/fat, femi-
nine/masculine).

These and other estimation techniques share a common chal-
lenge of decoupling the attributes responsible for observed varia-
tions. As an early example, Pentland and Sclaroff estimate geom-
etry of deformable objects by decoupling linear elastic equations
into orthogonal vibration modes [1991]. In this case, modal analy-
sis uses eigen decomposition to compute the independent vibration
modes. Similar factorizations are also relied upon to separate vari-
ations due to pose and lighting, pose and expression, identity and
lighting, or style and content in general [Freeman and Tenenbaum
1997; Bregler et al. 2000; DeCarlo and Metaxas 2000; Georghiades
et al. 2001; Cao et al. 2003].

A technical limitation of these formulations is that each pair
of factors must be considered in isolation; they cannot easily de-
couple variations due to a combination of more than two factors.
The extension of such two-mode analysis to more modes of vari-
ation was first introduced by Tucker [1966] and later formalized
and improved on by Kroonenberg and de Leeuw [1980]. These

techniques were successfully applied to multilinear analysis of im-
ages [Vasilescu and Terzopoulos 2002; Vasilescu and Terzopoulos
2004].

This paper describes multilinear analysis of three-dimensional
(3D) data sets and generalizes face-tracking techniques to create a
unique performance-driven system for animation of any face, any
expression, and any viseme. In consideration of similar needs,
Bregler and colleagues introduced a two-dimensional method for
transferring mouth shapes from one performance to another [1997].
The method is ideal for film dubbing—a problem that could also
be solved without performance by first learning the mouth shapes
on a canonical data set and then generating new shapes for differ-
ent texts [Ezzat and Poggio 2000]. These methods are difficult to
use for general performance-driven animation because they cannot
change emotions of a face. Although the problem can be resolved
by decoupling emotion and content via two-mode analysis [Chuang
et al. 2002], all three techniques are view specific, which presents
difficulties when view, illumination, or both have to change.

Our Face Transfer learns a model of 3D facial geometry vari-
ations in order to infer a particular face shape from 2D images.
Previous work combines identity and expression spaces by copy-
ing deformations from one subject onto the geometry of other faces
[DeCarlo and Metaxas 2000; Blanz et al. 2003; Chai et al. 2003].
Expression cloning [Noh and Neumann 2001; Sumner and Popović
2004] improves on this process but does not account for actor-
specific idiosyncrasies that can be revealed by statistical analysis
of the entire data set (i.e., the mesh vertex displacements that pro-
duce a smile should depend on who is smiling and on what they
are saying at the same time). Other powerful models of human
faces have been explored [Wang et al. 2004] at the cost of mak-
ing the estimation and transfer of model parameters more difficult.
This paper describes a method that incorporates all such informa-
tion through multilinear analysis, which naturally accommodates
variations along multiple attributes.

3 Multilinear Algebra

Multilinear algebra is a higher order generalization of linear al-
gebra. In this section we provide insight behind the basic con-
cepts needed for understanding of our Face Transfer system. De
Lathauwer’s dissertation [1997] provides a comprehensive treat-
ment of this topic. Concise overviews have also been published in
the graphics and vision literature [Vasilescu and Terzopoulos 2002;
Vasilescu and Terzopoulos 2004].

Tensors. The basic mathematical object of multilinear algebra is
the tensor, a natural generalization of vectors (1st order tensors)
and matrices (2nd order tensors) to multiple indices. An Nth-order
tensor can be thought of as a block of data indexed by N indices:
T = (ti1i2...iN). Figure 2 shows a 3rd-order (or 3-mode) tensor with
a total of d1 × d2 × d3 elements. Different modes usually corre-
spond to particular attributes of the data (e.g, expression, identity,
etc.).

Mode Spaces. A matrix has two characteristic spaces, row and
column space; a tensor has one for each mode, hence we call them
mode spaces. The d1×d2×d3 3-tensor in Figure 2 has three mode
spaces. Viewing the data as a set of d1-dimensional vectors stored
parallel to the first axis (Figure 2b), we can define the mode-1 space
as the span of those vectors. Similarly, mode-2 space is defined as
the span of the vectors stored parallel to the second axis, each of size
d2 (Figure 2c). Finally, mode-3 space is spanned by vectors in the
third mode, of dimensionality d3 (Figure 2d). Multilinear algebra
revolves around the analysis and manipulation of these spaces.

2

To appear in SIGGRAPH 2005.

mode 1

mode 2

mode 3

d1

d2

d3

(a) (b) (c) (d)

T

Figure 2: In (a) we show a 3rd-order (3-mode) tensor T whose
modes have d1, d2, and d3 elements respectively. Depending on
how we look at the data within the tensor, we can identify three
mode spaces. By viewing the data as vectors parallel to the first
mode (b), we define mode-1 space as the span of those vectors.
Similarly, mode-2 space is spanned by vectors parallel to the second
mode (c), and mode-3 space by vectors in the third mode (d).

Mode-n Product. The most obvious way of manipulating mode
spaces is via linear transformation, officially referred to as the
mode-n product. It is defined between a tensor T and a matrix
M for a specific mode n, and is written as a multiplication with a
subscript: T ×n M. This notation indicates a linear transforma-
tion of vectors in T ’s mode-n space by the matrix M. Concretely,
T ×2 M would replace each mode-2 vector v (Figure 2c) with a
transformed vector Mv.

Tensor Decomposition. One particularly useful linear transfor-
mation of mode data is the N-mode singular value decomposition
(N-mode SVD). It rotates the mode spaces of a data tensor T pro-
ducing a core tensor C , whose variance monotonically decreases
from first to last element in each mode (analogous to matrix SVD).
This enables us to truncate the insignificant components and get a
reduced model of our data.

Mathematically, N-mode SVD can be expressed with mode
products

T ×1 U>
1 ×2 U>

2 ×3 U>
3 · · ·×N U>

N = C (1)
=⇒ T = C ×1 U1×2 U2×3 U3 · · ·×N UN , (2)

where T is the data tensor, C is the core tensor, and Ui’s (or more
precisely their transposes) rotate the mode spaces. Each Ui is an
orthonormal matrix whose columns contain left singular vectors of
the ith mode space, and can be computed via regular SVD of those
spaces [De Lathauwer 1997]. Since variance is concentrated in one
corner of the core tensor, data can be approximated by

T ' Creduced ×1 Ǔ1×2 Ǔ2×3 Ǔ3 · · ·×N ǓN , (3)

where Ǔi’s are truncated versions of Ui’s with last few columns
removed. This truncation generally yields high quality approxima-
tions but it is not optimal—one of several matrix-SVD properties
that do not generalize in multilinear algebra. One can obtain a bet-
ter approximation with further refinement of Ǔi’s and Creduced via
alternating least squares [De Lathauwer 1997].

4 Multilinear Face Model

To construct the multilinear face model, we first acquire a range
of 3D face scans, put them in full correspondence, appropriately
arrange them into a data tensor (Figure 3), and use the N-mode
SVD to compute a model that captures the face geometry and its
variation due to attributes such as identity and expression.

vertices

expression

identity

Figure 3: Data tensor for a bilinear model that varies with iden-
tity and expression; the first mode contains vertices, while the sec-
ond and third modes correspond to expression and identity respec-
tively. The data is arranged so that each slice along the second mode
contains the same expression (in different identities) and each slice
along the third mode contains the same identity (in different expres-
sions). In our trilinear experiments we have added a fourth mode,
where scans in each slice share the same viseme.

4.1 Face Data

We demonstrate our proof-of-concept system on two separate face
models: a bilinear model, and a trilinear model. Both were es-
timated from detailed 3D scans (∼ 30K vertices) acquired with
3dMD/3Q’s structured light scanner (http://www.3dmd.com/) in
a process similar to regular flash photography, although our meth-
ods would apply equally to other geometric data sets such as motion
capture. As a preprocess, the scans were smoothed using the bilat-
eral filter [Jones et al. 2003] to eliminate some of the capture noise.
The subject pool included men, women, Caucasians, and Asians,
from the mid-20s to mid-50s.

Bilinear model. 15 subjects were scanned performing the same
10 facial expressions. The expressions were picked for their famil-
iarity as well as distinctiveness, and include neutral, smile, frown,
surprise, anger, and others. The scans were assembled into a third
order (3-mode) data tensor (30K vertices × 10 expressions × 15
identities). After N-mode SVD reduction, the resulting bilinear
model offers 6 knobs for manipulating expression and 9 for identity.

Trilinear model. 16 subjects were asked to perform 5 visemes in
5 different expressions (neutral, smiling, scowling, surprised, and
sad). The visemes correspond to the boldfaced sounds in man, car,
eel, too, and she. Principal components analysis of detailed speech
motion capture indicated that these five expressions broadly span
the space of lip shapes, and should give a good approximate basis
for all other visemes—with the possible exception of exaggerated
fricatives. The resulting fourth order (4-mode) data tensor (30K
vertices × 5 visemes × 5 expressions × 16 identities) was decom-
posed to yield a trilinear model providing 4 knobs for viseme, 4 for
expression, and 16 for identity (we have kept the number of knobs
large since our data sets were small).

4.2 Correspondence

Training meshes that are not placed in perfect correspondence can
considerably muddle the question of how to displace vertices to
change one attribute versus another (e.g. identity versus expres-
sion), and thus the multilinear analysis may not give a model with
good separability. We show here how to put a set of unstructured
face scans into correspondence suitable for multilinear analysis.

Despite rapid advances in automatic parameterization of meshes
(e.g., [Praun and Hoppe 2003; Gotsman et al. 2003]), it took consid-

3

To appear in SIGGRAPH 2005.

erable experimentation to place many facial scans into detailed cor-
respondence. The principal complicating factors are that the scans
do not have congruent mesh boundaries, and the problem of match-
ing widely varied lip deformations does not appear to be well served
by conformal maps or local isometric constraints. This made it nec-
essary to mark a small number of feature points in order to bootstrap
correspondence-finding across large deformations.

We developed a protocol for a template-fitting procedure [Allen
et al. 2003; Sumner and Popović 2004], which seeks a minimal
deformation of a parameterized template mesh that fits the surface
implied by the scan. The optimization objective, minimized with
gradient descent, balances overall surface similarity, proximity of
manually selected feature points on the two surfaces, and proxim-
ity of reference vertices to the nearest point on the scanned sur-
face. We manually specified 42 reference points on a reference fa-
cial mesh and on a neutral (m-viseme) scan. After rigidly aligning
the template and the scan with Procrustes’ alignment, we deformed
the template mesh into the scan: at first, weighing the marked
correspondences heavily and afterwards emphasizing vertex prox-
imity. For the trilinear model, the remaining m-viseme (closed-
mouth) scans were marked with 21 features around eyebrows and
lips, rigidly aligned to upper-face geometry on the appropriate neu-
tral scans, and then non-rigidly put into correspondence as above.
Finally, all other viseme scans were similarly put into correspon-
dence with the appropriate closed-mouth scan, using the 18 features
marked around the lips.

4.3 Face Model

Equation (3) shows how to approximate the data tensor by mode-
multiplying a smaller core tensor with a number of truncated or-
thogonal matrices. Since our goal is to output vertices as a function
of attribute parameters, we can decompose the data tensor with-
out factoring along the mode that corresponds to vertices (mode-1),
changing Equation (3) to:

T 'M ×2 Ǔ2×3 Ǔ3 · · ·×N ǓN , (4)

where M can now be called the multilinear model of face geome-
try. Mode-multiplying M with Ǔi’s approximates the original data.
In particular, mode-multiplying it with one row from each Ǔi re-
constructs exactly one original face (the one corresponding to the
attribute parameters contained in that row). Therefore, to generate
an arbitrary interpolation (or extrapolation) of original faces, we
can mode-multiply the model with a linear combination of rows for
each Ǔi. We can write

f = M ×2 w2
>×3 w3

> · · ·×N wN
> , (5)

where wi is a column vector of parameters (weights) for the at-
tribute corresponding to ith mode, and f is a column vector of ver-
tices describing the resulting face.

4.4 Missing Data

Building the multilinear model from a set of face scans requires
capturing the full Cartesian product of different face attributes, (i.e.,
all expressions and visemes need to be captured for each person).
Producing a full data tensor is not always practical for large data
sets. For example, a certain person might have trouble performing
some expressions on cue, or a researcher might add a new expres-
sion to the database but be unable reach all the previous subjects. In
our case, data corruption and subsequent unavailability of a subject
led to an incomplete tensor. The problem becomes more evident if
we add age as one of the attributes, where we cannot expect to scan
each individual throughout their entire lives. In all these cases, we

would still like to include a person’s successful scans in the model,
and fill in the missing ones with the most likely candidates. This
process is known as imputation.

There are many possible schemes for estimating a model from
incomplete data. A naive imputation would find a complete sub-
tensor, use it to estimate a smaller model, use that to predict a miss-
ing face, use that to augment the data set, and repeat. In a more
sophisticated Bayesian setting, we would treat the missing data as
hidden variables to be MAP estimated (imputed) or marginalized
out. Both approaches require many iterations over a huge data set;
Bayesian methods are particularly expensive and generally require
approximations for tractability. With MAP estimation and naive
imputation, the results can be highly dependent on the order of op-
erations. Because it fails to exploit all available constraints, the
naive imputative scheme generally produces inferior results.

Here we use an imputative scheme that exploits more available
constraints than the naive one, producing better results. The main
intuition, which we formalize below, is that any optimization crite-
ria can be linearized in a particular tensor mode, where it yields a
matrix factorization problem with missing values. Then we lever-
age existing factorization schemes for incomplete matrices, where
known values contribute a set of linear constraints on the missing
values. These constraints are then combined and solved in the least-
squares sense.

Description. Our algorithm consists of two steps. First, for each
mode we assemble an incomplete matrix whose columns are the
corresponding mode vectors. We then seek a subspace decompo-
sition that best reconstructs the known values of that matrix. The
decomposition and the known values provide a set of linear con-
straints for the missing values. This can be done with off-the-shelf
imputative matrix factorizations (e.g., PPCA [Tipping and Bishop
1999], SPCA [Roweis 1997], or ISVD [Brand 2002]). Typically
these algorithms estimate a low-rank subspace from the complete
vectors of the mode and use that to predict missing values in the
incomplete columns (and/or update the subspace). In our experi-
ments we used the standard PPCA formulation for filling in miss-
ing values, which reduces to a system of linear equations that relate
unknown values to known values through the estimated mean and
covariance of the vectors in the mode space. Second, the linear con-
straints are combined through the missing elements, because they
are shared across all groups of modal vectors and must be filled
in with consistent values. To that end, we collect the linear equa-
tions that determine a particular missing value in all the modes, and
solve them together. For example, if two missing values co-occur in
some mode vector, then they must be jointly estimated. We update
the mean and covariance for each decomposition and repeat the two
steps until convergence.

Evaluation. Figure 4 contrasts the results of this method with
faces predicted by our generalization of the simple method pro-
posed by Blanz and colleagues [2003]. In their formulation the
same displacement vectors that make one person smile are copied
over onto every other identity. Because our data set includes smiles
for more than one person, we extend that approach to copy their av-
erage. In this particular example, 15% of real faces where held out
of the trilinear data set and predicted by our imputation scheme and
the simple averaging scheme. Note how the multilinear prediction
is closer to the truth in most examples, even predicting some indi-
vidual idiosyncrasies in puckers and smiles. The simple averaging
scheme, however, seems to do a better job at keeping the lips sealed
for closed-mouth faces (bottom row of Figure 4). We could obtain
better results by preferentially weighting detail around the mouth.

In our earlier trilinear experiments, we found that ISVD-based
imputations predicted how faces vary from the mean with less than
9% relative error (Frobenius norm of the total error divided by the

4

To appear in SIGGRAPH 2005.

Figure 4: From top to bottom: Prediction of held-out faces with our
imputation scheme (on the trilinear model), the actual face, and a
simple averaging scheme.

norm of the held-out face variations) for up to 50% missing data. In
general, the predictions are drawn towards the mean of the known
data. Closed-mouth expressions, which are under-represented in
our data and thus lie far from the mean, were not predicted as well
as other expressions. That can be fixed by reweighting the data.
Tests performed on synthetic data indicate that the quality of im-
putation increases as the data set grows in size, even if significant
portions of it are missing. The reason why is that if the data is truly
low-dimensional in each of the modes, the missing samples will fall
within the span and density of the known ones.

Probabilistic Interpretation. The above algorithm fills in miss-
ing data by approximating the true multilinear distribution. The
form of this approximation is made precise by a probabilistic inter-
pretation, which starts from a multilinear generative model

T = M ×2 Ǔ2×3 Ǔ3 · · ·×N ǓN +ν ,

where T and M are the data and model tensors, Ǔi is the i-th modal
subspace, and ν is a Gaussian noise source. Filling in missing data
according to this model is computationally expensive. Instead, we
approximate the true likelihood with a geometric average of Gaus-
sians

p(T |M ,{Ǔi}N
i=2)≈

N

∏
j=2

q j(T ,M ,{Ǔi}N
i=2)

1/N .

Each Gaussian q j(T ,M ,{Ǔi}N
i=2)

.= N (T |Ǔ jJ j,σ
2
j) is found by

fixing {Ǔi}i 6= j and turning the tensor Equation (4) into matrix form:
T j = Ǔ jJ j . Here, columns of T j are the mode- j vectors of T ,
and the columns of J j are the mode- j vectors of M ×2 Ǔ2 · · ·× j−1

Ǔ j−1× j+1 Ǔ j+1 · · ·×N ǓN . The resulting likelihood becomes:

p(T |M ,{Ǔi}N
i=2)≈

N

∏
j=2

N (T |Ǔ jJ j,σ
2
j)

1/N ,

which can be maximized efficiently.
Taking logarithms and discarding constant factors such as N and

σ j, we seek to minimize the sum-squared error

N

∑
j=2

‖T j − Ǔ jJ j‖2
F

Each term of the summation presents a matrix factorization prob-
lem with missing values, where Ǔ j and J j are treated as unknown
factors of the incomplete matrix T j, and are solved for using PPCA
as described above.

5 Face Transfer

One produces animations from a multilinear model by varying the
attribute parameters (the elements of the wi’s) as if they were di-
als, and generating mesh coordinates from Equation 5. The N-
mode SVD conveniently gives groups of dials that separately con-
trol identity, expression and viseme. Within each group, the dials
do not correspond to semantically meaningful deformations (such
as smile or frown), but rather reflect the deformations that account
for most variance. However, the dials can be “tuned” to reflect de-
formations of interest through a linear transform of each wi. This
approach was successfully applied in [Allen et al. 2003] to make
their body shape dials correspond to height and weight. A similar
linear scheme was employed in [Blanz and Vetter 1999]. In general,
dial-based systems are currently used on most of the deformable
models in production, but only skilled animators can create believ-
able animations (or even stills) with them. To give similar power
to a casual user, we have devised a method that automatically sets
model parameters from given video data. With this tool, a user can
enact a performance in front of a camera, and have it automatically
transferred to the model.

5.1 Face Tracking

To link the parameters of a multilinear model to video data, we
use optical flow in conjunction with the weak-perspective cam-
era model. Using the symmetric Kanade-Lucas-Tomasi formula-
tion [Birchfield 1996], we express the frame-to-frame motion of a
tracked point with a linear system:

Zd = Z(p−p0) = e . (6)

Here, the 2-vector d describes the image-space motion of the point,
also expressed as the difference between the point’s true location p
and its current best guess p0 (if we have no guess, then p0 is the
location from the previous frame). Matrix Z and vector e contain
spatial and temporal intensity gradient information in the surround-
ing region [Birchfield 1996].

Using a weak-perspective imaging model, the point position p
can be expanded in terms of rigid head-motion parameters and non-
rigid facial shape parameters, which are constrained by the multi-
linear model:

Z(sRfi + t−p0) = e , (7)

where the rigid parameters consist of scale factor s, the first two
rows of a 3D rotation matrix R, and the image-space translation t.
The 3D shape f comes from the multilinear model through Equa-
tion (5), with fi indicating the ith 3D vertex being tracked.

Solving for the pose and all the multilinear weights from a pair
of frames using Equation (7) is not a well-constrained problem. To
simplify the computation, we use a coordinate-descent method: we
let only one of the face attributes vary at a time by fixing all the oth-
ers to their current guesses. This transforms the multilinear problem
into a linear one, as described below, which we solve with standard
techniques that simultaneously compute the rigid pose along with
the linear weights from a pair of frames [Bascle and Blake 1998;
Brand and Bhotika 2001].

When we fix all but one attribute of the multilinear model,
thereby making f linear, Equation (7) turns into

Z(sRMm,iwm + t−p0) = e , (8)

5

To appear in SIGGRAPH 2005.

where m is the mode corresponding to the non-fixed attribute. wm is
a vector of weights for that attribute, and Mm,i is the corresponding
linear basis for the tracked vertex i obtained from

Mm = M ×2 w>
2 · · ·×(m−1) w>

(m−1)×(m+1) w>
(m+1) · · ·×N w>

N . (9)

To get a well constrained solution for the per-frame pose (scale, ro-
tation, and translation) as well as the model’s attribute parameters
(expression, identity, etc.), we track a number of vertices and stack
the resulting linear equations into one big system. For each pair
of neighboring video frames we assemble a set of linear systems,
each one applying Equation (8) to one of the tracked vertices. If the
currently tracked attribute varies from frame to frame (such as ex-
pression does), we solve the set of linear systems and proceed to the
next pair of neighboring frames. If, on the other hand, the attribute
is constant across all frames (like identity), we accumulate the men-
tioned linear systems from each pair of frames and solve them to-
gether as one combined system. Solving the entire system for a
pair of frames and a thousand tracked points completes in about a
millisecond. Taking into account several levels of multi-scale and
several passes through the whole video, the tracking process aver-
ages at one frame per second.

5.2 Initialization

The method described above, since it is based on tracking, needs
to be initialized with the first frame alignment (pose and all the
weights of the multilinear model). We accomplish this by speci-
fying a small number of feature points which are then used to po-
sition the face geometry. The correspondences can be either user-
provided (which gives more flexibility and power) or automatically
detected (which avoids user intervention). We have experimented
with the automatic feature detector developed by [Viola and Jones
2001], and found that it is robust and precise enough in locating
a number of key features (eye corners, nose tip, mouth corners)
to give a good approximating alignment in most cases. Imperfect
alignment can be improved by tracking the first few frames back
and forth until the model snaps into a better location. Other more
powerful automated alignment approaches that take in account tex-
ture and lighting, such as the one described in [Blanz and Vetter
1999], could also be adapted to multilinear models.

6 Results

Multilinear models provide a convenient control of facial attributes.
Figures 5 and 6 show example manipulations of our bilinear and
trilinear models.

Figure 5: Several faces generated by manipulating the parameters
of the bilinear model. The left two faces show our attempt of ex-
pressing disgust, an expression that was not in the database. They
only differ in identity, to demonstrate the separability of our para-
meters. The right two faces show surprise for two novel identities,
illustrating how the expression adjusts to identity.

Face Transfer infers the attribute parameters automatically by
tracking the face in a video. Figure 7A shows a few example frames
acquired by tracking a face outside of our data set. The resulting
3D shapes, shown below each frame, are generated by the bilin-
ear model with the mouth shapes closed-off for texturing. Because

Figure 6: Faces generated by manipulating the parameters of the
trilinear model. Left to right: producing the ‘oo’ sound, trying to
whistle, breaking into a smile, two changes of identity, then adding
a scowl.

our system tracks approximately a thousand vertices, the process is
less sensitive to localized intensity changes (e.g., around the furrow
above the lip). Once we obtain the 3D geometry, we can lift the tex-
ture from the video by assigning pixel colors to the corresponding
mesh vertices. A simple performance-driven texture function can
be obtained with the weighted sum of nearest neighbors.

All advantages of our system are combined in video rewrite ap-
plications, where a performance is lifted from a video, altered, and
seamlessly rendered back into the video. In Figure 7B, we use the
bilinear model to change a person’s identity while retaining the ex-
pressions from the original performance. From left to right, the fig-
ure shows the original video, the recovered 3D shape, the modified
3D shape, and its textured overlay over the original video (without
blending and with the simple texture model). Note how the style of
smiling changes with identity. Figure 7C shows a post-production
example, where a repeat performance is transferred onto the old
footage. From left to right, we present the original video frame,
a frame from a new video, the new geometry, and the final modi-
fied frame (without blending). Here, we combine the pose from the
original video with the expression from the new video to modify
original expressions.

Our most challenging face transfer uses the trilinear model to
transfer expressions and visemes of a singing performance. In Fig-
ure 7D, the left two images show the frames from two input videos:
a target video for a subject in our data set and a source video of a
singing performance from a novel subject. The third image shows
the final composite (along with the matching geometry as seen from
two viewpoints) that combines the expressions and visemes from
the source performance with the identity shown in the target video.
For best visual results, we blend [Pérez et al. 2003] the face tex-
ture from the target video (constant throughout the sequence); the
mouth texture from the source video; and the background texture,
which includes the eyes peeking through the holes in the transferred
geometry. In Figure 7E, we manually add a frown to the geometry
in the final image; the frown texture was lifted from another frame
of the same subject. With a similar technique, we can also combine
facial attributes from several videos as shown in Figure 1, where
the pose, expressions, and visemes are mixed from three different
input videos.

7 Discussion

Perhaps our most remarkable empirical result is that even with a
model estimated from a rather tiny data set, we can produce vide-
orealistic results for new source and target subjects. Further im-
provements can be expected when we move to a wider variety of
subjects and facial configurations.

We also see algorithmic opportunities to make aspects of the sys-
tem more automatic and robust. Correspondence between scans
might be improved with some of the methods shown in [Kraevoy
and Sheffer 2004]. First-frame alignment would benefit from
a successful application of a method such as [Blanz and Vetter
1999]. Optical flow-based tracking, which is inherently vulnerable

6

To appear in SIGGRAPH 2005.

A B

C

ED

Figure 7: Several examples of our system: (A) A few frames of a bilinear-model tracking of a novel face and the corresponding 3D shapes
below. (B) Changing the identity parameters of a performance tracked with the bilinear model. (C) Transferring a performance of a known
identity from one video to another using the bilinear model. In each example the mouth gap was closed to allow for texturing. (D) Using
the trilinear model to copy a singing performance from one video to another (left-to-right: original video, singing video, and the result). (E)
Altering the performance from the previous example by adding a frown.

to imaging factors such as lighting, occlusions and specular reflec-
tions, can be made more robust with edge and corner constraints as
demonstrated in [DeCarlo and Metaxas 1996].

In a production setting, the scan data would need to be expanded
to contain shape and texture information for the ears, neck, and hair,
so that we can make a larger range of head pose changes. Motions
of eyes, eyelids, tongues, and teeth, are currently modeled in the
texture function or not at all; this will either require more video
data or a better solution. Finally, the texture function lifted from
video is performance specific, in that we made no effort to remove
variations due to lighting. Since we do estimate 3D shape, it may
be possible to estimate and remove lighting, given sufficiently long
videos.

8 Conclusion

To summarize, we have shown how to estimate a highly detailed
face model from an incomplete set of face scans. The model is
multilinear, and thus has the key property of separability: different
attributes, such as identity and expression, can be manipulated in-
dependently. Thus we can change the identity and expression, but
keep the smile. Even more useful, the new smile is in the style
idiosyncratic to the new identity.

What makes this multilinear model a practical tool for anima-
tion is that we connect it directly to video, showing how to recover
a time-series of poses and attribute parameters (expressions and
visemes), plus a performance-driven texture function for an actor’s
face.

Our methods greatly simplify the editing of identity, perfor-
mance, and facial texture in video, enabling video rewrite applica-
tions such as performance animation (puppetry) and actor replace-
ment. In addition, the model offers a rich source of synthetic actors
that can be controlled via video.

An intriguing prospect is that one could now build a multilinear
model representing a vertex×identity×expression×viseme×age
data tensor—without having to capture each individual’s face at

every stage of their life. The model would provide animators with
control dials for each of the listed attributes, so they could change
an actor’s age along with their appearance and performance.

9 Acknowledgments

Funding for this work was provided by the MIT Oxygen Project.
Our analysis was made possible by the many volunteers who agreed
to have their faces scanned. The members of the MIT Graphics
Group (in addition to their good looks) provided invaluable feed-
back throughout the entire project. Bob Sumner implemented the
template-matching software used for correspondence. Ali Rahimi
helped us formalize the probabilistic interpretation of our imputa-
tion algorithm. Ray Jones provided the bilateral filter code. Bryt
Bradley provided a beautiful voice for our singing example. Tom
Buehler shot and made all the videos.

References

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of human
body shapes: Reconstruction and parameterization from range scans.
ACM Transactions on Graphics 22, 3 (July), 587–594.

BASCLE, B., AND BLAKE, A. 1998. Separability of pose and expression in
facial tracking and animation. In International Conference on Computer
Vision (ICCV), 323–328.

BIRCHFIELD, S., 1996. KLT: An implementation of the kanade-lucas-
tomasi feature tracker. http://www.ces.clemson.edu /∼stb/.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the synthe-
sis of 3D faces. In Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, 187–194.

BLANZ, V., BASSO, C., POGGIO, T., AND VETTER, T. 2003. Reanimating
faces in images and video. Computer Graphics Forum 22, 3 (Sept.), 641–
650.

BRAND, M. E., AND BHOTIKA, R. 2001. Flexible flow for 3D nonrigid
tracking and shape recovery. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, 315–322.

7

To appear in SIGGRAPH 2005.

BRAND, M. E. 2002. Incremental singular value decomposition of un-
certain data with missing values. In European Conference on Computer
Vision (ECCV), vol. 2350, 707–720.

BREGLER, C., COVELL, M., AND SLANEY, M. 1997. Video rewrite:
Driving visual speech with audio. In Proceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series, 353–360.

BREGLER, C., HERTZMANN, A., AND BIERMANN, H. 2000. Recover-
ing non-rigid 3D shape from image streams. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, 690–696.

CAO, Y., FALOUTSOS, P., AND PIGHIN, F. 2003. Unsupervised learning
for speech motion editing. In Eurographics/SIGGRAPH Symposium on
Computer animation (SCA), 225–231.

CHAI, J.-X., XIAO, J., AND HODGINS, J. 2003. Vision-based control of
3D facial animation. In Eurographics/SIGGRAPH Symposium on Com-
puter Animation (SCA), 193–206.

CHUANG, E. S., DESHPANDE, H., AND BREGLER, C. 2002. Facial ex-
pression space learning. In Pacific Conference on Computer Graphics
and Applications (PG), 68–76.

DE LATHAUWER, L. 1997. Signal Processing based on Multilinear Alge-
bra. PhD thesis, Katholieke Universiteit Leuven, Belgium.

DECARLO, D., AND METAXAS, D. 1996. The integration of optical flow
and deformable models with applications to human face shape and mo-
tion estimation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 231–238.

DECARLO, D., AND METAXAS, D. 2000. Optical flow constraints on de-
formable models with applications to face tracking. International Jour-
nal of Computer Vision 38, 2, 99–127.

ESSA, I., BASU, S., DARRELL, T., AND PENTLAND, A. 1996. Modeling,
tracking and interactive animation of faces and heads: Using input from
video. In Computer Animation ’96, 68–79.

EZZAT, T., AND POGGIO, T. 2000. Visual speech synthesis by morphing
visemes. International Journal of Computer Vision 38, 1, 45–57.

FREEMAN, W. T., AND TENENBAUM, J. B. 1997. Learning bilinear mod-
els for two factor problems in vision. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 554–560.

GEORGHIADES, A., BELHUMEUR, P., AND KRIEGMAN, D. 2001. From
few to many: Illumination cone models for face recognition under vari-
able lighting and pose. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI) 23, 6, 643–660.

GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of spheri-
cal parameterization for 3D meshes. ACM Transactions on Graphics 22,
3 (July), 358–363.

JONES, T. R., DURAND, F., AND DESBRUN, M. 2003. Non-iterative,
feature-preserving mesh smoothing. ACM Transactions on Graphics 22,
3 (July), 943–949.

KOCH, R. M., GROSS, M. H., CARLS, F. R., VON BÜREN, D. F.,
FANKHAUSER, G., AND PARISH, Y. 1996. Simulating facial surgery us-
ing finite element methods. In Proceedings of SIGGRAPH 96, Computer
Graphics Proceedings, Annual Conference Series, 421–428.

KRAEVOY, V., AND SHEFFER, A. 2004. Cross-parameterization and com-
patible remeshing of 3D models. ACM Transactions on Graphics 23, 3
(Aug.), 861–869.

KROONENBERG, P. M., AND DE LEEUW, J. 1980. Principal component
analysis of three-mode data by means of alternating least squares algo-
rithms. Psychometrika 45, 69–97.

LEE, Y., TERZOPOULOS, D., AND WATERS, K. 1995. Realistic model-
ing for facial animation. In Proceedings of SIGGRAPH 95, Computer
Graphics Proceedings, Annual Conference Series, 55–62.

LI, H., ROIVAINEN, P., AND FORCHHEIMER, R. 1993. 3-D motion esti-
mation in model-based facial image coding. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI) 15, 6, 545–555.

NOH, J.-Y., AND NEUMANN, U. 2001. Expression cloning. In Proceedings
of SIGGRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Series, 277–288.

PARKE, F. I. 1974. A parametric model for human faces. PhD thesis,
University of Utah, Salt Lake City, Utah.

PARKE, F. I. 1982. Parameterized models for facial animation. IEEE
Computer Graphics & Applications 2 (Nov.), 61–68.

PENTLAND, A., AND SCLAROFF, S. 1991. Closed-form solutions for
physically based shape modeling and recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 13, 7, 715–729.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing.
ACM Transactions on Graphics 22, 3 (July), 313–318.

PIGHIN, F., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND SALESIN,
D. H. 1998. Synthesizing realistic facial expressions from photographs.
In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, An-
nual Conference Series, 75–84.

PIGHIN, F. H., SZELISKI, R., AND SALESIN, D. 1999. Resynthesizing
facial animation through 3d model-based tracking. In International Con-
ference on Computer Vision (ICCV), 143–150.

PRAUN, E., AND HOPPE, H. 2003. Spherical parameterization and remesh-
ing. ACM Transactions on Graphics 22, 3 (July), 340–349.

ROBERTSON, B. 2004. Locomotion. Computer Graphics World (Dec.).

ROWEIS, S. 1997. EM algorithms for PCA and SPCA. In Advances in
neural information processing systems 10 (NIPS), 626–632.

SIROVICH, L., AND KIRBY, M. 1987. Low dimensional procedure for
the characterization of human faces. Journal of the Optical Society of
America A 4, 519–524.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for triangle
meshes. ACM Transactions on Graphics 23, 3 (Aug.), 399–405.

TIPPING, M. E., AND BISHOP, C. M. 1999. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society, Series B 61, 3,
611–622.

TORRESANI, L., YANG, D., ALEXANDER, E., AND BREGLER, C. 2001.
Tracking and modeling non-rigid objects with rank constraints. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,
493–450.

TUCKER, L. R. 1966. Some mathematical notes on three-mode factor
analysis. Psychometrika 31, 3 (Sept.), 279–311.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2002. Multilinear analy-
sis of image ensembles: Tensorfaces. In European Conference on Com-
puter Vision (ECCV), 447–460.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2004. Tensortextures:
multilinear image-based rendering. ACM Transactions on Graphics 23,
3 (Aug.), 336–342.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a boosted
cascade of simple features. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1, 511–518.

WANG, Y., HUANG, X., LEE, C.-S., ZHANG, S., LI, Z., SAMARAS, D.,
METAXAS, D., ELGAMMAL, A., AND HUANG, P. 2004. High resolu-
tion acquisition, learning and transfer of dynamic 3-d facial expressions.
Computer Graphics Forum 23, 3 (Sept.), 677–686.

WATERS, K. 1987. A muscle model for animating three-dimensional fa-
cial expression. In Computer Graphics (Proceedings of SIGGRAPH 87),
vol. 21, 17–24.

WILLIAMS, L. 1990. Performance-driven facial animation. In Computer
Graphics (Proceedings of SIGGRAPH 90), vol. 24, 235–242.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. 2004. Space-
time faces: high resolution capture for modeling and animation. ACM
Transactions on Graphics 23, 3 (Aug.), 548–558.

8

Performance-Driven Hand-Drawn Animation

Ian Buck∗ Adam Finkelstein∗ Charles Jacobs‡ Allison Klein∗

David H. Salesin†‡ Joshua Seims† Richard Szeliski‡ Kentaro Toyama‡

∗Princeton University †University of Washington ‡Microsoft Research

Abstract

We present a novel method for generating performance-driven,
“hand-drawn” animation in real-time. Given an annotated set of
hand-drawn faces for various expressions, our algorithm performs
multi-way morphs to generate real-time animation that mimics the
expressions of a user. Our system consists of a vision-based track-
ing component and a rendering component. Together, they form
an animation system that can be used in a variety of applications,
including teleconferencing, multi-user virtual worlds, compressed
instructional videos, and consumer-oriented animation kits.

This paper describes our algorithms in detail and illustrates the po-
tential for this work in a teleconferencing application. Experience
with our implementation suggests that there are several advantages
to our hand-drawn characters over other alternatives: (1) flexibility
of animation style; (2) increased compression of expression infor-
mation; and (3) masking of errors made by the face tracking system
that are distracting in photorealistic animations.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation—Display Al-
gorithms; I.6.3 [Computer Graphics]: Methodology and Techniques—Interaction Tech-
niques; I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Tracking

Keywords: Animation, Non-photorealistic rendering, Image morphing, Face tracking

1 Introduction

The proliferation of video cameras as standard PC peripherals ex-
pands the opportunities for synergy between computer vision and
computer graphics. Many of the potential applications involve users
driving graphical avatars using vision-based techniques that track fa-
cial movement. Standard video teleconferencing, for example, could
be modified to display graphically generated faces instead of dis-
playing the camera image as is. Anonymous chat rooms could be
enhanced by avatars whose expressions are controlled by the par-
ticipants in real time. Similarly, users could drive avatars in virtual
worlds or gaming environments.

In this paper, we present an example of such a vision-driven
application—a novel method for automatic animation of non-
photorealistic (NPR) faces from example images. We assume we
are given, as input, a set of drawings for a given character with vari-
ous facial expressions,e.g., 6 different mouths, 4 pairs of eyes, and 1
overall head (Figure 1). To perform one-time training of the system
for a specific user, we take sample footage of the subject and man-
ually establish correspondences between the hand-drawn elements
and similar expressions on the subject’s face, as shown in Figure 2.
During execution, vision algorithms track the sender’s expressions,
which are distilled to a few parameters (we use ten 8-bit integers, or
80 bits, per frame) and sent to the renderer. Then, using various data
interpolation and warping techniques, the renderer sythesizes the
animated character from the appropriate pieces of artwork. Careful
engineering of the components allows the system to run in real time
on off-the-shelf PCs.

NPR animation of faces offers several advantages over attempts to
work with photorealistic images.

First, because an illustrated character represents an abstraction of
the real person, we as viewers do not expect a faithful replica of
the speaker. Use of abstraction invites our imaginations to fill in the
details [35, 54], as confirmed by our ability to watch hand-drawn car-
toons without difficulty. Representational inaccuracies, lower frame
rates, and lower temporal coherence—all of which might be un-
acceptable in realistic video—are perfectly acceptable with NPR
animation.

Second, relaxing the constraints of realism allows us to significantly
compress the information contained in an image. Our implemen-
tation, for example, requires only 10 parameters per frame to be
transmitted from the face tracker to the renderer. These 10 parame-
ters are already enough to generate convincing animations, but even
increasing the number of parameters to 100 would not make sig-
nificant demands on bandwidth for any network application. (The
Facial Action Coding System, for example, includes only 68 param-
eters [1].) When combined with speech technology, such significant
compression holds great promise for UI agents, instructional videos,
and the like. For example, an immense amount of “talking head”
video can be stored in the form of facial animation parameters plus
plain ASCII text and synthesized into an NPR facial animation and
voice track on the fly.

Another benefit of animated characters is that they allow the user
to mask his or her true appearance, while permitting expressions
and other visual cues to be perceived. This can have different value
based on the application. In teleconferencing and MUD applications,
it offers privacy. In a game engine, a player’s facial expressions
could be mapped onto the video game characters, thus enhancing
the fantasy of playing the character.

Finally, an animated figure has an engaging quality that is often more
fun than a live video clip. With the flexibility to render in many
artistic styles and media, users can choose from a wider range of
emotional contexts and appearances than with photorealistic images.

1.1 Related work

Graphical avatars driven by vision have a rich, varied history. We
discuss some of this history by examining work with synthetic facial
models, both 2D and 3D, photorealistic and otherwise.

In photorealistic 2D models, image blending or morphing is used
to render face images [6, 18, 26, 32, 36, 55]. A typical example of
this approach is a teleconferencing system [55] that stores a set of
image samples of a person’s face on both the transmitting and receiv-
ing computers. A face matching algorithm determines which faces
among the stored samples look most like the input face, and a blend
of these faces is displayed on the receiving side. The GeniMator
system [52] also uses motion capture data to drive nonphotorealistic
renderings, although the system is targeted more toward full-body
rather than facial animation. Their system isn’t targeted toward facial
animation, however.

Figure 1 A full set of hand-drawn images used by our system.

To drive 3D models, geometric model parameters must be recovered.
In particular, facial features are tracked in the incoming images and
then used to drive the movements of the 3D models, which are ren-
dered with well-established graphics techniques [2, 12, 51].

Although facial features can be tracked by motion capture techniques
to produce performance-driven animation systems [59, 42], systems
requiring special markers or devices are unlikely to be adopted by
the casual user. Using vision-based techniques, facial features can be
tracked non-invasively.Trackers can be based on deformable patches
[8, 14], edge or feature detectors [9, 26, 24, 43, 34, 53], and/or 3D
models [3, 17, 23, 45]. Face tracking is currently an active area
of research: robust, full-featured, real-time face tracking remains
elusive. In this paper, we use a simple, color-based feature tracker
(Section 2) that runs in real time.

On the rendering side, 3D facial animation is one of the most actively
studied areas of computer graphics [5, 10, 11, 21, 27, 28, 30, 31, 41,
43, 44, 46, 48, 58, 61]. Generally, these techniques store a 3D mesh
model of the face on which texture is overlaid. Movement of the
mesh vertices, sometimes accompanied by texture changes, creates
variations in expression. Truly photorealistic animation of faces,
however, remains an unsolved challenge that we avoid altogether
using NPR animations.

Non-photorealistic techniques come in several flavors. Haeberli [22]
introduced the idea of using a reference image’s pixel values to create
interesting NPR effects. This idea has led to some beautiful imita-
tions of artistic styles, such as pen and ink [50] and watercolor [15].
However, such algorithms are computationally expensive, limited
to a particular artistic effect, and lack frame-to-frame coherence—a
quality that is essential for animation. A totally different style of
non-photorealistic rendering is to use cartoon characters, such as in
Comic Chat [25]. This is most similar in spirit to our work, in that
it uses combinations of hand-drawn artwork. However, we are ren-
dering sequences of moving images, whereas the Comic Chat work
concentrated on the layout of static scenes.

Inspired by work that shows how a wide range of faces (includ-
ing variations in gender and age) can be synthesized by morphing
among a small set of images [49], we rely on the Beier and Neely
morph [4], as extended by Leeet al. [29] to blend multiple input
images. Because we use morphing, we avoid several disadvantages
of other NPR techniques: rendering performance is dependent only
on the morphing process and independent of the artistic style of

Figure 2 Sample correspondences between hand-drawn eyes and mouths and
real-face equivalents. Two different users with two different corresponding sets
of artwork are shown.

the drawings. Morphing can also avoid some frame-to-frame jitter
caused by a stochastic rendering process. Lastly, morphing can be
applied to drawing styles of any visual complexity.

Ultimately, our technique is akin to image-based rendering (IBR) ap-
proaches for non-photorealistic rendering applications. Litwinowicz
and Williams [33] explored an image-based approach to NPR an-
imation using rotoscoped lines over an image to warp it into new
positions for each frame. Woodet al. [60] used hand-drawn art-
work combined with a mobile camera to design moving background
scenery for cel animation. Corrˆeaet al.[13] warped hand-drawn art-
work wrapped over 3D models to attach complex textures to hand-
drawn foreground characters in cel animation. Our work extends
these ideas to 2D hand-drawn character animation, where we morph
among many images to capture the full texture variation that can be
seen across different facial expressions.

1.2 Approach

To construct a face, our system requires an initial set of hand-drawn
images to blend together.An artist draws this set, divided into mouth,
eyes, and background head images, all of which can be warped and
blended independently. All drawings are annotated with morph con-
trol lines [4]. The control lines mark certain facial features, as illus-
trated in Figure 3, allowing the rendering process to morph artwork
together without ghosting.

The hand-drawn images should span the range of visually distin-
guishable expressions and lip poses. In previous research on real-
istic facial rendering, only nineteen mouth images were found to
be necessary for lip reading [39], and five eye images for a believ-
able eye blink [16]. Since our goal is not to produce animations of
the quality necessary for lip reading, we are able to use far fewer
than this ideal number of images. Additionally, the morphing pro-
cess generates many of the in-between images that would normally
have to be drawn by hand. We found that just six mouth and four
eye images are enough to get adequate results in a teleconferencing
environment.

A training step requires manually associating each eye and mouth ex-
pression from the set of artwork with an equivalent expression from
a video frame (Figure 2). This correspondence allows the system to

Figure 3 This image shows both eye and mouth regions with feathered masks.
The purple lines are the control lines used to guide the morphing of these
images.

discern which tracked measurements of the real person’s face (as
described in the next section) best match each hand-drawn image.

Training is required only once for a given user and set of artwork.
After this initialization, a person’s facial features are tracked in real
time. For a teleconferencing application, these features are transmit-
ted to a receiving computer. They are then used to compute a good
blend of artwork to reconstruct a synthetic face.

As an additional feature, both our tracker and renderer are con-
structed to work with MPEG-4 Face Animation Parameters (FAPs)
[1, 37, 38]. Therefore, our renderer could be used, with minimal
changes, as a non-photorealistic renderer for MPEG-4 streams.

Section 2 describes our tracker in more detail. Section 3 describes our
renderer. Section 4 describes some resulting animations. Section 5
concludes with some areas for future research.

2 Tracking

An ideal tracking system would accurately track all of the various
deformations of the face in real-time, and allow us to pick a fixed set
of parameters that would drive the renderer. Excellent face trackers
exist (see Toyama [57] for a brief survey), but none are yet perfect.
For the time being, we choose a passive, vision-based implementa-
tion that runs in real time and is non-intrusive (i.e., it does not require
the user to wear special devices, cosmetics, or markers).

Our particular implementation takes a frame of video and extracts
ten scalar quantities, each encoded as an 8-bit integer:

• Thexandyvalues of the midpoint of the line segment` connecting
the two pupils (2).

• The angle of̀ with respect to the horizontal axis (1).

• The distance between the upper and lower eyelids of each eye (2).

Figure 4 A frame of video tracked by our system. The ten scalar quantities
sent to the renderer are easily derived from the features detected by our tracker.

• The height of each eyebrow relative to the pupil (2).

• The distance between the left and right corners of the mouth (1).

• The height of the upper and lower lips, relative to the mouth center
(2).

The first 3 scalars represent the head pose, while the middle 4 are used
for eyes, and the final 3 for the mouth. A frame of video indicating
the features tracked by our system is shown in Figure 4.

The tracking algorithms for all features rely on color information,
which is relatively inexpensive to compute and somewhat resistant
to illumination variations.

First, the tracker tags all pixels within a region of interest according
to the output of a color-based pupil classifier. Then, for each tagged
pixel, a correlation-based template match [19] is performed against a
previously stored picture of the user’s eye (if no pixels are tagged by
the classifier, the immediate neighborhood of the previous frame’s
pupil location is used). If the highest score from the correlation
matcher falls below an empirically determined threshold, the eye
is assumed to be closed, in which case we use the previous pupil
location.

Once the pupils are found, we search for the eyebrows. For all points
above the pupil (within a certain range) we perform a 1D template
match [9] against a stored cross section of the eyebrow, and choose
the location with the highest correlation.

To find the mouth, the tracker first tags each pixel within a se-
lected region according to a lip color classifier. Next, simple image-
processing operations are applied to this set of tagged pixels to
remove noise and eliminate stray pixels, and then the largest 4-
connected blob is found. Finally, a many-sided polygon is fitted to

this blob, using a technique similar to Toyama’s radial-spanning blob
technique [56]. The mouth measurements are taken from this fitting
polygon.

Once the pupils, eyebrows, and mouth have been detected, most of
the 10 scalar values are easily determined. The distance between the
upper and lower eyelids is computed simply by searching for the
first pixel above and below the pupil that has a luminance below
some threshold.

The performance of the tracker is reasonable for driving the ren-
derer in real time. There are some remaining problems, however.
The system requires a manual, per-user initialization to determine
eye, eyebrow, and lip colors. The tracker is limited to a range be-
tween 0.5 and 1.5 meters from the camera, and to an approximately
30 degree rotation from an upright, frontally oriented face (about all
3 axes). The tracker assumes reasonable, fixed illumination. From
time to time, it mistracks, requiring a combination of user movement
and manual reinitialization to correct. And finally, some subjects do
not exhibit sufficient color contrast between skin and lip color for
the tracker to work. All of these problems need to be handled for a
more robust system, but many of these issues remain open problems
in the vision-based face tracking community. We anticipate that fu-
ture research will alleviate these difficulties. For the time being, our
tracker is sufficient to drive the renderer in a stably illuminated office
environment.

3 Rendering

The rendering stage runs after the tracking stage (possibly on a sep-
arate machine, depending on the application). It takes the 10 tracked
parameters as input and renders a synthetic animated character that
mimics the user’s expressions. The renderer can be divided into two
components:expression mapping, which determines which pieces of
artwork should be used in creating the final animated character for a
given frame, and in what proportions; andwarping, which combines
the various pieces of artwork together using feathered masks.

3.1 Expression mapping

The problem of determining the best blend of artwork needed to
mimic a given expression is really one of scattered data interpolation
[40]. For now, let us consider how expression mapping is done for
the mouth; the eyes are handled similarly.

Suppose we haven pieces of artwork for the mouth in different
expressionsM1, . . . , Mn. The training data provides an association
between each mouth expressionMi and a

k-dimensionaltraining point mi , whose components are the values
of thek tracked parameters associated with that mouth. (Recall that
for the sample art set shown in Figure 1,n = 6, and in our imple-
mentation,k = 3 for the mouths andk = 4 for the eyes.)

Our problem is: Given some new setm of tracked parameters for
the mouth, find a set of weightsα1, . . . ,αn such that

∑
i αi = 1 and∥

∥m − ∑
i αimi

∥
∥ is minimized (or at least small). We can then use

these weightsαi to create the new expression by morphing together
an appropriately weighted combination of the original artwork, as
described in Section 3.2.

Our solution to this scattered data interpolation problem must be fast,
yet accurate enough to faithfully reproduce the speaker’s expression.
Furthermore, for our animation to be smooth, two pointsm and
m′ that lie close to each other should produce expressions that are
similar. On the other hand, there is a tradeoff between accuracy and
visual clarity: the more pieces of artwork we blend together, the
blurrier the imagery in the resulting animation.

Figure 5 This image shows a sample Delaunay triangulation for mouth inter-
polations. Note the interpolated mouth inside one of the triangles.

A straightforward approach to this problem is to compute ak-
dimensional Delaunay triangulation [20] among the training points
mi . Then, for a given new pointm, locate that point in the triangu-
lation and use the barycentric coordinates of the simplex it lies in
as the morphing weights. These weights could then be applied to
the drawings corresponding to the vertices of that simplex, as in the
polymorph method described by Leeet al. [29]. This approach has
the advantage that it provides smooth transitions between nearby ex-
pressions. However, if the number of tracked parametersk is large,
the resulting morph may be blurry.

Our solution is to use the same Delaunay triangulation approach,
but in a lower-dimensional space. We use a principal component
analysis (PCA) [7] to choose thej largest eigenvectors that span
thek-dimensional space created by the training points. We project
the training set into thisj-dimensional space, as well as the query
pointm. In practice, we usej = 2, which appears to provide a good
tradeoff between expression accuracy and image clarity. Thus, we
merely locate the projection ofm in its 2-D triangulation (Figure 5)
and use the barycentric coordinates of the triangle vertices as morph
weights for the three corresponding drawings (Figure 6). Projected
pointsm falling outside of any Delaunay triangle are mapped to a
point on the convex hull of the training points and associated with
the Delaunay triangle that abuts that region of the convex hull. In
our experience, if the initial correspondences are properly set up,
most points projecting outside of the convex hull lie close enough
to the hull that this method works well.

In our implementation, we find the PCA of the training set by doing
a singular value decomposition of the matrix of training points [47].
The two dominant eigenvectors, as well as the resulting Delaunay
triangulation, are saved to map feature points at runtime.

3.2 Morphing

To draw the face, we first render the warped versions of the eye and
mouth regions of the face. Next, the head image, which contains
“soft” alpha values in the eye and mouth areas to provide feathered
masking, is placed on top of the rendered eyes and mouth. More
than one such head image can be loaded, and the program will cycle
through them at each frame. For the animations in the style of Bill
Plympton, we use two different overall heads to achieve a shimmer-
ing quality. Finally, we apply a translation and rotation to the image
in order to get the head tilt.

We describe here the process of creating a single, new mouth based
on an expression mapping. (To create the eyes, we use an identical
procedure.) Recall that the morphing module receives weights cor-

1
3 + 1

3 + 1
3 =

Figure 6 The three mouths on the left are warped and then blended to make the mouth on the right.

responding to the barycentric coordinates of the projected tracked
parameters in a triangle whose corners correspond to three orig-
inal mouth drawings in the training set. To create a new mouth,
we use three-way Beier-Neely morphing [4], as generalized by
Lee et al. [29] for polymorphs—morphs between more than two
source images.

Consider the triangle formed by the three mouths. To create a new
intermediate mouth, we first warp the mouths at the corners, yielding
three mouths whose features align. Next we composite the three
warped mouths using alpha blending to render the new mouth image.
The blending weights are given by the aforementioned barycentric
coordinates.

We employ two strategies for accelerating the morph.

First, we sample the warps over the vertices of a 30×30 quadmesh,
represented as triangle strips, and use texture mapping hardware
to render triangles rather than computing the warp at every pixel.
Since many common PC graphics boards now come with texture
mapping and alpha blending acceleration, we use this hardware to
our advantage.

Second, the actual 3-way warp function is not evaluated at each
mesh vertex. Instead, we approximate the correct warp function by
summing together two 2-way warps. Consider the 3-way warp func-
tion WABC(x, y,αB,αC), which returns a vector indicating how pixel
(x, y) in imageA moves when warping it toward imageB by a frac-
tion αB and toward imageC by a fractionαC. Now, consider the
2-way warpWAB(x, y,α), returning a vector indicating where the
pixel at location (x, y) in imageA moves when warping itα of
the way toward imageB. Our approximation of the 3-way warp
is WABC(x, y,αB,αC) ≈ WAB(x, y,αB) + WAC(x, y,αC). The warp
weightsαB andαC used are simply the barycentric coordinates cor-
responding to the pointsAandB as given above. To make evaluation
of the approximate warps fast, we precompute the 2-way warps at a
number of discrete values ofα and interpolate between these stored
functions.

A more accurate method would be to sample the actual warp function
at various points inside the triangle and interpolate these precom-
puted functions, but this would require sampling a 2-D function
rather than a 1D function. In our work, we did not notice much dif-
ference between our approximation and the real warp, so we did not
explore this method.

4 Implementation and observations

We implemented our algorithms on a 450MHz Pentium III processor,
equipped with a high-end PC graphics card. Table 1 shows average
running times rounded to the nearest millisecond for the various
stages in our process. The slowest component is the facial feature
tracking. Nonetheless, we can track and render simultaneously on
the same computer at 25 fps. Since our video capture board can only
grab frames at 15 fps, this leaves CPU cycles to spare.

Because the tracker produces 10 8-bit integers per frame, our current

Stage Time (ms)
Copy video frame from camera 3
Track facial features 29
Project into feature space < 0.1
Render mouths, eyes, and head 8
Total 40

Table 1 Running times (450MHz Pentium III) for various stages of the pipeline.

bandwidth requirements are 2400 baud for 30 frames per second. At
10 fps, the bandwidth requirement drops to a miserly 800 baud.
Taking advantage of temporal coherence in the tracked features is
likely to yield even greater compression.

Five different styles of imagery were used to demonstrate the flexi-
bility of the rendering scheme. Of these, four were generated from
hand-drawn artwork in the manner described in Section 3 (Monster,
Blue, Wavy, andStraight). These are illustrated in Figure 7. The last
style (Photoreal), which appears on the video only, was created from
actual video of one of the subjects herself based on images acquired
prior to run time.

We tried rendering at 10, 15, and 30 frames per second. The an-
imation at 30 fps was done off-line, using a previously digitized
video stream, and rendered according to the methods described in
Section 3. The animations at lower speeds take averages of tracked
parameters collected at 30Hz over 3 (or 2) frames and render new
images at 10 (or 15) fps.

Sample frames from the conversations can be seen in Figure 7. The
characters shown exhibit a variety of expressions and a variety of
mouth, eye, and head poses.

After using the system, we have made the following observations:

• While the output is engaging, the rendering does not achieve the
quality of hand-drawn animation. This is not surprising, since our
frames are generated automatically, without run-time input from a
professional animator. It suggests that our technique in its current
form is best suited for applications in which professional quality
animation is not the goal.

• The animations rendered at 30 fps appeared jittery and anxious,
whereas animations rendered at 10 and 15 fps reduced the vis-
ible jitter considerably. While this is partly due to noise in the
tracking process, it may also be that the quality of animations are
sometimes improved at a lower frame rate [54].

• In spite of the jitter, the 30 fps animation reproduces visual speech
articulations more clearly, undoubtedly because of the high speed
of mouth movement during speech.

• Apparent eye-contact is made with all of the characters. This is
an advantage over standard video teleconferencing in which lack
of eye contact is often cited as a major drawback.

• The four hand-drawn animations appear more compelling than
thePhotorealstyle.

Figure 7 Snapshots of our system, shown as pairs of matching video and animated frames. Shown are a variety of artistic styles – from top to bottom,Straight,
Blue, Wavy, andMonster. The system conveys the mouths and eyes in many configurations, as well as a variety of expressions such as happy, neutral, surprised, and
aggressive.

This last point is interesting.Although thePhotorealanimation more
faithfully mimics a real human face, the hand-drawn animations are
nevertheless perceived as more compelling. In particular, the mouth
movements in thePhotorealstyle appear erratic and affected. Fre-
quently, artifacts in the morphing process become apparent as one
mouth appears to dissolve, rather than morph, into another. In con-
trast, although the hand-drawn animation exhibits the same technical
problems, it appears more natural. We hypothesize that as observers,
we are more forgiving of cartoon characters, whose abstraction and
imperfection we readily accept; on the other hand, we expect abso-
lute fidelity of photorealistic video and notice even minor departures
from reality.

Finally, we discovered that different observers liked different an-
imation styles. This highlights the flexibility of our algorithm for
animation—a library of various hand-drawn faces (requiring only
a few drawings per face) would allow users to pick and choose the
style according to their preferences.

5 Discussion and future work

We have demonstrated how a small set of hand-drawn artwork, in
conjunction with a small amount of facial tracking data, can be used
to create a real-time performance-driven animation system in which
animations effectively mimic the expressions and facial actions of a
human speaker. Our system works in real time using a combination
of a fast feature tracker and a fast novel morphing technique that
paints the appropriate eyes and mouth onto a head. One component
of this work is a novel face expression interpolation algorithm that
projects tracking data onto a two-dimensional subspace, and then
uses a Delaunay triangulation to find the three nearest expressions
and to compute their blending weights.

Our system is one of the first to apply image-based rendering tech-
niques to a collection of hand-drawn artwork to produce facial an-
imations. Our framework has several advantages. It can accommo-
date a variety of artistic styles and media, limited only by the possible
styles of the input artwork. It accommodates a variety of animation
styles,e.g., different frame rates and different amounts of flicker or
blending. It is able to compress facial expression information to a
handful of integers per frame. Finally, by relying on hand-drawn an-
imations, it avoids the primary difficulty with photorealistic avatars,
namely, that the rendered animations appear unnatural in some way.

There are several ways in which we plan to improve and extend
our existing system. First, we plan to add the capability to both
track and render additional parameters. Changes in head pose are
essential for transmitting gestures such as nodding and shaking of
the head. Facial creases and wrinkles will add to the expressivity of
the renderings. It would also be interesting to explore using different
animation styles at run-time based on the expressive content of the
frame being rendered. For example, when the speaker has highly
raised eyebrows indicating an extreme emotional state, random jitter
and reddish shifts in color might be introduced to the rendering
process to convey an additional intensity.

By shifting the focus of image-based rendering away from photo-
realistic reproduction towards the goal of expressive animation, we
have opened up a wide range of new expressive possibilities. For ex-
ample, we could use avatars without any facesper se, e.g., a scene in
which weather reflects the speaker’s expression. A cloudless sunny
sky could correspond to a smile, while a dark overcast or stormy sky
could reflect a frown.

We believe that the combination of real-time feature tracking,
performance-driven animation, and non-photorealistic rendering
can form the basis for a range of exciting applications. We imagine
teleconferencing applications and multi-user virtual worlds in which
users can put on graphical masks that transmit their expressions

without revealing identity. Another possibility is for video games, in
which players could puppeteer the expressions that appear on their
characters. A final application might be home animation kits, where
children could shoot, edit, and replay animations of their favorite
cartoon characters, driven by their own faces in real time.

References

[1] G. A. Abrantes and F. Pereira. MPEG-4 facial animation technology: Survey,
implementation, and results. InIEEE Transactions on Circuits and Systems for
Video Technology, pages 290–305, 1999.

[2] Paul M.Antoszczyszyn, John M. Hannah, and Peter M. Grant. Accurate automatic
frame fitting for semantic-based moving image coding using a facial code-book.
In International Conference on Image Processing, volume 1, pages 689–692,
1996.

[3] S. Basu, N. Oliver, and A. Pentland. 3D modeling and tracking of human lip
motions. InProc. Int’l Conf. on Computer Vision, pages 337–343, 1998.

[4] Thaddeus Beier and Shawn Neely. Feature based image metamorphosis. InSIG-
GRAPH 92 Conference Proceedings, pages 35–42. ACM SIGGRAPH, Addison
Wesley, August 1992.

[5] Philippe Bergeron and Pierre Lachapelle. Controlling facial expressions and body
movements in the computer-generated animated short “Tony De Peltrie”. InSIG-
GRAPH 85 Advanced Computer Animation seminar notes. ACM SIGGRAPH,
July 1985.

[6] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and syn-
thesis. A. I. Memo 1431, Massachusetts Institute of Technology, November 1993.

[7] Christopher M. Bishop.Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[8] Michael Black and Yaser Yacoob. Tracking and recognizing rigid and non-rigid
facial motions using local parametric models of image motion. InIEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’94),
pages 374–381, 1995.

[9] Andrew Blake and Michael Isard.Active Contours: The Application of Techniques
from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes
in Motion. Springer Verlag, 1998.

[10] Volker Blanz and ThomasVetter. A morphable model for the synthesis of 3d faces.
In SIGGRAPH 99 Conference Proceedings, pages 187–194. ACM SIGGRAPH,
1999.

[11] Matthew Brand. Voice puppetry. InSIGGRAPH 99 Conference Proceedings,
pages 21–28. ACM SIGGRAPH, 1999.

[12] Chang S. Choi, Kiyoharu, Hiroshi Harashima, and Tsuyoshi Takebe. Analysis
and synthesis of facial image sequences in model-based image coding. InIEEE
Transactions on Circuits and Systems for Video Technology, volume 4, pages
257–275, June 1994.

[13] Wagner Toledo Corrˆea, Robert J. Jensen, Craig E. Thayer, and Adam Finkel-
stein. Texture mapping for cel animation. In Michael Cohen, editor,SIGGRAPH
98 Conference Proceedings, Annual Conference Series, pages 435–446. ACM
SIGGRAPH, Addison Wesley, July 1998.

[14] Michele Covell. Eigen-points: control-point location using principal component
analyses. InProc. IEEE International Conference on Automatic Face and Gesture
Recognition, pages 122–127, October 1996.

[15] Cassidy Curtis, Sean Anderson, Joshua Seims, Kurt Fleischer, and David Salesin.
Computer-generated watercolor. InSIGGRAPH 97 Conference Proceedings,
pages 421–430. ACM SIGGRAPH, Addison Wesley, August 1997.

[16] Neil D. Duffy. Animation using image samples. InProcessing Images of Faces,
pages 179–201. Ablex Publishing Corp., Norwood, NJ, 1992.

[17] I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling, tracking and interactive
animation of faces and heads using input from video. InComputer Animation
Conference, pages 68–79, June 1996.

[18] T. Ezzat and T. Poggio. Facial analysis and synthesis using image-based models.
In Proceedings of the Second International Conference on Automatic Faces and
Gesture Recognition, pages 116–121, 1996.

[19] William T. Freeman, David B. Anderson, Paul A. Beardsley, Chris N. Dodge,
Michal Roth, Craig D. Weissman, William S. Yerazunis, Hiroshi Kage, Kazuo
Kyuma, Yasunari Miyake, and Ken ichi Tanaka. Computer vision for interactive
computer graphics.IEEE Computer Graphics and Applications, May/June:42–
53, 1998.

[20] Jacob E. Goodman and Joseph O’Rourke.Handbook of Discrete and Computa-
tional Geometry. CRC Press, New York, 1997.

[21] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and Fr´edéric
Pighin. Making faces. InSIGGRAPH 98 Conference Proceedings, pages 55–
66. ACM SIGGRAPH, July 1998.

[22] Paul E. Haeberli. Paint by numbers: Abstract image representations. In Forest
Baskett, editor,Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24,
pages 207–214, August 1990.

[23] T. S. Jebara and A. Pentland. Parametrized structure from motion for 3D adaptive
feedback tracking of faces. InProc. Computer Vision and Patt. Recog., 1996.

[24] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, active contour models. InFirst
International Conference on Computer Vision, pages 259–268, 1987.

[25] David Kurlander,Tim Skelly, and David Salesin. Comic chat. In Holly Rushmeier,
editor,SIGGRAPH 96 Conference Proceedings,Annual Conference Series, pages
225–236. ACM SIGGRAPH, Addison Wesley, August 1996.

[26] A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach to coding and in-
terpretting faces. InProceedings of 5th International Conference on Computer
Vision, pages 368–373, 1995.

[27] F. Lavagetto, I.S. Pandzic, F. Kalra, and N Magnenat-Thalmann. Synthetic and
hybrid imaging in the HUMANOID and VIDAS projects. InInternational Con-
ference on Image Processing, volume 3, pages 663–666, 1996.

[28] B. Le Goff, T. Guard-Marigny, M. Cohen, and C. Benoit. Real-time analysis-
synthesis and intelligibility of talking faces. In2nd International conference on
Speech Synthesis, September 1994.

[29] Seungyong Lee, George Wolberg, and Sung Yong Shin. Polymorph: Morphing
among multiple images. InIEEE Computer Graphics and Applications, pages
58–71, January 1998.

[30] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic modeling for
facial animation. InSIGGRAPH 95 Conference Proceedings, pages 55–62. ACM
SIGGRAPH, Addison Wesley, August 1995.

[31] H. Li, P. Roivainen, and R. Forchheimer. 3-D motion estimation in model-based
facial image coding. InIEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 545–555, 1993.

[32] Stephen E. Librande. Example-based character drawing. Master’s thesis, Mas-
sachusetts Institute of Technology, August 1992.

[33] Peter Litwinowicz and LanceWilliams. Animating images with drawings. InSIG-
GRAPH 94 Conference Proceedings, pages 409–412.ACM SIGGRAPH,Addison
Wesley, August 1994.

[34] Katsuhiro Matsuno, Chil-Woo Lee, Satoshi Kimura, and Saburo Tsuji. Automatic
recognition of human facial expressions. InProceedings of the IEEE, pages 352–
359, 1995.

[35] S. McCloud.Understanding Comics. Kitcken Sink Press, 1993.

[36] Baback Moghaddam and Alex Pentland. An automatic system for model-based
coding of faces. InIEEE Data Compression Conference, March 1995.

[37] Committee draft of ISO/IEC 14496-2, information technology – coding of audio-
visual objects: Video. Annex C contains Face object decoding tables and defini-
tions, 1996.

[38] Coding of moving pictures and audio. ISO/IEC JTC1/SC29/WG11
N2459, International Organisation for Standardisation, October 1998.
http://www.cselt.stet.it/mpeg/standards/mpeg-4/mpeg-4.htm.

[39] Ware Myers. Graphics aid the deaf.IEEE Computer Graphics and Applications,
2(2):100–102, March 1982.

[40] Gregory Nielson. Scattered data modeling. InIEEE Computer Graphics and
Applications, pages 60–70, 1993.

[41] Frederic I. Parke and Keith Waters.Computer Facial Animation. A K Peters,
Wellesley, Massachusetts, 1996.

[42] Elizabeth C. Patterson, Peter C. Litwinowicz, and Ned Greene. Facial animation
by spatial mapping. In Nadia Magnenat Thalmann and Daniel Thalmann, editors,
Computer Animation 91, pages 31–44. Springer-Verlag, Tokyo, 1991.

[43] E. Petajan and H. P. Graf. Robust face feature analysis for automatic speechreading
and character animation. InProc. Int’l Conf. on Autom. Face and Gesture Recog.,
pages 357–362, 1996.

[44] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin. Synthesizing
realistic facial expressions from photographs. InSIGGRAPH 98 Conference
Proceedings. ACM SIGGRAPH, 1998.

[45] Frédéric Pighin, Richard Szeliski, and David H. Salesin. Resynthesizing facial
animation through 3D model-based tracking. InSeventh IEEE International
Conference on Computer Vision (ICCV ’99), pages 143–150, 1999.

[46] S. M. Platt. Animating facial expressions. InComputer Graphics (SIGGRAPH
’81 Proceedings), volume 15, pages 245–252, August 1981.

[47] William H. Press, SaulA. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge
University Press, Cambridge, 1992.

[48] Rao, Chen, Mersereau, and Anderson. Towards a real-time model-based-coding
system. InProc. Workshop on Image and Multidimensional Signal Processing,
March 1996.

[49] Duncan Rowland and David Perrett. Manipulating facial appearance through
shape and color.IEEE Computer Graphics and Applications, September:70–76,
1995.

[50] Michael Salisbury, MichaelWong, John Hughes, and David H. Salesin. Orientable
textures for image-based pen-and-ink illustration. InSIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 401–406. ACM SIGGRAPH, Ad-
dison Wesley, August 1997.

[51] A. Saulnier, M.-L. Viaud, and D. Geldreich. Real-time facial analysis and synthe-
sis chain. InProc. Int’l Conf. on Autom. Face and Gesture Recog., pages 86–91,
1995.

[52] Orjan Standberg. Genimator: Applies human motion onto linedrawn cartoon
characters. URL: http://home5.swipnet.se/˜w-56588/GeniMator.htm.

[53] D. Terzopoulos and K. Waters. Analysis and synthesis of facial image sequences
using physical and anatomical models. InIEEE Trans. Pattern Analysis and
Machine Intelligence, pages 569–579, June 1993.

[54] Frank Thomas and Ollie Johnston.The Illusion of Life: Disney Animation. Hy-
perion Press, 1981.

[55] Sebastian Toelg and Tomaso Poggio. Towards an example-based image compres-
sion architecture for video-conferencing. InAI Memo 1494, CBCL Paper 100,
June 1994.

[56] K. Toyama. Radial spanning for fast blob detection. InJoint Conference on
Information Sciences Proceedings, volume 4, pages 484–487, Research Triangle
Park, NC, 1998.

[57] Kentaro Toyama. Prolegomena for robust face tracking. Technical Report MSR-
TR-98-65, Microsoft Research, November 1998.

[58] Keith Waters. A muscle model for animating three-dimensional facial expression.
In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 17–24, July 1987.

[59] Lance Williams. Performance-driven facial animation. In Forest Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 235–242,
August 1990.

[60] Daniel N.Wood,Adam Finkelstein, John F. Hughes, Craig E.Thayer, and David H.
Salesin. Multiperspective panoramas for cel animation. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 243–
250. ACM SIGGRAPH, Addison Wesley, August 1997.

[61] Hsi-Jung Wu et al. Tracking subspace representations of face images. InIn-
ternational Conference on Image Processing, volume 5, pages 389–392, April
1994.

	2006_PAPERS.pdf
	2006_PAPERS.pdf
	p03_realface.pdf
	p03_realface.pdf
	Introduction
	Model fitting
	Pose recovery
	Scattered data interpolation
	Correspondence-based shape refinement

	Texture extraction
	Weight maps
	View-independent texture mapping
	View-dependent texture mapping
	Eyes, teeth, ears, and hair

	Expression morphing
	Multiway blend and localized blend
	Blend specification

	User interface
	Results
	Future work
	Acknowledgments
	Least squares for pose recovery
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

