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ABSTRACT

Landmark placement is crucial in manual demarcation and registration of anatomical structures, registration of different

image modalities (i.e. MRI/CT), labeling training data for lip and face principal component models, training for neural

networks, and signal interpolation to name some applications. Although landmark placement at curvature and coordinate

extrema (e.g. corners of the mouth, lowest point on the lower lip) is fairly unambiguous, the placement of point land-

marks along a linear contour is subjective. Unfortunately the user’s choice of landmark placement determines the quality

of the resulting registration. In this paper, we present an algorithm to remove these undesired degrees of freedom by re-

placing landmarks along the contour. Ambiguous landmarks are moved so as to minimize a thin plate spline energy while

constraining the landmarks to the originally specified contour. The resulting landmark placement results in a smoother reg-

istration while still interpolating the contours and fixed landmarks. The results show that the ambiguity of manual landmark

placement along contours does affect the smoothness of the interpolated registration, and that significantly smoother inter-

polations can be achieved using our approach. This procedure may also benefit other applications employing landmarks

by eliminating unintended curvature (variation) from the landmark data.
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1. INTRODUCTION

Point landmarks are used in a wide variety of registration and interpolation applications. Interpolation algorithms generally

assume that the landmark positions are known exactly, but in real applications the localization of landmarks is always prone

to some error. Errors in placing point features have been addressed by regularized interpolation (Section 2), which provides

a smoother function that approximates rather than strictly interpolating the data.1 While this approach handles placement

problems for point features, many applications require the placement of point landmarks along contour features.

Although landmark placement at curvature and coordinate extrema (e.g. corners of the mouth, lowest point on the lower

lip) is fairly unambiguous, the placement of point landmarks along a contour is quite arbitrary (Figure 1). Unfortunately this

arbitrary choice of landmark placement determines the quality of the resulting registration. This issue has been addressed

with algorithms that base registration on contour rather than point data.2 In such schemes the issue of point placement

along a contour is merely replaced by the issue of how to parameterize the contours, however. Obvious parameterization

schemes such as arc length parameterization will not result in smooth or appropriate results in some cases. Also, contour

drawing requires more sophisticated user skills and editing tools than does point editing.

In this paper, these undesired degrees of freedom are minimized by re-placing landmarks along a contour. The algo-

rithm produces the least-curvature spline consistent with the intended contours and fixed points. We distinguish “slidable”

(contour-constrained) landmarks from unambiguous (fixed) landmarks (Figure 1). The latter may include corners (cur-

vature extrema), extreme points (coordinate extrema), and symmetry points that are unambiguous in visual inspection.

Contour-constrained landmarks are those that require a subjective judgment regarding where along the contour they are

placed.

We adjust the placement of the contour-constrained landmarks along their respective contours so as to produce the

smoothest thin plate spline (TPS) that interpolates the contours and fixed landmarks. While this removes an undesired
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ambiguity in the case of TPS registration, there are other applications requiring manually placed landmarks (such as

labeling training data for active appearance models) where thin-plate splines are not used. In some such applications, we

can define the desired landmark placement to be the one that produces the smoothest thin-plate registration, thus introducing

the TPS specifically for the purpose of smart landmark placement, and thereby eliminating subjectively introduced variation

from the landmark data.

2. BACKGROUND

Thin plate splines (TPS) interpolate specified points while minimizing an approximate curvature (integrated squared second

derivative),
∫
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resulting in a smooth deformation without unexpected ripples and variations. Thin plate splines have been used in morpho-

metrics research to define changes of shape between subjects of the same species,3 and in neurosurgery and radiotherapy

research for the purpose of defining a non-rigid registration from patient specific radiographs to generic atlas representa-

tions.4

When the number of points to be interpolated is small (as is typically the case with manually placed landmarks) there

is a simple radial basis function (RBF) formulation.

The radial basis formulation of TPS is

δ(p) =

n
∑

k

ck|p − pk|
2 log |p − pk| + a1 + (a2, a3)p (2)

where δ(p) is the desired displacement at a point p, pk are the n landmarks (each with a corresponding destination

landmark tk), and aj are coefficients of an affine registration (the measure (1) is invariant to the offset and linear slope of

the optimized function so separate terms are added to handle this).

The weights ck, aj , k = 1 . . . n, j = 1 . . . 3 needed to interpolate the data can be found by solving the block matrix

system
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where Kr,c = ||pr − pc||
2 log(pr − pc), r, c ∈ 1 . . . n, P is a n by 3 matrix containing the constant (1) vector and the

landmark locations xk and yk, and δ are the data values to be interpolated. In a registration or 2D labeling application there

are two such interpolations needed, one for each of x, y, but the matrix K depends only on the data locations (not their

values) so the matrix inverse is needed only once.

In practice it is desirable to “regularize” the system (3). Regularization can be motivated both in terms of matrix

conditioning and weight decay considerations, and by assuming that the landmarks have some error associated with them.

In practice it involves adding an amount λI (= 0.001 for example) to the diagonal of K before inverting.1 This has the

effect of reducing large coefficients, thereby producing a more planar warp.

3. METHOD

Our objective is to minimize the squared (approximate) curvature (integral of second derivative squared) of the spline,

the same criterion that TPS minimizes. In a radial basis warp a single local RBF function adds a constant amount of

approximate curvature. Scaling this function scales the total curvature. So a squared coefficient c2 adds an amount c2 of

curvature.

So if the basis function were local, we could minimize the TPS criterion by minimizing the sum square of the RBF

coefficients ck. The TPS basis functions r2log(r) in (2) are not local, but most of their curvature is concentrated near the

origin, so we can use the sum-square coefficients as an approximation (in particular, if the coefficients ck are all zero, the

resulting surface is planar). The coefficient energy can be taken as (
∑

ck)2 or as
∑

c2

k = cT c; we choose the latter for

simplicity.
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In summary, we wish to minimize cT c by adjusting the slidable points, while constraining them to the contour defined

by the originally specified points. The coefficient energy can be minimized by moving landmarks in the range of the

“warp”, the domain, or both. We choose the former, and derive a constrained gradient descent adjustment of the contour-

constrained landmarks.

3.1. Details

Say that p is a particular landmark in the source image, t1 is the corresponding destination landmark, v is a unit vector

through t1 toward the adjacent landmark on one side, and t is an undetermined point on this line. The objective of

minimizing the coefficient energy while being constrained to the line v can be expressed as

min
t

cT c + λ((t − t1) · n) (4)

where n is the unit perpendicular vector (normal) to v and λ is a Lagrange multiplier enforcing the constraint. In the sequel

we wish to work with the entire contour rather than altering a single landmark at a time. The objective is similar,

min
t

cT c + λT N(t − t1) (5)

with t, t1,p now being vectors containing all landmark points, with the x- and y-components in some consistent order, such

as all the x’s followed by all the y’s (bold variables now denote vectors that reference all the landmarks), and N is a n×2n

matrix where the 2k, 2k + 1 elements of each row contains the x, y components of the normal n for the corresponding line

in t − t1.

Next c needs to be expressed in terms of an altered landmark location t.

δ =

[

tx − px

ty − py

]

=

[

K 0
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]

+
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]

or more compactly,

t − p = Kc + Pa

where the vector on the left contains the x displacements to interpolate followed by the y displacements (dimension 2n),

K is of size (2n)2, c is of size 2n containing the x coefficients of the radial basis TPS followed by the y coefficients, P

is of size 2n by 6, and a is of size 6 and contains the three affine coefficients for the x-component of the warp followed

by the three y coefficients (note that K and P now refer to the block diagonal matrices that contain the original K,P).

Continuing,

t − p− Pa = Kc

c = (KT K)−1KT (t − p − Pa)

= M(t− p − Pa) with M ≡ (KT K)−1KT = K−1

This expression for c can be substituted into the objective (5)

min
t

(t − p− Pa)T MTM(t− p − Pa) + λT N(t − t1)

Taking the derivative we get

2MTMt− 2MTMp − 2MTMPa + NT λ (6)

as the gradient with respect to t.

3.2. Lambda

To find λ, (6) can be solved for t noting that the gradient is zero at the minimum, and this can be substituted into

N(t − t1) = 0 (7)

The function of λ is simply to keep the new landmarks t on the original line segments, however. This can also be achieved

simply by moving t down its gradient (excluding the constraint) and then projecting it back on the contour.
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3.3. Algorithm

With the gradient now defined, the landmark re-placement algorithm iteratively moves the contour-constrained landmarks

a small distance down the gradient until the gradient approaches zero. In this procedure the landmarks are sliding along

the piecewise linear contour defined by the original (unadjusted) landmarks. At each iteration, it is necessary to check each

moving landmark to see if it has moved beyond the end of one of the segments of the original contour — if so, it should be

moved back to the adjacent original landmark.

4. RESULTS

The input landmark locations for a sample registration application are shown in Figure 2. Figure 3 shows the landmarks

on the radiograph as moved by the coefficient-minimizing optimization. The x- and y- components of a registration can

be considered individually as height field functions x=f(u,v), y=g(u,v). In Figure 4 we plot the x- and y- height fields

defined by TPS using the original and adjusted landmarks. The functions interpolating the adjusted landmarks are visibly

smoother. Figure 5 shows a regular grid warped by the TPS, before (left) and after (right) landmark adjustment. The grid

on the right is visibly smoother in several regions.

5. CONCLUSIONS

TPS interpolants are often selected specifically because they produce the smoothest possible interpolation, but our results

show that the ambiguity of manually placing landmarks along contours can interfere with this goal. The algorithm described

in this paper adjusts such contour-constrained landmarks so as to remove subjectively introduced variation. While this

procedure will directly benefit TPS registration applications, it may also benefit other applications employing landmarks

by eliminating unintended curvature (variation) from the landmark data.

SPIE Medical Imaging 2004, to appear



Figure 1. While some “features” such as curvature extrema, coordinate extrema, and midpoints can be objectively located (filled circles),

placing landmarks along contours is intrinsically ambiguous (open circles). We refer to the open circles as “slidable” or contour-

constrained landmarks.
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Figure 2. Registration of a generic tooth prototype (white outline)

to a particular tooth (radiograph image). Squares and solid lines in-

dicate corresponding unambiguous landmarks; circles and dashed

lines indicate contour-constrained landmarks.

Figure 3. Target landmarks are moved (circles) from their original

position (squares) to produce the smoothest possible warp, con-

strained to the original contour. The combined x,y RBF coefficient

“energy” was reduced from 46.12 to 12.30 over 20 iterations.
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Figure 4. Height field functions computed by TPS interpolation of the original (left) and adjusted (right) landmarks. The functions at

the top are the x-component of the morph; the bottom pair are the y-component. The interpolation of the adjusted landmarks is visibly

smoother, yet the same points and contours are interpolated
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Figure 5. Computed thin plate warp applied to a regular grid. Left (original), right (after contour landmark movement). The warp on the

right is noticeably smoother in some areas.
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