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Figure 1: “Doodle” style �le icons with name clustering.

Abstract

Although existing GUIs have a sense of space, they provide no
sense of place. Numerous studies report that users misplace �les
and have trouble way�nding in virtual worlds despite the fact that
people have remarkable visual and spatial abilities. This issue is
considered in the human-computer interface �eld and has been
addressed with alternate display/navigation schemes. Our paper
presents a fundamentally graphics based approach to this `lost in
hyperspace' problem. Speci�cally, we propose that spatial display
of �les is not suf�cient to engage our visual skills;scenery(dis-
tinctive visual appearance) is needed as well. While scenery (in the
form of custom icon assignments) is already possible in current op-
erating systems, few if any users take the time to manually assign
icons to all their �les. As such, our proposal is to generate visually
distinctive icons (“VisualIDs”)automatically, while allowing the
user to replace the icon if desired. The paper discusses psychologi-
cal and conceptual issues relating to icons, visual memory, and the
necessary relation of scenery to data. A particular icon generation
algorithm is described; subjects using these icons in simulated �le
search and recall tasks show signi�cantly improved performance
with little effort. Although the incorporation of scenery in a graph-
ical user interface will introduce many new (and interesting) design
problems that cannot be addressed in this paper, we show that auto-
matically created scenery is both bene�cial and feasible.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces

Keywords: Information retrieval, pattern synthesis, psychology

1 Introduction
Scenery is fundamental to our environment and is associated with a
robust set of skills. If you visit a city that you last visited a decade
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Figure 2: Caricature of indistinguishable icons in current GUIs.

ago, chances are that you still recognize parts of the city. Similarly,
learning the appearance of a book is not something that requires
hours of memorization and rehearsal, it takes only moments, and
we often remember the appearance even when the title is forgotten.

A common problem across desktop metaphor computer interfaces,
hypertext systems, and virtual world interfaces is that these systems
do not engage our visual skills – multiple studies have found that
users have trouble establishing a sense of place in these systems
[Nielsen and Lyngbaek 1989; Darken and Sibert 1996]. Many peo-
ple have trouble locating �les in systems they visit regularly; one
empirical study [Barreau and Nardi 1995] describes someone trying
to �nd a �le that they had created earlier the same day!

This is not surprising considering that computer GUIs provide us
with little or no scenery: many or even most icons are indistin-
guishable (Fig. 2). The word “scenery” is used here in a general
and perhaps abstract sense:1 scenery is the distinctive visual ap-
pearance of objects in a placethat allow us to recognize those ob-
jects and that place. Our premise is that fully engaging our visual
brain for recognition, search, and navigation tasks requiresboth

1. a spatial data layout, and

2. the distinctive appearance (scenery) necessary to recognize
objects and places.

Current interfaces provide only the former.

While some data types already have a natural visual representation
(e.g. thumbnails for image data), many other types of data do not
have an obvious distinguishable visual representation. And while
current operating systems allow users to manually assign icons to

1This de�nition is similar in spirit to that used in one dictionary [Word-
net ]. Other terms including “space”, “place”, and “appearance” have their
standard meaning.
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�le data, few if any users allocate the time to assign icons to all
their �les. Automatically assigned scenery is therefore needed for
most �les. In this paper we explore a particular kind of automatic
scenery, algorithmically generated abstract icons, or “VisualIDs”.

The remainder of this section reviews evidence that human visual-
spatial skills should be exploited in computer related activities. Sec-
tion 2 discusses design requirements for a scenery creation proce-
dure. Section 3 describes an icon creation algorithm that satis�es
many of the stated requirements. Section 4 shows results including
experimental demonstrations that the generated icons easily accel-
erate simulated �le search and recall tasks.

1.1 Psychology of Visual Search and Memory

Recognition of place, navigation, and formation of cognitive maps
are among the fundamental activities for any creature, and so it is
not surprising that humans have considerable skills in these areas.
For example, subjects shown collections of hundreds or thousands
of images are able to recognize the previously shown images with
accuracies of 90% and more after only one brief viewing [Standing
and Haber 1970]. Memory for brie�y shown pictures is greater than
that for words [Shepard 1967], and searching for a picture of a par-
ticular object among many is also faster than searching for the name
of that object among other words [Paivio 1974] (this fact is central
to our work). More generally the availability of rich visual cues in
the environment is believed to help in the formation of memory and
play a role in developing cognitive maps [Searleman and Herrmann
1994]; conversely, navigation in environments without distinctive
visual appearance is dif�cult (parking garages with several identi-
cal levels are one common example).

Studies of of�ce workers provide evidence that humans oftenpre-
fer to use their visual skills in organizing their work. Although
haphazard “stacks” of papers would seem to be an inef�cient orga-
nizational strategy, stacks allow search based on the remembered
location and appearance of documents, rather than relying on their
more easily forgotten textual labels [Malone 1983; Lansdale 1988].

The relevant literature on visio-spatial skills in computer settings
spans several decades and includes studies involving distinct skills
including visual search, learning, memory, and navigation. This
literature is too large to survey here; we will only mention sev-
eral examples of relevant research. Visual data displays have been
found to result in accelerated retrieval relative to list-based displays
[Hightower et al. 1998; Robertson et al. 1998]. Interestingly, peo-
ple often prefer to conceptualize data in visual terms even while
using applications that do not display data in a visual-spatial form,
using phrases such as “look for” and “wander around” [Maglio and
Barrett 1997].

On the other hand, at least one study has found that the skills that
people command in physical settings do not always transfer to com-
puter �ling systems [Jones and Dumais 1986], calling into question
the validity of adopting spatial metaphors for data. From our point
of view this study is consistent with the hypothesis that generic
object appearance is not suf�cient to engage our visual skills and
that distinctive appearance is needed. Indeed, one study found the
addition of generic landmarks (colored cubes) did not help per-
formance in virtual navigation whereas more detailed (but out-of-
context) landmarks (models of cups, clocks and other objects) did
help [Ruddle et al. 1997].

In current operating systems most �le types have distinct icons but
all �les of a type share the same icon. A study of such per-�le-type
icons [Byrne 1993] proposes and gives evidence for a two-stage
search process, in which �les of the desired type are �rst located vi-
sually, and then the particular �le among these is found by �lename.

It was experimentally found that easily discriminable icons allowed
the fastest visual search (consistent with our premise), although the
discussion incorrectly equates discriminability with simplicity – the
two factors are certainly independent, for example, simple but in-
discriminable icons are obviously possible, c.f. [Ruddle et al. 1997].

1.2 Prior and Related Work

The human-computer interface community has identi�ed naviga-
tion in virtual worlds as one of the major problems of the �eld. This
lost in hyperspace[Mukherjea 1999] problem has been addressed
through a number of alternative interfaces that offer improved nav-
igational mechanisms. Problems of impaired way�nding and place
blindness have been addressed most often byfocus+contextap-
proaches, in which a warped view differentially enlarges the focus
region while displaying much or all of the entire space at a smaller
scale, thereby establishing the spatial context. These approaches
include both distorted presentations such as �sheye views [Leung
and Apperley 1994] and the use of simulated perspective to dimin-
ish distant objects [Mackinlay et al. 1991]. Sophisticated naviga-
tion does not entirely solve the problem however. If the data space
is both large and relatively featureless, then showing the surround-
ing context may not entirely eliminate place blindness [Mukherjea
1999]. This problem is only exacerbated in �sheye and other dis-
torted views wherein a changing focal point can result in large or
even drastic changes to the display.

Several systems have had success with adding extraneous distin-
guishing elements such as region boundary geometry speci�cally
for the purpose of reducing place blindness [Ingram and Benford
1995; Robertson et al. 1998]. Another interesting proposal isap-
pearance from history[Hill et al. 1992], by which the appearance
of objects will change slightly according to their access and edit his-
tories. Although this provides useful information, the mechanisms
that have been proposed (slight changes in color, histograms of the
number of edits for each line in a �le) are not intended to visually
distinguish large numbers of objects.

A system designed explicitly to utilize spatial placement memory
has been empirically shown to result in faster and more accurate
search relative to a commercial program with a list-based interface
[Robertson et al. 1998]. On the other hand it was found that doc-
ument thumbnails were no more effective than generic icons in a
recall test [Czerwinski et al. 1999] – thumbnails are mainly effec-
tive for image data. The role of simulated location and context has
been explored in Infocockpit, a multiple-monitor and multimodal
interface testbed [Tan et al. 2001]. Subjects memorized word pairs
shown at various points on a three-monitor display, and in one con-
dition a “context” was created by projecting a photograph (e.g. of
a museum interior) as a panoramic backdrop in the test room. The
panoramic context greatly aided later recall [Stefanucci and Prof�tt
2002].

In the graphics community, Pad [Perlin and Fox 1993] and the ear-
lier Spatial Data Management System [Donelson 1978] are partic-
ularly complementary to our purpose. Pad situates data on an in-
�nite virtual landscape that invites full use of our spatial naviga-
tion skills, and uses graphics hardware to provide facile navigation.
The success of purely visual navigation and search (as opposed to
computer-aided search by name or content) will require a rich set
of distinguishable landmarks, however: navigation over thousands
of �les is super�uous if most �les look the same and particular �les
can only be located through a search-by-name dialog. Indeed, sev-
eral systems have abandoned an initial large workspace in favor of
multiple smaller desktops in order to give a better sense of place
[Card et al. 1991]. The introduction of scenery can alleviate this
problem and allow use of a single consistent workspace as intended.
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From this review it is clear that many current and proposed inter-
faces target our strong visual skills. On the other hand, the experi-
mental evidence shows that users often do poorly in virtual settings
despite having these skills. Our contributions are to point out that
solving the `lost-in-hyperspace' problem is not only a matter of pro-
viding improved navigation mechanisms (distinctive appearance is
required as well) and to demonstrate that effective “scenery” can
be automatically generated. Although the proposal to invent visual
identi�ers raises new issues in areas including usability and aes-
thetics that are not addressed in the paper, the experimental results
demonstrate that signi�cant improvements to data search and recall
are available even without fully exploring these issues.

2 Requirements for “Visual Identi�ers”

Some questions need to be addressed before proceeding: what sort
of visuals are suitable for making data distinguishable, how are they
generated, and how are they associated with the data? The follow-
ing are desirable characteristics of visual data identi�ers:

Persistence.Objects should retain a �xed location and appearance
until moved by the user.

Identi�ers should be automaticallyassigned (with human over-
ride). As a general mnemonic principle, manual creation and as-
signment of icons to data should produce better recall (and indeed
potentially better icons) than automatic construction and assign-
ment. Manual creation of icons is not viable of course, both be-
cause of the time required and because most users are not artists.
Manual assignment of pre-existing scenery is possible at present,
but few if any users take the time to assign icons to all their data.

What type of scenery? Distinctive visual appearance may be as-
signed to the data itself or to the space around the data; the scenery
may take have 2D or 3D appearance, etc. The approach of assigning
appearance directly to the data is arguably more effective than plac-
ing scenery around the data – in the latter case, locations should be
recognizable but individual �les in those locations will still be in-
distinguishable. But by assigning appearance to the data, we get
“places” for free, simply by recognizing the objects in those places.

Scenery should be perceptually diverse.Computer users tend
to organize their work into directories or folders containing from
dozens up to perhaps several hundred items each, while on the other
hand existing data spaces contain many thousands or millions of
items. From these numbers we surmise that a desirable scenery cre-
ation procedure should be able to synthesize very large numbers of
distinct icons of which subsets of several hundreds of icons should
be distinguishable at a glance and without study.

Appropriate Complexity. Visual identi�ers should be tuned for
the human visual system. Some psychological studies have shown
an inverted-U curve of image preference as a function of complex-
ity, i.e., a preference for intermediate complexity, with complex-
ity being de�ned as the number of vertices in random polygons,
etc. [Dorfman and McKenna 1966]. The noise image resulting
from randomly chosen pixels is maximally complex from entropy
and algorithmic complexity points of view, yet such images are not
perceptually very distinct – human observers are unable to see the
complexity in these images. Thus, it appears that the most distin-
guishable scenery will be of intermediate rather than the highest
possible complexity.

Detail vs. Scale. Scenery should be as distinguishable as possi-
ble, not just under close examination but also in an overview in
which many data items are visible and each is small. This indicates
that distinctive detail should be generated across a range of scales,
which in turn suggests a scale-recursive construction.

2.1 How Should an Icon Relate to its Data?

Although most authors (e.g. [Horton 1996]) adopt the view that the
data icon should be based on meaningful characteristics of the data
such as size, creation date, and content, we take the (perhaps sur-
prising) contrary view that:

� scenery assignment can be fairlyarbitrary

This is speci�cally because the role of scenery is not data visualiza-
tion, rather it is to enable visual search and memory. [Ruddle et al.
1997] gives experimental support for the effectiveness of arbitrarily
assigned landmarks in facilitating virtual navigation. The principle
is easily seen in the real-world, however: although real scenery has
its own internal logic, strong and consistent correlations between
the “contents” of places or objects and their appearance are not al-
ways present. For example, we may select a good restaurant by
reputation without knowing its appearance, but on a second visit
we �nd it again having easily learned its appearance. Similarly, we
cannot always guess the appearance of a book due to arrive in the
mail from knowledge of its subject matter, but its somewhat arbi-
trary appearance is almost instantly learned and remembered once
we see it. One proviso is that a book usually “looks like a book”
despite its variable appearance. The issue of such class appearance
will be touched on in section 5. The major point is that we do
not need appearance to be consistently correlated with anything in
order for us to recognize things – scenery is presented as afait ac-
compliand our visual brain is setup to rapidly learn this somewhat
arbitrary mapping between appearance and content.

While we have concluded that the assignment of visual representa-
tions to datacanbe arbitrary rather than correlated to data charac-
teristics, should it be? Quite possibly. For one, if the visual repre-
sentation is based on data characteristics, and these characteristics
change as the data is edited, the visuals will presumably change.
This is contrary to the goal of providing a memorable identi�er.
Moreover, giving distinguishable appearance to data is a challeng-
ing problem in itself, and simultaneously requiring that the data be
visualized only makes it harder.

2.2 Similar Identity versus Similar Content

Textual strings such as �lenames generally serve as the ultimate
identi�er of digital objects. A closer consideration of the nature
of �lenames will help our understanding of visual identi�ers. We
believe that

� the �lename represents themeaningof the �le to the user

We further believe that this meaning often cannot be formally de-
termined from the contents of the data. To clarify this statement,
consider the three �lenamesNIHfall , NIHfall cover , NIHold con-
taining respectively a report, a corresponding cover letter, and a
backup copy of an earlier version of the report. Content analysis
would �nd the two versions of the report to be more similar than
the report and the cover letter, but in the user's mind the report and
its cover letter belong together as indicated by similar naming.

Since visual identi�ers will play somewhat of an analogous role to
�lenames, we propose that

� Objects with similar (�le)names should have similar visual
identi�ers

The points made in this section are summarized in the following
table contrasting visualization with visual identi�ers:

data visualization visual identi�ers
functional icons memorable icons
distinguishability is a secondary design goal distinguishability essential
icons re�ect data content re�ecting content is secondary
appearance changes according to need appearance is fairly permanent
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Figure 3: Productions in a simple shape grammar. The numbered circles indicate
rewrite markers with the tab indicating orientation. Each �gure should be imagined as
the right side of a production with a single marker on the left hand side.

3 Synthesis Procedure

Various procedural modeling approaches (fractals, solid textures,
L-systems, etc. [Ebert et al. 1998]) are candidates for generating Vi-
sualIDs. Among these possibilities,shape grammars[Gips 1975]
have been applied to a particularly wide range of problems. We
have adopted shape grammars as a pattern synthesis procedure suit-
able for exploring issues in data scenery generation, although other
approaches might be equally suitable.

The procedure for synthesizing VisualIDs starts by identifying sim-
ilar �lenames using a clustering algorithm described in section 3.3.
VisualID icons for unique �lenames (those not part of a cluster) are
generated using the shape grammar procedure, described next. The
icon is arbitrarily assigned to the �le by using a hash of the �le-
name to seed the pseudorandom generator used in the shape gram-
mar. For �lenames that are members of a cluster, a hash of the �rst
name added to the cluster provides the pseudorandom seed used to
generate a prototype icon. The prototype is then “mutated” to ob-
tain the VisualID for remaining �lenames in the cluster. Mutation
is described in section 3.4.

3.1 Shape Grammar

A shape grammar consists of a set of shapes (terminals), a set of
markers (non-terminals), a set of productions that replace particular
con�gurations of markers (and possibly shapes) with other con�gu-
rations of shapes (and possibly markers), and a start con�guration.
Markers are non-drawing shapes that serve to orient and scale pro-
ductions; a production is applicable when an af�ne transformation
can be found that makes its left side identical to a con�guration of
markers somewhere in the image. The literature on shape grammars
and related techniques is broad and includes many distinct formu-
lations; see [Marriott et al. 1998] for a recent survey.

While most work on visual grammars has focused on modeling the
properties of speci�c objects (a particular tiling, or a particular plant
species in the case of L-systems), our goal is to produce a more di-
verse range of shapes. Classic shape grammars allow a marker to
be rewritten with any applicable rule, and it is the selection of the
particular rule that produces different shapes from the same gram-
mar. Unfortunately as the number of rules increases, the approach
of applying rules independently and at random can lead to inco-
herent collections of parts rather than diverse but coherent patterns
(c.f. Fig. 2 in [Wonka et al. 2003]). To address this issue, we require
all instances of a particular marker to be rewritten in the same way
at each step. For example, in theradial production in Fig. 3 all
of the 1 markers will be replaced with the same derivation.

This restriction can be formalized by adding identi�er generation
and matching notations. An identi�er-generatori returns a unique
identi�er each time it appears. The matching symbolappearing
on the left side of a production matches any identi�er. With these

de�nitions our grammar can be notated as a tuple (N,T,M,P), where
N is the set of nonterminals, T is the set of terminals, M is a set
of markersMi that may be expanded into either non-terminals or
terminals, P are the production rules, andM1 is the start symbol. A
simple grammar using theradial andalong-a-path produc-
tions from Fig. 3 is:

M ! radial (Mi ;Mi )

M ! along-a-path (Mi ;Mi )

M ! line

M ! null

radial , along-a-path 2 M; line 2 T

A sample derivation from this grammar is:

1. M1 ! radial (M2;M3) (pick the radial production,
marker 1 rewritten asM2, marker 2 rewritten asM3)

2. M2 ! radial (M4;M5); M4 ! line ; M5 ! null (M2 now
expanded as a second radial production with its own marker 1
replaced by the line terminal and marker 2 replaced by null)

3. M3 ! along-a-path (M6;M7); M6 ! line ; M7 !
line (marker 2 of the top level radial expanded as
along-a-path with its markers 1, 2 both replaced by the
line terminal).

This derivation generates a shape grammar

M1 ! radial (M2;M3)

M2 ! radial (line ;null)

M3 ! along-a-path (line ; line )

i.e. “an n-gon with n-gons around the perimeter with lines coming
off of them, and inside the main n-gon a curving path with lines
coming off it.”

A derivation is complete when either everyMi has been rewrit-
ten to a terminal, or a user-speci�ed maximum recursion level is
reached. The complexity of the derivations can also be approxi-
mately controled. Each generator calculates a complexity estimate
as the sum of some intuitively assigned constant value for itself,
plus the summed complexities of its children. Derivations more
complex than a speci�ed threshold are discarded and replaced by
the derivation resulting from an incremented pseudorandom seed.
During rendering, lines whose cumulative scaling is smaller than a
threshold such as 1.5 pixels are discarded.

Arguably a grammatical formalism is not the simplest explanation
of this construction. The construction can also be elegantly ex-
pressed using the higher-order function construct in functional lan-
guages such as scheme and ML (a higher-order function is a func-
tion that returns a function, as distinct from a function that returns
a function pointer, as in C++). Fig. 4 lists the scheme pseudocode
for the radial production shown in Fig. 3, omitting the center
marker 2 for simplicity (the code corresponding to a production
will be termed a “generator” below). This code de�nes the vertex
marker production as some randomly chosen derivation through the
grammar (outerlambda , lines 2-6) and then applies this now de-
termined derivation fragment (now represented by thechild vari-
able) at the vertex markers (innerlambda , lines 7-12).

Note that in callinggenerate-child the construction is not
just randomly picking an applicable prede�ned production, rather,
a particular production is in effect being invented by �xing free
parameters of what might be considered a “parameterized produc-
tion”. We call the parameters selected in the outer lambda “meta”
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level parameters. The result of the meta-level evaluation is a deriva-
tion that may still have some random parameters to be evaluated (in
our system these include random parameters that give a “sketch”
feel to the individual drawing). This division of evaluation into a
“meta” stage and a second stage involving a more fully speci�ed
grammar can also can be seen in the formal grammar description
above. Whereas grammars are generally de�ned in terms of �xed
symbols, the notationsMi and can be viewed as inventing marker
symbols and matching them to particular rewrites; the result of eval-
uating allMi and is then a grammar with �xed symbols.

3.2 Implementation details

The simple grammar in Fig. 3 can by itself generate a wide range
of patterns; implementation should be evident and is a matter of
standard graphics programming. Thearound-a-shape shapes
are made using Fourier �ltering of noise, thus ensuring periodic-
ity. The along-a-path generator creates a non-periodic ran-
dom path, also by noise �ltering. The �gures in this paper use a
grammar that extends the productions in Fig. 3 with additional pa-
rameters to add variety, and adds several additional generators. The
scribble generator traces the path of a point mass with friction
attracted by either random or patterned impulses. Thefigure
generator creates an animal-like arrangement ofline generators.
symmetry calls its child generator with n-lateral radial symmetry.

While the set of generators and their various parameters were in-
tuitively chosen, we do not believe our particular choice is cru-
cial to the results. To give a better feel for the types of param-
eters that were used, the full set of parameters for theradial
generator are described next (the complete shape grammar is de-
scribed in the extended online version of this paper): The param-
eter n is the number of vertices in then-gon. Boolean variables
hasVertex , hasMouth control whether the markers at the ver-
tices and in the center will be expanded (markers 1, 2 in Fig. 3).
VCscale , MCscale are corresponding scale reduction factors for
the respective child generators.mouthOrg is an offset of the cen-
ter child down from the center of then-gon (directions are relative to
the local coordinate system of the generator).hasEyes places two
additional children that might be interpreted as “eyes”.eyeSep is
the horizontal separation between these,eyeOrg is the offset of
the “eyes” up from the center, andECscale is their scale reduc-
tion. angleCut causes vertex children to appear only within a
range of angles from the top of then-gon, andangleCutOff is
the corresponding angular threshold in degrees.

The actual random parameter choices use several random genera-
tors each de�ned in terms of the standard uniform [0,1) pseudo-

1 (define gen-radial
2 (lambda (recursion-level)
3 (let ((child (generate-child
4 (+ 1 recursion-level)))
5 (vc-scale (rndin 0.15 0.7))
6 (n (rndin-lowbias 3 12))))
7 (lambda ()
8 (dotimes (i n)
9 (save-ctm

10 (rotate (/ (* i 2PI) n))
11 (scale vc-scale)
12 (child))))))
13
14 (define generate-child
15 (lambda (recursion-level)
16 (let ((child (if (< recursion-level max-level)
17 (rnd-pick-child recursion-level)
18 (rnd-pick-terminal))))
19 (child))))

Figure 4: Scheme language shape-grammar pseudocode.

random generatorrnd() . rndprob(p) returns true ifrnd
is greater thanp. rndin(a,b) returns a random value in
[a;b]; both integer and �oat versions of this routine are used.
rndinLowbias(a,b) is similar but is biased toward smaller
values by squaring the underlying pseudo-random value (i.e.,a +
rnd() 2*(b-a) ). The parameter choices forradial are:

n rndinLowbias(3,12)
hasVertex rndprob(0.5)
VCscale rndin(0.15,0.7)
hasMouth rndprob(0.6)
MCscale rndin(0.1,0.3)
mouthOrg if hasEyes rndin(-0.2,-0.3)
hasEyes rndprob(0.3)
ECscale rndin(0.1,0.4)
eyeSep rndin(0.2,0.3)
eyeOrg rndin(0.2,0.3)
angleCut rndprob(0.5)
angleCutoff rndin(90,150)

3.3 Name Clustering

Among the requirements listed in section two, it was suggested that
objects with similar names should have similar visual identi�ers.
A �rst step toward this goal is to select a pairwise string distance
function. Existing procedures such as the Levenshtein edit distance
and the (normalized) longest common subsequence are candidates
[Graham 1994]. We used a variant of normalized common sub-
sequence that counts all common subsequences (of length� 3),
weighted by length. This choice was motivated by the consider-
ation that the �lesfinalReport.doc and finalRevReport.doc are
probably related. The complete �lename distance uses an ad-hoc
weighing of this measure computed on the `name' part of the �le-
name and a binary comparison of the �le extension. Since the ex-
tension indicates the �le type, however, it might better be used to
directly control the icon appearance through grammar parameters
or the choice of a grammar rather than participating in the string
distance.

Given the string distance function, we adopted a simple one-level
incremental name clustering procedure that easily maps onto the
shape grammar construction. The following pseudocode describes
the clustering algorithm:

procedure one-level-cluster(newname)
find the closest match among existing filenames
if this distance < threshold then

add newname to the cluster containing closest match
else

create new cluster with newname as its only member
end

3.4 Mutation

To create similar VisualIDs for similar (clustered) �lenames, the
VisualID for the �rst �lename in the cluster is “mutated” to create
the remaining VisualIDs. Two examples of the results of muta-
tion are shown in Fig. 5 (Figs. 1, 6 also contain several VisualIDs
that are mutated due to �lename clustering). In the construction de-
scribed here “mutation” is relatively easy – the generated grammars
can be walked through and one or more of the embedded parame-
ters changed. The recursive construction provides an approximate

Figure 5: Examples of “mutation”.
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Figure 6: Screenshot of a simple �le browser using VisualIDs.

ordering in terms of perceptual saliency, in that parameters at the
�rst recursion level generally have larger effects on the image than
those at deeper levels. This perceptual ordering is only approximate
however, and a more principled approach such as Design Galleries
[Marks et al. 1997] is desirable if suitable output vectors (in the ter-
minology of [Marks et al. 1997]) could be determined. Another is-
sue with this scheme is that the clustering threshold and the amount
of variation generated by a “mutation” need to be mutually tuned.
At present producing a workable scenery construction requires both
artistry on the part of the programmer and tuning. In any case the
user should be able to force generation of new icons if the existing
ones are not satisfactory, and the user could have access to some of
the parameters of the synthesis procedure.

4 Results
The design for the grammar in section 3 was inspired by doodles
and re�ect one of the authors' preferences for irregular patterns,
with lines sometimes rendered in an intentionally sketchy style.
Figure 1 shows moderately complex VisualIDs (maximum recur-
sion level set to 6) generated with this grammar; the diversity of
possible shapes is evident. The compute times for these “doodles”
range from insigni�cant to a minute or even more, as some �gures
contain many thousand short antialiased line segments. As such we
envision VisualIDs being generated by a low priority background
task, similar to the �le indexing tasks in current operating systems.

Once VisualIDs are available they need to be integrated in the user
interface. Fig. 6 is a screenshot of a simple �le browser that in-
corporates VisualIDs. The browser is a Java application that, upon
entering a directory (folder), computes icons for any �les that do
not already have them. The icons are computed in a separate thread
and are stored as small individual images in a subdirectory. This
simple �le browser does not resolve issues involving the aesthetics
of VisualIDs. In this paper we do not claim to explore aesthetics,
rather our focus is simply showing that arti�cial scenery is feasi-
ble and potentially effective. Fig. 7 shows several concepts for icon
styles, included here to suggest the range of possibilities.

4.1 Experimental Validation

The �le browser prototype also does not in itself demonstrate that
VisualIDs are effective, and subjective impressions of the browser
are confounded by many factors such as its lack of hardware ac-
celeration and the absence of favorite features of other browsers.
On the other hand, there is already the large body of preexisting
evidence reviewed in section 1 indicating that appearance is effec-
tively used by humans in many contexts. To verify that these results
transfer to arti�cially created icons as expected, we did several user
studies. In these studies we focus on distinct appearance rather than
on spatial memory and navigation – the latter are partially served by

Figure 7: Examples rendering styles for VisualIDs. The design in the lower left illus-
trates including both a VisualID and a branding logo (a footprint).

existing desktop interfaces, but the experimental evidence shows
that navigation without distinctive appearance is dif�cult [Searle-
man and Herrmann 1994; Ruddle et al. 1997].

Study 1. In the �rst study, users were asked to �nd �les, speci-
�ed by �lename, in a “�le browser” displaying �les in a simulated
folder, using either distinctive (VisualID) icons or generic (plain
document) icons. A grid of 6x4 �les was chosen as representative
of a typical number of �les in a single folder. In a within-subjects
(paired samples) design, each user searched for 2 �les, 3 times each,
for each type of icon. The order of �le targets for each subject was
randomly chosen. This repeated search task tests a combination
of visual search and short term icon memory: users quickly learn
the association between �lenames and VisualIDs and can thus use
the VisualID to aid in search. The study was implemented as a
Java applet that uploaded timing data to a server. The 25 users
who completed the study required an average of 23.2 seconds to
complete the four VisualID searches, versus 30.5 seconds for the
generic-icon searches (paired t-test p=0.029), an improvement of
approximately 30%. We would expect an even greater advantage if
users were allowed to learn the icons over more than three trials.

Study 2. The �rst study did not test icon memory over more than
a few minutes, and the �le names were speci�ed. Arguably in real
life a user tries to �nd a �le based on a memory of the contents of
the �le, and on vague memory of the �le name and location; people
are typically not given the �le name and told to search for it. In
the second study, we wanted the users to learn a more natural as-
sociation between the icon and the “contents” of the �le, and then
search for a �le speci�ed by those contents. Users were �rst trained
using a modi�ed version of the game “Concentration.” Although a
game might not seem the most obvious choice for our study, it has
certain characteristics that make it a good substitute for the natu-
ral task of working with �les and directories: there is no explicit
need to memorize the association between the �le “contents” and
the name or icon, since the concentration task can be done entirely
by memorizing the locations of the various cards. This is very simi-
lar to what would be true for VisualIDs – users would not explicitly
memorize the associations. We want to know how users perform
under these circumstances.

Users viewed a 5x4 array of cards, with either a VisualID or generic
icon on each card, and a �le name beneath (Fig. 8). Each user saw
only one type of icon (VisualIDs or generic). When the user clicked
on a pair of cards, this revealed the name of a country behind each
card. The country thus plays the role of the “content” of the �le.
The user's goal was to �nd all 10 matching pairs of countries. For
additional training, the user was then asked 25 additional questions
such as “Which country is north of the USA? (Click on the pair.).”
The next day, users performed a second set of tasks. First, they were
shown a series of icons, and asked to pick the associated country
in a multiple choice question. The 21 users who completed both

6



ACM Trans. Graphics (Proc. SIGGRAPH 2004), to appear.

Figure 8: Screenshot of Study 2's concentration game (with-icon condition).

days were 37% correct with VisualIDs, and only 24% correct with
generic icons, a signi�cant difference (p=.017, heteroscedastic).In
the second task, users searched for a card, as in the �le search task
of Study 1, except that the card was speci�ed by its “content” (the
associated country) rather than by name. In this task users with Vi-
sualIDs averaged 8 correct selections out of 20, versus 2.08 correct
for the generic condition, p=.007.

We also asked several subjects to sketch and describe icons from
memory two days later. They produced reasonable sketches
(Fig. 9), and descriptions such as “a triangle with two eyes on a
stick is Italy”. Approximately six weeks following this study we
showed an accessible group of four of the former subjects a printed
page containing a 4x4 grid of icons, nine of which they had seen six
weeks previously. All were more than 80% correct in identifying
the previously seen icons.

The results of the studies are summarized in the following table:

generic icons VisualIDs
study1: mean search time 30.5 secs. 23.2 secs.
study2: label-to-content 24% 37%
(percent correct)
study2: content-to-label 2.08/20 8/20
(correct/total)

Additional details on the studies and description of two earlier stud-
ies are found in the extended online version of this paper. Although
many further studies are possible, the advantages of visual infor-
mation display have already been well demonstrated in other con-
texts. The results here show that these advantages can be expected
to transfer to distinguishable arti�cially constructed icons as well.

5 Discussion and Future Work
Coexistence, not Replacement.A major point is that

� VisualIDs donot replace existing mechanisms for manipulat-
ing �les.

Although the potential utility of visual identi�ers is clear there may
be reasons why distinctive appearance is not for everyone. Just
as some people have particularly orderly desks, some users may
prefer the simplicity and uniformity of a scenery-less interface. A
view-by-appearancemode analogous to the existing view-by-date,
view-by-type, etc. modes could show scenery only when requested.

Scaling issues.Several scaling issues arise in visual search. First
is the issue of whether pop-out search [Treisman and Gelade 1980]
is possible. In pop-out search, a unique pattern sought among a
relatively homogeneous array of distractors can be located in essen-
tially constant time. While such ef�cient search is clearly desirable,
it is inherently impossible with any sort of static pairing of icons to
�les, for a system of any reasonable scale. For ef�cient search the
�le identi�ers must be suf�ciently distinct along a simple feature
dimension (e.g. color, orientation, size) that they are clearly distin-
guishable, yet homogeneous enough that pop-out search is possible.

Figure 9: User sketches of three icons from memory several days after study 2 (left),
and the corresponding original icons (right).

For a small number of �les (say, 4), this could be achieved by as-
signing saturated colors to the �les, but for a more realistic number
of �les the criteria of distinguishability and homogeneity cannot
be simultaneously satis�ed, and a slower conjunctive or con�gura-
tion search will be required. Whether searching for a word among
words, or a pictorial �le icon among other pictures, constant time
pop-out search will not be possible with any reasonable number of
�les. The best one can do is to adopt a technique that provides a
better search slope and offset than the alternatives. Evidence indi-
cates that search for a picture among pictures is better than search
for a word among words in this regard (e.g. [Paivio 1974]).

A second issue is whether we can really distinguish and remem-
ber icons for every possible �le. A mid-90s study of 15 diverse
computer users found that they had from 2,400 to 31,000 �les [Bar-
reau and Nardi 1995], and the economy of computer storage has
only increased these numbers. People probably cannot remember
or even easily distinguish VisualIDs for every �le. In other words,
VisualIDs do not “scale” in absolute terms (note that this is equally
true of memory for �lenames). Nonetheless it is easy to argue that
such scaling is not necessary for VisualIDs to be useful. People
often work on projects that involve only a subset of all their �les,
and they only need to remember the identi�ers (whether visual or
textual) for the �les in the current project(s). VisualIDs are effec-
tive as long as icons for a signi�cant fraction of the number of �les
accessed on a project can be easily learned and remembered.

Branding. Software vendors may object to having their branding
logo (e.g. the “W” icon identifying a Word �le) replaced with some-
thing more unique. It is possible to imagine schemes that address
this objection, either by allowing simultaneous display of both the
VisualID and an identifying logo as in Fig. 7, or through different
viewing modes. Speci�c software packages could adopt character-
istic classes of icons to represent their �les, for example, icons for
�les created by a CAD package could be small drawings of imagi-
nary machines created using a suitable shape grammar. The issue of
branding versus unique identity is already present with image data,
and has been addressed in one program by displaying the image
thumbnail inside a “frame” that identi�es the software package.

Future Direction: Visual Search Interfaces. The idea ofquery-
by-sketchhas been explored for image data [Jacobs et al. 1995], but
visual identi�ers might allow query-by-sketch to operate on other
types of data. VisualIDs also addresses a fundamental problem with
most forms of query-by-sketch: that many people are not very good
at sketching. Since VisualIDs are algorithmically generated, users
can potentially generate queries by guiding the scenery construction
procedure e.g. with successive selection [Sims 1991]. Although the
user would make some errors, a search that returned theN closest
matches could be used in conjunction with other constraints (�le
type, date, ...) to produce a list of candidates. VisualIDs might also
allow RSVP-style search for data, in which icons are rapidly dis-
played in succession and the user can stop and backup to examine
items that resemble the one sought [Intraub 1981].

6 Conclusion
In two decades of discussion of graphical user interfaces the role of
scenery has been remarkably overlooked. This paper has surveyed
the psychological literature and presented additional empirical evi-
dence that data scenery in the form of distinctive visual identi�ers
can allow us to more fully engage our visual brains at the computer
interface. We have proposed that graphics techniques be used to au-
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tomatically generate such visual identi�ers, and have demonstrated
one technique, a `meta' shape grammar, that can generate a diverse
range of patterns.

The research direction presented here addresses only one compo-
nent of a complete user interface. Further exploration of pattern
generation is needed and new design issues are introduced by this
proposal. On the other hand, “VisualIDs” do not require a radical
change to current desktop interfaces, and they complement existing
research on spatial navigation schemes. Our experimental results
are both strong and easily obtainable. While Nielsen notes that even
minor interface inef�ciencies become a major cost when multiplied
across thousands of users [Nielsen 1993], the potential ef�ciency
demonstrated here (e.g. a 30% increase in search speed after only a
few minutes of use) is not minor.
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Shape Grammar

The complete parameters for the shape grammar are described here.In the parameter descriptions:

� level is the recursion level, starting at 1 and increasing with smaller scale detail.

� Rnd11() returns a uniform pseudo-random value in -1,1.

� rndinLowbias(a,b,p) is a version of the low-bias generator where the power can be speci�ed:a + (b-a)*pow(Rnd(),p) .

� rational(lo,hi,den) returns a rational number (cast to real) where the numerator is inlo,hi and the denominator isden .

� rndprobLevel(p) : The probability is reduced at each level usingp = p - p*min(level,5)/6

� rndinLevel(a,b) : the range is reduced by recursion level, i.e.,a + Rnd()*(b-a)/level .

Around-a-spiral

len rndin(25,60) number of segments in the spiral (if level=1)
len rndin(10,30) number of segments in the spiral (if level=2)
len rndin(5,10) number of segments in the spiral (if level=3)
len 5 number of segments in the spiral (if level> 3)
aligned rndprob(0.5) children are aligned on radial spokes
ppr rndinLowbias(3,35) points per revolution (if aligned)
ppr rational(3,35, rndin(3,7)) points per revolution (if not aligned)
hasChild rndin(0.5,1) place a child generator at points along the spiral
centerScale rndin(0.05,0.6) scale reduction for the child at center of spiral
outerScale rndin(0.25,1) scale reduction for the child at outside of spiral

The spiral algorithm is

for( i=0; i < len; i++ ) {
theta = 2*pi*float(i) / ppr;
r = 0.15 * sqrt(theta);
x = r * cos(theta);
y = r * sin(theta);

}

Theppr is adjusted so that there are at least two revolutions in the spiral.

Around-a-Shape and Relaxed Inside

Both of these are implemented with the same code, with a boolean variablehasOC controlling whether a child is generated around the
outline.

The outline is created with either a Fourier series or FFT �ltering of noise, according to the variablefourier . Fourier series generation
produces a more regular or coherent outline. Pseudocode for the Fourier series is

ncoef = 2*rndin(2,5) + 1;
for( i = 0; i < ncoef; i++ )

amp[i] = Rnd11() / float(i+1); // 1/f envelope

n rndinLevel(3,6) number of objects (power)
fourier rndprob(0.5) use fourier series (else FFT)
exponent rndin(1.6,2.2) spectral exponent for FFT �ltering
hasIC rndprobLevel(0.6) a child is placed inside the outline
hasOC rndprobLevel(0.6) a child is placed around the outline
OCscale rndin(0.1,0.6) scale reduction for the outline child

The number of interior children is 2n, and each child is scaled down by rndin(0.1,2)/2n.
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Along a Path

The outline is created with either a Fourier series or FFT �ltering of noise, according to the variablefourier . The code is similar to that for
the relaxed inside generator, except that a subrange of the synthesized outlines betweenparameter 0,0.7 is used to produce an open,
aperiodic curve, whereasrelaxed inside uses the full 0,2*pi range of the outline.

The number of children placed along the curve is 2n.

hasChild rndproblevel(0.8) place child along the path
Cscale rndin(0.1,0.6) child scale reduction
n rndinLevel(3,6) (power) number of children placed along the path
fourier rndprob(0.5) use Fourier series synthesis
exponent rndin(1.6,2.2) spectral exponent for FFT �ltering

Scribble

Thescribble generator traces a path attracted by random or patterned attractors and damped by “friction”. In the random case attractors
are randomly distributed throughout the unit square centered on the origin. Patterned attractorsX[i],Y[i] are distributed in a “zig-zag”
pattern according to the code:

float dx = 0.f;
float dy = 1.f;
float cx = 0.f;
float cy = -0.5f;
float opposingRatio = rndin(0.05f, 0.2f);
for( int i=0; i < ncvs; i++ ) {

X[i] = cx;
Y[i] = cy;
if (i%2 == 0) {

cx = cx + dx;
cy = cy + dy;

}
else {

cx = cx - dx;
cy = cy - dy;

}
// move perpendicular
cx = cx - opposingRatio * -dy;
cy = cy - opposingRatio * dx;

} //for

The attractors are applied in sequence, with a new attractor taking effect when the line has approached a preset distance (0.03) from the
current attractor. The attractor force is in the direction from the currentpoint to the attractor. The scribble algorithm is best described in code:

float jitter = 0.1f;
float dx = X[1] - X[0]; // X,Y are the attractor locations
float dy = Y[1] - Y[0];
dx = dx + jitter * rndf11();
dy = dy + jitter * rndf11();
float len = (float)sqrt(dx*dx + dy*dy);
float distthresh = 0.03f;
float force = 0.01f;
float cx = X[0];
float cy = Y[0];
float vx = 0.f;
float vy = 0.f;
int ncvs = X.length;

moveto(cx, cy); // use moveto/lineto drawing

for( int icv=0; icv < ncvs; icv++ ) {
int icv1 = (icv + 1) % ncvs;
float spandx = X[icv1] - X[icv];
float spandy = Y[icv1] - Y[icv];
float dot = 1.f;
boolean flag = true;
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while(flag) {
// integration
force = (len > 0.2f) ? (force*1.1f) : (force*0.7f);
if (force > 0.08f) force = 0.08f;
if (force < 0.01f) force = 0.01f;
vx = vx + force * dx;
vy = vy + force * dy;
vx = vx * _friction;
vy = vy * _friction;
cx = cx + vx;
cy = cy + vy;
lineto(cx, cy);

// new direction
dx = X[icv1] - cx;
dy = Y[icv1] - cy;
len = (float)sqrt(dx*dx + dy*dy);
dx = dx + (float)abs(dx)*jitter*rndf11();
dy = dy + (float)abs(dy)*jitter*rndf11();

// end segment?
dot = spandx*dx + spandy*dy;
if (len < distthresh)

// near attractor, break
flag = false;

} //while(flag)
} //icv

zigzag rndprob(0.5) zig-zag patterned impulses (else random)
n rndin(2,30) if !zigzag and level=1
n rndin(10,20) if !zigzag and level> 1
n rndin(40,10) if zigzag
friction rndin(0.85,0.98) if !zigzag
friction rndin(0.8,0.9) if zigzag

Symmetry

The symmetry generator draws nothing itself but applies its child in an n-lateral radial symmetry. If n=2 the child is mirrored.

n rndinLevelLowbias(2,8) n-lateral symmetry
offset rndprob(0.3) translate out from center
offsetTrans rndin(0.1,0.5) amount to translate out from center
Cscale rndin(0.3,0.6)*(1-offsetTrans) child scale reduction

Line generator

Althoughline serves as a terminal in the grammar we also use it as a non-terminal with these parameters:

len rndin(0.5,1) length of the line
n rndinLowbias(3,10,1.5) number of C3 children along the line
hasEC1 rndprob(0.75) has child C1 at end 1
hasEC2 rndprob(0.75) has child C2 at end 2
hasC3 rndprob(0.5) has child 3 (along the line)
C1scale rndin(0.15,0.6) scale reduction for child 1
C2scale rndin(0.15,0.6) scale reduction for child 2
C3scale rndinLowbias(0.05,0.7,1.5) scale reduction for child 3
C3doublesided rndprob(0.8) child 3 is drawn mirrored on both sides
C3angle rndin(-pi/4,pi/4) angle of child3 relative to line normal
C3taper rndprob(0.3) reduce or increase scale of child3 by 1.5 along the line
C3increase rndprob(0.3) increase (rather than decrease) child3 scale along line
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Figure generator

The figure generator produces an animal-like arrangement of generators. Most generators are forced to beline , while the “head” is
allowed to be aline or radial .

headScale rndin(0.1,0.2) scale reduction for the head child
legScale rndin(0.3,0.6) scale reduction for the leg children
tailScale rndin(0.1,0.4) scale reduction for the “tail” child
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FAQ

This paper has been read by a number of people and we have received lengthy comments about it, many of which re�ned our presentation.
This section covers some of the objections that were raised.

Icons do not generally qualify as scenery.Our de�nition is not too different than the one in WordNet (which is evidentlyderived from actual
usage): “the appearance of a place.” While some places (such as a beach) are dif�cult to divide into meaningful “objects”, others (such as a
city, or most other man-made environments) are clearly composed of objects in the everyday sense. The scenery in a city isthe appearance
of its non-moving objects(buildings, etc.). If all the buildings in your town had a uniform size, shape, and color, you would have a lot more
dif�culty �nding your way!

This “object-based” de�nition of scenery is in factnecessaryfor �les, since �les are discrete objects. The form of scenery you areprobably
thinking of (more like the beach example) would take the form of distinguishable appearance for the (folder) backdrop. This is also desirable
and we advocate it in the paper as well, but it is not as essential. For example, if every folder had a distinctive picture as its backdrop
when opened, but the �le- (object-) based scenery was absent, navigating to other folders and �nding �les would still be dif�cult, since all
sub-folders and �les would have a generic appearance.

The experiment's relationship to the larger issues of 3D navigation are not immediately apparent. We do not claim that this paper
directly addresses navigation. But, navigation in featureless spaces is dif�cult and adding distinctive appearance is known to help navigation
([Searleman and Herrmann 1994; Ruddle et al. 1997] and to a lesser extent [Ingram and Benford 1995; Darken and Sibert 1996; Robertson
et al. 1998]). Scenery as we de�ne itcomplementsspatial navigation schemes and isrequiredto engage our visual brain in navigation.

People use natural languages to express information much more frequently than we use pictures. If people could not even remember
the labels given in natural language, it's hard to believe that they can remember graphical labels better than the textual labels.Both
psychological and HCI evidence (Section 1,2) and our own studies 1,2show the opposite.

There are not enough pixels on current screens to show all these icons.The icons used in the studies are 642 (at least one current OS has
icons of this size) and are quite distinguishable. Further, the idea of zoomable interfaces (e.g. [Perlin and Fox 1993]) is well established and
could be used if necessary to distinguish very similar icons such as those resulting from mutation.

You argue that the icon does not need to be related to the content. People normally remember the content but not the exact labels of
the documents. I just don't know how the content-irrelevant icons can help people recall.It is true that people remember the content of
documents. Documents also have labels, and it's true that people often donot remember the exact labels. The comparison here is between
textual labels and textual+visual labels. All the evidence (prior and ours)supports the idea that humans have strong abilities to �nd and recall
by appearance, and when given the choice, we try the visual approach �rst [Byrne 1993]. For example, I locate one of my books (having
some desired content) by appearance, not by reading the title of each book in my collection.

How does the system treat the case in which a set of �les is named similarly (paper1.tex, paper2.tex, ...) but one differently (�nal.tex)
which, however, is similar in content but unfortunately not in the naming. Thepaper1.tex, paper2.tex, ..., final.tex
issue was addressed in theSimilar Identity versus Similar Content section on page 43 This is a good example of what was described there:
although the content of all these �les are similar (paper1, paper2, ... being successive versions of the paper), theirmeaningfor the
user is different. And this difference in meaning can be seen from the �lename but not the �le content! The user names the �nal version to
final.tex to make it stand out from the others; it is the valuable �nal version, whereas the others are backup versions. In the mutation
proposal its �le icon will also stand out from the others, as desired.

What if the users change �lenames often or even reorganize their �le system. Then an icon that has been the visual hook for a �le
will be newly created and differ from the previous one. Would not theuser be even more lost then?No. Users can certainly loose �les
by moving and renaming them, regardless of the current proposal. See theCoexistence, not Replacementsection: the original �le names
are still there; the scenery is just one additional cue. As all the previous information is still there, no one should be “more lost”. The act of
renaming a �le has a non-trivial “cost” – the user must remember the new name. The evidence indicates that this remembering task is faster
and more robust with appearance data than it is with only textual labels.

The other question suggested here is whether it is best to change the icon for a �le when the name changes. By the argument above, neither
possibility should really hurt performance, but perhaps one choice willimprove performance more than the other. Although this question
probably needs further study, we suspect that changing the icon alongwith the name is the most consistent choice. In thepaper1.tex,
paper2.tex, ..., final.tex example, we suppose that the user names or renames the �nal versionfinal.tex to make it stand
out from the others. If they are renaming the �nal version, and the icondoes not also change, the �le's appearance will be misleading – it will
look like one of the earlier versions.

If I rename a number of �les and their icons all change, how can I ensure that the new icons bear the same relationship to each other
that the old ones did?Probably this is not possible, but why is it necessary? There is nothing indicate that we would be particularly bothered
by this scenario, on the contrary, it is a visual learning problem of the sort that we are quite skilled at. In the real world, my favorite bookstore
and the adjacent coffee shop may well be replaced by a Starbucks anda 7-11, which do not bear the same relationship as the original two
stores... but I'll have a lot more dif�culty remembering a mathematicalfact, or even someone's name, than the appearance of the new stores.

Photographs versus abstract icons.Small photographs have many of the same bene�ts as abstract scenery, and are likely to be more
distinguishable than abstract icons. On the other hand there are reasonsto prefer abstract icons: 1) the use of similar icons for similar
�lenames might be dif�cult or impossible with photographs; 2) algorithmic construction offers additional possibilities for branding and query;
3) abstract icons are relatively (though not entirely) free of the semantic and culturally speci�c issues of interpretation that can interfere with
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icon success (A. MacEachren,How Maps Work: Representation, Visualization, and Design, Guilford Press, NY, 1995).

You did not consider [issue X]. Yes, we did not consider all issues that arise from this “scenery” idea.A single paper on most any topic
cannot cover every related issue, and admittedly this paper has more unresolved (and interesting) issues than most.
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TMP RCS Makefile add_may2k jInfoPlace.java jInfoPlace$IconCache.class

backbutton.gif JIPlib.java mktestdir.py TESTDIR ddlview.lisp SOURCEME_12

junk.eps EXPERIMENT tileposter.java mkposter.java stringsimilarity.java FINAL03.tex

spell ICONS ibrowse.tar.gz stringfuns.lisp README zilla.LOG

More doodle-style �le icons. The maximum recursion level is increased to generatemore detailed icons. Clustered �lenames appear together, but overall order is arbitrary due to
traversing a hash table.

More doodles.

15



– Supplementary Material –

Additional details on the user studies:

To eliminate the time required for generating icons dynamic ally
a set of pre-generated icons was used in the experiments.
Filenames were taken from the project directory for
this paper and icons were assigned to them arbitrarily (file s
ordered by the java File.list() call were matched with icons
in order of generation).

There was a precursor to study 1.
In this version subjects (professional computer artists)
were instructed to find particular files in a mock interface
displaying 200 files in a scrollable window.
There were two conditions, with- and without-doodle icons.
Eight files were requested twice each,
thus testing for spatial and icon memory.
While the total search time for the `scenic' condition was
slightly shorter than under the generic icon condition
(and was mildly significant) we decided to revise this study based
on user feedback. The comments were that:
1) a single repetition was not enough
2) much of the elapsed time was spent on the mechanics of scrol ling
3) in both conditions subjects reported that they
made use of the spatial layout in finding files-
for example they might recall that a particular file
was somewhere to the upper left in the scrollable display.

These comments suggest that the study design
did not clearly show the potential effect of distinguishabl e icons.
Simply running this study for a longer period (more than one r epetition)
would be a suitable fix, but we wanted to keep the total time
to a ``polite'' 5-10 minutes.

In study 1 the number of files was reduced to 24 --
this is probably a representative number for a single folder .
This study was implemented as a java browser client
that uploads results to a multithreaded server.
Source for this and the second study is available at

http://www.idiom.com/˜zilla/Work/VisualIDs/Expcode
(note that studies 1,2 are referred to as Experiment 4
and Experiments 5,6 in this code).

Participants were recruited by email.
56 people started the study but 26 completed it despite
the relatively short length. The high number of incomplete
results was probably due to a java/browser incompatibility
that caused the applet to crash when accessing the icon list
(but after opening the server connection). This bug was
fixed before the second study.
One result was discarded as the elapsed time was several hour s
(the user presumably was interrupted and returned to comple te
the study later).
Screenshots of Studies 1 and 1-precursor are shown below.

The second study used the same
browser/server approach developed for study 1.
41 people did part or all of day 1,
21 completed both days, of these 9 were in the with-icon condi tion.
The participants were split among graduate students and
professional computer artists. The large number of incompl ete results
in this study was probably due to it being a more difficult
multi-day study.

In followup comments some users in the generic condition sai d
``how were we supposed to know [what to answer]'', meaning, t he idea
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Screenshot of study 1 precursor.

that it would be possible to learn a number of filename-conte nt
association with that amount of training did not even seem
conceivable to them.

Roughly six weeks following study 2 we briefly
quizzed an accessible sub-group of these people on their mem ory
for the icons. Four people were given a printed sheet contain ing
nine of the original icons and seven previously unseen icons ;
they were asked to indicate any icons they recognized.
The results were remarkable: they got 4,2,2, and 1
choices incorrect, or more than 80% correct (this after
only 10-20 minutes of exposure and more than a month of elapse d time).

In addition to the two studies reported in the paper, we have
run a simple visual distinguishability test several times,
in part to test the effectiveness of some additions to
the icon grammar. People ran a program in which they
viewed 100 icons for at their own pace but with instructions
to spend ``a few seconds'' on each icon. They then
viewed a second set of 100 icons, half of which were
new. The average results appear to be in the 70% range;
one group of 5 people obtained an average of 73% correct
for example (chance performance=50%).
This level of recognition is below that obtained for real ima ges
but nonetheless demonstrates that artificially generated icons
can be distinguished and recalled with little effort.
This study is not reported in the paper because it
is not testing any hypothesis and because the core issue
(distinguishability) is tested in more realistic ways
in the other studies.
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Screenshot of study 1. The url was removed for anonymous submission to SIGGRAPH.
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Examples of subjects' sketches of icons from memory several days after study 2, together with the corresponding original icons for comparison.
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