Scattered Interpolation Survey

j.p.lewis
u. southern california

Scattered vs. Regular domain

Motivation

- modeling
- animated character deformation
- texture synthesis
- stock market prediction
- neural networks
- machine learning...

Machine Learning

- Score credit card applicants
- Each person has N attributes: income, age, gender, credit rating, zip code, ...
- i.e. each person is a point in an N-dimensional space
- training data: some individuals have a score " 1 " = grant card, others "-1" = deny card

Machine Learning

- From training data, learn a function $R^{N} \rightarrow-1,1$
- by interpolating the training data

Texture Synthesis

(blackboard drawing)

Stock Market Prediction

(blackboard drawing)

Modeling

Deforming a face mesh

Shepard Interpolation

$$
\hat{d}(\mathbf{x})=\frac{\sum w_{k}(\mathbf{x}) d_{k}}{\sum w_{k}(\mathbf{x})}
$$

weights set to an inverse power of the distance:
$w_{k}(\mathbf{x})=\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{-p}$.

Note: singular at the data points \mathbf{x}_{k}.

Shepard Interpolation

improved "higher order" versions in Lancaster Curve and Surface Fitting book

Natural Neighbor Interpolation

Image: N. Sukmar, Natural Neighbor Interpolation and the Natural Element Method (NEM)

Wiener interpolation

linear estimator $\quad \hat{x}_{t}=\sum w_{k} x_{t+k}$
orthogonality $\quad E\left[\left(x_{t}-\hat{x}_{t}\right) x_{m}\right]=0$

$$
E\left[x_{t} x_{m}\right]=E\left[\sum w_{k} x_{t+k} x_{m}\right]
$$

autocovariance
linear system

$$
E\left[x_{t} x_{m}\right]=R(t-m)
$$

$$
R(t-m)=\sum w_{k} R(t+k-m)
$$

Note no requirement on the actual spacing of the data. Related to the "Kriging" method in geology.

Applications: Wiener interpolation

Lewis, Generalized Stochastic Subdivision, ACM TOG July 1987

Laplace/Poisson Interpolation

Objective: Minimize a roughness measure, the integrated derivative (or gradient) squared:

$$
\begin{gathered}
\int \frac{d f^{2}}{d x} d x \\
\iint|\nabla f|^{2} d s
\end{gathered}
$$

Laplace/Poisson interpolation

minimize $\int\left(f^{\prime}(x)\right)^{2} d x$
$F\left(y, y^{\prime}, x\right)=y^{\prime 2}$
$\delta F=\frac{\partial F}{d y^{\prime}} \frac{d y^{\prime}}{d \epsilon} \delta \epsilon$
$=\frac{\partial F}{d y^{\prime}} q^{\prime} \delta \epsilon$
$\frac{d E}{d \epsilon}=\int \frac{\partial F}{d y^{\prime}} q^{\prime} d x$
$\int \frac{\partial F}{d y^{\prime}} q^{\prime} d x=\frac{\partial F}{d y^{\prime}} q-\int \frac{d}{d x} \frac{\partial F}{d y^{\prime}} q d x$
$\left.\frac{\partial F}{d y^{\prime}} q\right|_{a} ^{b}=0$
$\frac{d E}{d \epsilon}=-\int \frac{d}{d x} \frac{\partial F}{d y^{\prime}} q d x=0$
$=-2 \frac{d}{d x} \frac{d f}{d x}=-2 \frac{d^{2} f}{d x^{2}}=-2 \nabla^{2} f=0$
should come out like $\frac{d^{2} f}{d x^{2}}=\nabla^{2}=0$

$$
\frac{\partial F}{d y^{\prime}}=2 y^{\prime}=2 \frac{d f}{d x}
$$

$$
\text { now change } q \text { ' to } q
$$

integration by parts
because q is zero at both ends
variation of functional is zero at minimum

Laplace/Poisson: Discrete

Local viewpoint:

roughness $\quad R=\int|\nabla u|^{2} d u \approx \sum\left(u_{k+1}-u_{k}\right)^{2}$
for a particular k:

$$
\begin{aligned}
& \frac{d R}{d u_{k}}=\frac{d}{d u_{k}}\left[\left(u_{k}-u_{k-1}\right)^{2}+\left(u_{k+1}-u_{k}\right)^{2}\right] \\
& =2\left(u_{k}-u_{k-1}\right)-2\left(u_{k+1}-u_{k}\right)=0 \\
& u_{k+1}-2 u_{k}+u_{k-1}=0 \rightarrow \nabla^{2} u=0
\end{aligned}
$$

Notice: $D^{T} D=\ldots 1,-2,1$

Laplace/Poisson Interpolation

Discrete/matrix viewpoint: Encode derivative operator in a matrix D

$$
\begin{aligned}
D= & {\left[\begin{array}{cccc}
1 & & \\
-1 & 1 & \\
& -1 & 1 \\
& & & \\
& & &
\end{array}\right] } \\
& \min _{f} f^{T} D^{T} D f
\end{aligned}
$$

Laplace/Poisson Interpolation

$$
\begin{aligned}
& \min _{f} f^{T} D^{T} D f \\
& 2 D^{T} D f=0
\end{aligned}
$$

i.e.

$$
\frac{d^{2} f}{d x^{2}}=0 \quad \text { or } \quad \nabla^{2}=0
$$

$f=0$ is a solution; last eigenvalue is zero, corresponds to a constant solution.

Laplace/Poisson: solution approaches

- direct matrix inverse (better: Choleski)
- Jacobi (because matrix is quite sparse)
- Jacobi variants (SOR)
- Multigrid

Jacobi iteration

matrix viewpoint

$$
\begin{aligned}
A x=b & \\
(D+E) x=b & \text { split into diagonal } \mathrm{D} \text {, non-diagonal } \mathrm{E} \\
D x=-E x+b & \\
x=-D^{-1} E x+D^{-1} b & \text { call } B=D^{-1} E, z=D^{-1} b \\
x \leftarrow B x+z & D^{-1} \text { is easy }
\end{aligned}
$$

hope that largest eigenvalue of B is less than 1

Jacobi iteration

Local viewpoint

Jacobi iteration sets each f_{k} to the solution of its row of the matrix equation, independent of all other rows:

$$
\begin{aligned}
& \sum A_{r c} f_{c}=b_{r} \\
\rightarrow \quad & A_{r k} f_{k}=b_{k}-\sum_{j \neq k} A_{r j} f_{j} \\
& f_{k} \leftarrow \frac{b_{k}}{A_{k k}}-\sum_{j \neq k} A_{k j} / A_{k k} f_{j}
\end{aligned}
$$

Jacobi iteration

apply to Laplace eqn

Jacobi iteration sets each f_{k} to the solution of its row of the matrix equation, independent of all other rows:

$$
\begin{aligned}
& \ldots f_{t-1}-2 f_{t}+f_{t+1}=0 \\
& 2 f_{t}=f_{t-1}+f_{t+1} \\
& f_{k} \leftarrow 0.5 *(f[k-1]+f[k+1])
\end{aligned}
$$

In 2D,

$$
\begin{aligned}
& f[y][x]=0.25 *(f[y+1][x]+f[y-1][x]+ \\
& f[y][x-1]+f[y][x+1])
\end{aligned}
$$

But now let's interpolate

1D case, say f_{3} is known. Three eqns involve f_{3}. Subtract (a multiple of) f_{3} from both sides of these equations:

$$
\begin{aligned}
& f_{1}-2 f_{2}+f_{3}=0 \rightarrow f_{1}-2 f_{2}+0=-f_{3} \\
& f_{2}-2 f_{3}+f_{4}=0 \rightarrow f_{2}+0+f_{4}=2 f_{3} \\
& f_{3}-2 f_{4}+f_{5}=0 \rightarrow 0-2 f_{4}+f_{5}=-f_{3}
\end{aligned}
$$

$$
L=\left[\begin{array}{cccc}
1 & -2 & 0 & \\
& 1 & 0 & 1 \\
& & 0 & -2 \\
& & \cdots &
\end{array}\right] \text { one column is zeroed }
$$

Multigrid

$$
r \text { is known, } e \text { is not } \begin{array}{ll}
& A x=b \\
\tilde{x}=x+e \\
r=A \tilde{x}-b \\
& r=A x+A e-b \\
& r=A e
\end{array}
$$

For Laplace/Poisson, r is smooth. So decimate, solve for e, interpolate. And recurse...

Exciting demo

Recovered fur

Recovered fur: detail

Poor interpolation

Membrane vs. Thin Plate

Left - membrane interpolation, right - thin plate.

Thin plate spline

Minimize the integrated second derivative squared (approximate curvature)

$$
\min _{f} \int\left(\frac{d^{2} f}{d x^{2}}\right)^{2} d x
$$

Radial Basis Functions

$$
\hat{d}(\mathbf{x})=\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right)
$$

Radial Basis Functions (RBFs)

- any function other than constant can be used!
- common choices:
- Gaussian $\phi(r)=\exp \left(-r^{2} / \sigma^{2}\right)$
- Thin plate spline $\phi(r)=r^{2} \log r$
- Hardy multiquadratic

$$
\phi(r)=\sqrt{\left(r^{2}+c^{2}\right), c>0}
$$

Notice: the last two increase as a function of radius

RBF versus Shepard's

Solving Thin plate interpolation

- if few known points: use RBF
- if many points use multigrid instead
- but Carr/Beatson et. al. (SIGGRAPH 01) use Greengart FMM for RBF with large numbers of points

Radial Basis Functions

$$
\begin{aligned}
& \hat{d}(\mathbf{x})=\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right) \\
e= & \sum_{j}\left(d\left(\mathbf{x}_{j}\right)-\hat{d}\left(\mathbf{x}_{j}\right)\right)^{2} \\
= & \sum_{j}\left(d\left(\mathbf{x}_{j}\right)-\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right)^{2} \\
= & \left(d\left(\mathbf{x}_{1}\right)-\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{k}\right\|\right)\right)^{2}+\left(d\left(\mathbf{x}_{2}\right)-\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{k}\right\|\right)\right)^{2}+\cdots
\end{aligned}
$$

Radial Basis Functions

$$
\begin{aligned}
& \text { define } R_{j k}=\phi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right) \\
= & \left(d\left(\mathbf{x}_{1}\right)-\left(w_{1} R_{11}+w_{2} R_{12}+w_{3} R_{13}+\cdots\right)\right)^{2} \\
& +\left(d\left(\mathbf{x}_{2}\right)-\left(w_{1} R_{21}+w_{2} R_{22}+w_{3} R_{23}+\cdots\right)\right)^{2}+\cdots \\
& +\left(d\left(\mathbf{x}_{m}\right)-\left(w_{1} R_{m 1}+w_{2} R_{m 2}+w_{3} R_{m 3}+\cdots\right)\right)^{2}+\cdots \\
\frac{d}{d w_{m}}= & 2\left(d\left(\mathbf{x}_{1}\right)-\left(w_{1} R_{11}+w_{2} R_{12}+w_{3} R_{13}+\cdots\right)\right) R_{1 m} \\
& +2\left(d\left(\mathbf{x}_{2}\right)-\left(w_{1} R_{21}+w_{2} R_{22}+w_{3} R_{23}+\cdots\right)\right) R_{2 m} \\
& +\cdots \\
& +2\left(d\left(\mathbf{x}_{m}\right)-\left(w_{1} R_{m 1}+w_{2} R_{m 2}+w_{3} R_{m 3}+\cdots\right)\right)+\cdots=0
\end{aligned}
$$

put $R_{k 1}, R_{k 2}, R_{k 3}, \cdots$ in row m of matrix.

Radial Basis Functions

$$
\begin{aligned}
& \hat{d}(\mathbf{x})=\sum_{k}^{N} w_{k} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right) \\
& e=\|(\mathbf{d}-\boldsymbol{\Phi} \mathbf{w})\|^{2} \\
& e=(\mathbf{d}-\boldsymbol{\Phi} \mathbf{w})^{T}(\mathbf{d}-\boldsymbol{\Phi} \mathbf{w}) \\
& \frac{d e}{d \mathbf{w}}=0=-\boldsymbol{\Phi}^{T}(\mathbf{d}-\boldsymbol{\Phi} \mathbf{w}) \\
& \boldsymbol{\Phi}^{T} \mathbf{d}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \mathbf{w} \\
& \mathbf{w}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{d}
\end{aligned}
$$

Where does TPS kernel come from

Fit an unknown function f to the data y_{k}, regularized by minimizing a smoothness term.

$$
\begin{gathered}
E[f]=\sum\left(f_{k}-y_{k}\right)^{2}+\lambda \int\|P f\|^{2} \\
\text { e.g. } \quad\|P f\|^{2}=\int\left(\frac{d^{2} f}{d x^{2}}\right)^{2} d x
\end{gathered}
$$

Variational derivative of E wrt f leads to a differential equation

$$
P^{\prime} P f(x)=\frac{1}{\lambda} \sum\left(f(x)-y_{k}\right) \delta\left(x-x_{k}\right)
$$

Where does TPS kernel come from

Solve linear differential equation by finding Green's function of the differential operator, convolving it with the RHS (works only for a linear operator). Schematically,

$$
\begin{array}{cc}
L f=r h s & \text { Lis the operator P'P, } \\
\text { rhs is the data fidelity } \\
f=g \star r h s & \text { fobtained by convolving } \mathrm{g} \star \text { rhs } \\
L g=\delta & \text { choosing rhs }=\delta \text { gives this eqn }
\end{array}
$$

g is the "convolutional inverse" of L.

Where does TPS kernel come from

In summary, the kernel g is the inverse Fourier transform of the reciprocal of the Fourier transform of the "adjoint-squared" smoothing operator P.

Where does TPS kernel come from

Fit an unknown function f to the data y_{k}, regularized by minimizing a smoothness term.

$$
\begin{gathered}
E[f]=\sum\left(f_{k}-y_{k}\right)^{2}+\lambda \int\|P f\|^{2} \\
\text { e.g. } \quad\|P f\|^{2}=\int\left(\frac{d^{2} f}{d x^{2}}\right)^{2} d x
\end{gathered}
$$

A similar discrete version.

$$
E[f]=(f-y)^{\prime} S^{\prime} S(f-y)+\lambda f^{\prime} P^{\prime} P f
$$

Where does TPS kernel come from

(continued) A similar discrete version.

$$
E[f]=(f-y)^{\prime} S^{\prime} S(f-y)+\lambda f^{\prime} P^{\prime} P f
$$

- To simplify things, here the data points to interpolate are required to be at discrete sample locations in the vector y, so the length of this vector defines a "sample rate" (reasonable).
- S is a "selection matrix" with 1 s and 0 s on the diagonal (zeros elsewhere). It has 1s corresponding to the locations of data in y . y can be zero (or any other value) where there is no data.
- P is a diagonal-constant matrix that encodes the discrete form of the regularization operator. E.g. to minimize the integrated curvature, rows of P will contain:

$$
\left[\begin{array}{c}
-2,1,0,0, \ldots \\
1,-2,1,0, \ldots \\
0,1,-2,1, \ldots
\end{array}\right]
$$

Where does TPS kernel come from

Take the derivative of E with respect to the vector f,

$$
\begin{gathered}
2 S(f-y)+\lambda 2 P^{\prime} P f=0 \\
P^{\prime} P f=-\frac{1}{\lambda} S(f-y)
\end{gathered}
$$

Multiply by G, being the inverse of $P^{\prime} P$:

$$
f=G P^{\prime} P f=-\frac{1}{\lambda} G S(f-y)
$$

So the RBF kernel "comes from" $G=\left(P^{\prime} P\right)^{-1}$.

Where does TPS kernel come from: I

(Discrete version) RBF kernel is $G=\left(P^{\prime} P\right)^{-1}$.
Take SVD

$$
P=U D V^{\prime} \Rightarrow P^{\prime} P=V D^{2} V^{\prime}
$$

The inverse of $V D^{2} V^{\prime}$ is $V D^{-2} V^{\prime}$.

- eigenvectors of a circulant matrix are sinusoids,
- and P is diagonal-constant (toeplitz?), or nearly circulant.
- So $V D^{-2} V^{\prime}$ is approximately the same as taking the Fourier transform and then the reciprocal (remembering that D are the singular values of P not $P^{\prime} P$)

Matrix regularization

Find w to minimize $(R w-b)^{T}(R w-b)$. If the training points are very close together, the corresponding columns of R are nearly parallel. Difficult to control if points are chosen by a user.
Add a term to keep the weights small: $w^{T} w$.

$$
\begin{array}{ll}
\text { minimize } & (R w-b)^{T}(R w-b)+\lambda w^{T} w \\
& R^{T}(R w-b)+2 \lambda w=0 \\
& R^{T} R w+2 \lambda w=R^{T} b \\
& \left(R^{T} R+2 \lambda I\right) w=R^{T} b \\
& w=\left(R^{T} R+2 \lambda I\right)^{-1} R^{T} b .
\end{array}
$$

Applications: Pose Space Deformatio

Lewis/Cordner/Fong, SIGGRAPH 2000 incorporated in Softimage

Applications: Pose Space Deformatio

Pose Space Deformation

Applications: Matrix virtual city

Smart Point Placement for Thin Plate

Smart Point Placement for Thin Plat

Smart Point Placement for Thin Plat

Smart Point Placement for Thin Plat

