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Abstract
Many visualization techniques involve mapping high-dimensional data spaces to lower-dimensional views. Unfor-
tunately, mapping a high-dimensional data space into a scatterplot involves a loss of information; or, even worse,
it can give a misleading picture of valuable structure in higher dimensions. In this paper, we propose class con-
sistency as a measure of the quality of the mapping. Class consistency enforces the constraint that classes of n–D
data are shown clearly in 2–D scatterplots. We propose two quantitative measures of class consistency, one based
on the distance to the class’s center of gravity, and another based on the entropies of the spatial distributions of
classes. We performed an experiment where users choose good views, and show that class consistency has good
precision and recall. We also evaluate both consistency measures over a range of data sets and show that these
measures are efficient and robust.

Categories and Subject Descriptors (according to ACM CCS): Data Mining [I.5.3]: Clustering—User Interfaces
[H.5.2]: Evaluation/methodology—

1. Introduction

Today’s scientific and business applications produce large
datasets with increasing complexity and dimensionality. Vi-
sual data exploration techniques have proven to be of high
value in gaining insight into these large data sets. The aim
of visual data exploration is to tightly couple data analysis
techniques and interactive visualization methods, and thus
combine two powerful information processing systems: the
human mind and the modern computer [KSA04].

A major challenge is how to present high dimensional data
to the analyst. Many visualization methods involve mapping
high dimensional data to lower-dimensional views. Because
graphical displays are composed of two spatial coordinates
and a limited number of visual variables such as color, tex-
ture, etc., the maximum number of dimensions that can be
shown in any one view is roughly 3-8 [Ber84]. And since
the dimensionality of the data is often quite high – often tens
to hundreds of dimensions – the mapping from data space
to display space involves a loss of information. The problem
is not just partial information however: projected views can
also present misleading information, since structures that are
separated in higher dimensions are often conflated in the 2–
D projection. This leads to a major challenge in visualiza-

tion: How to map from high dimensions to low dimensions
in a way that faithfully represents the data? Given a huge
collection of possible views, which view represents the data
best?

In this paper we propose class consistency as a com-
putable measure of the utility of a given view. The basic
idea of class consistency is shown in Figure 1. In this fig-
ure the original high-dimensional data is represented as a set
of two-dimensional points, with red and green representing
two classes of data. The low-dimensional views of the data
are represented as the marginal 1–D histogram projections
along the axes of the scatterplot. In this example, we con-
sider the horizontal projection to be consistent. That is, the
red and green points are projected to regions of the display
space that are separable. In contrast, the vertical projection is
inconsistent: red and green points are mixed together in this
projection. We claim that the horizontal projection is better
because view and data are consistent.

In this paper, we assume that each point in high dimen-
sional space has been labeled as belonging to some group.
Class labels can be automatically assigned using a cluster-
ing algorithm. Since 2–D orthogonal projections allow an
intuitive interpretation of the data, orthogonal projections
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forming 2–D scatterplots are often used as a starting point
in exploratory data analysis. In this study, we consider or-
thogonal projections forming 2–D scatterplots. The set of all
possible views is the n(n−1)/2 unique scatterplots in a ma-
trix of scatterplots, or SPLOM [Har75]. Since the number
of 2–D scatterplots of real world data is much higher than
a human analyst can look at, we want the computer to sort-
out consistent views which corresponds to choosing the best
scatterplots from the matrix of scatterplots. Selecting con-
sistent views for other types of patterns and views is left as
future work.

The contributions of this paper are:

• We propose class consistency as criteria for choosing
good views to a class structure in n–D. Class consistency
characterizes the extent to which the class neighborhood
structure in n–D is preserved in a 2–D scatterplot, and thus
avoids to label poor views as good views.

• Since human attention is limited to inspect a small num-
ber of scatterplots, class consistency used as measure of
goodness facilitates an interactive exploration of a class
structure; otherwise a human analyst will be drown in the
vast set of 2–D scatterplots.

• We introduce and evaluate two methods for calculat-
ing class consistency, a distance based and a distribution
based technique. Distribution based class consistency is
more general, but more expensive to compute.

• We evaluate class consistency over a range of data sets
with different dimensionality. We show that the class con-
sistency measures perform well in practice. First user ex-
periments show that people rank consistent views better
than inconsistent views.

2. Related Work

Several different approaches have been proposed for select-
ing good views of high dimensional projections and embed-
dings. The first major development in this area was projec-
tion pursuit. The idea of projection pursuit is to search for a
good view to high dimensional data [Fri87].

Several criteria have been used to define good views.
Tukey and collaborators used clumpiness as a measure of
goodness [FT74]. Clumpiness describes the degree to which
data points are concentrated locally while at the same time
expanded globally in a 2–D embedding. Clumpiness works
well when data points are clustered around cluster centers.
Given the more general situation in which data points clus-
ter around lines, curves, curved manifolds, etc., clumpiness
tends to prefer 2–D embeddings in which large amounts of
classes are mixed. The reason can be seen in the fact that
mixing classes create regions with arbitrary high local den-
sities. In contrast to clumpiness, class consistency used as
measure of goodness assigns high numerical scores to 2–D
views in which classes are separated, and low scores in any
other situation. A natural question is to use class consistency
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Figure 1: Mapping a high-dimensional data space into a
low-dimensional space leads in the worst case to a mislead-
ing picture of the clusters hidden in the data – the 1–D axis
parallel projection of the 2–D cluster model (red and green
points) along the x and y axes results in two different views of
the data. Although there are two clusters visible in both pro-
jections (two peaks in the histograms), only the projection
along the x-dimension is consistent with the clusters. The
projection in y-direction merges the two clusters and hence
is not consistent.

as a measure of goodness in projection pursuit to find gen-
eral projections that are consistent with a class structure in
higher dimension, which is left for future work.

The grand tour [Asi85] shows an overview of a
high-dimensional data space by presenting a sequence
of low-dimensional projections. The widely used
XGOBI [CBCH95] system combines the grand tour
and projection pursuit with a single interactive interface.
Although the combination of these two methods is powerful,
it is still time consuming to manually explore the space
of all 2–D projections in a reasonable amount of time.
More fundamentally, there is still disagreement about the
measures of goodness used in projection pursuit algorithms.
And even if a good measure of goodness is discovered, its
value depends on the feasibility to optimizing it.

Scagnostics was proposed by Tukey and Tukey [TT85] as
an alternative to projection pursuit. A system using graph-
theoretical scagnostic measures was recently described by
Wilkinson et al. [WAG06]. In their paper, they compute
scagnostics for each scatterplot in a matrix of scatterplots.
These graph-theoretic measures are meant to characterize
different types of patterns. These measures are then used
to create a second matrix of scatterplots. Each scatterplot
of the data is represented as a dot in the scatterplots of the
scagnostics. The scagnostics approach effectively supports

c© 2009 The Author(s)
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(a) DSC=90 (b) DSC=49

Figure 2: Consistent (=Good) vs. Non-Consistent (=Poor)
View – The data set contains three clusters representing
three classes of wine, and 13 attributes describing chemical
properties of the wine. The left figure shows the scatterplot
for dimensions alcohol and flavanoids. The classes are sep-
arated in this view and most data points are located close
to class centers, resulting in a consistent view. In the right
figure in contrast, in the scatterplot of dimensions ash and
magnesium classes are cluttered and not separated, result-
ing in a poor consistency rating.

visual data analysis by organizing the different views in the
space of patterns. Our approach for detecting class consis-
tency is complementary to scagnostics, and could be used as
one of the measures.

The rank-by-feature framework [SS05] helps users to
explore 1–D and 2–D orthogonal projections of a high-
dimensional data space. It allows the data analyst to exam-
ine the 2–D orthogonal projections by ranking these projec-
tions according to a criterion chosen by the data analyst. The
framework effectively supports the user in exploring valu-
able correlations between selected dimensions and in finding
outliers. Again, our notion of class consistency could easily
be added to the rank-by-feature framework.

Cluster-preserving projections seek to generate a single
best view of the data by transforming the data into a space
that maximizes class separability. Koren and Carmel [KC04]
propose an interesting measure of goodness. They weight the
distances between points differently depending on whether
they have the same label. Given this objective function, they
find a linear transformation of the high-dimensional data
maximizing inter-cluster and minimizing intra-cluster dis-
tances. Their method has a significant advantage in com-
parison with traditional PCA or MDS, because they cap-
ture the cluster structure of the data and additionally the
intra-cluster shapes. A similar measure of goodness is pro-
posed in [DMS98]. The authors maximize the distance be-
tween the projected means to get a good cluster separation.
Given this objective function, they find a 2–D plane paral-
lel to the plane containing the cluster centers. The distances
between the cluster centers are persevered under this projec-
tion. One problem with general projections and embeddings

is that users may have trouble interpreting the display axes
(which may be arbitrary linear or nonlinear combinations of
the original variables), or the reconstructed 2–D plane (e.g.
MDS). In contrast to cluster-preserving projections which
seek to generate a single best view, our method scores a set
of existing views. Thus, our method can in principle be used
as criterion to measure the utility of the transformation for
any method that generates a space of possible views.

3. Class Consistency

While many potential criteria that could define a good view
are possible, we claim that a good view to a class structure
should be at least consistent with that class structure (see
Figure 2 for an illustration).

First, we define the data space and the set of views. Let
X ⊆ Rn be a high-dimensional data space consisting of
points xk = (x1

k , · · · ,xn
k). Let πi denote the 1–D orthogonal

projection Rn → R of that data space, that is, πi(x) = xi.
Similarly, πi×π j is the 2–D orthogonal projection Rn →R2

defined by πi×π j(x) = (xi,x j).

Definition 1 (2–D View) A view v is a 2–D orthogonal em-
bedding of X to the (i, j) coordinates with v = πi×π j(X).

Second, we define the clustering algorithm and the result-
ing class structure in n–D. Clustering is the process of find-
ing a partitioning of the data into homogeneous groups.

Definition 2 (Class Structure in n–D) Let X be a n–D data
space X ⊆ Rn. Let τ be an external source that labels data
points as belonging to some classes. Then C = τ(X) ={

c1, · · · ,cm
}

is the set of m classes called the class struc-
ture of X . Each class consists of the subset of the data space
assigned to that class, and each data point is assigned to a
class, thus

C = τ(X) =
{

c1, · · · ,cm
}

and
⋂

i
ci = ∅ and

⋃

i
ci = X

and clabel : X −→ N with clabel(x) is the associated class
label of each data point x ∈ X .

Note that in general C(X) can be generated by any algo-
rithm that classifies data, or by a-priori semantic information
that divides the data points into categories. In our scenario a
clustering algorithm or a supervised classification method is
an external data preprocessing step that assigns labels to data
points. By belonging to some class we mean to include both
the simple situation of data points clustering around a cluster
center, and the more general situation in which data points
cluster around curved manifolds.

3.1. Basic Concept

We call a view v consistent with C(X) when the m classes of
C(X) are mapped to regions in v(X) that are visually separa-
ble. Note that in contrast to a (non)-linear cluster-preserving

c© 2009 The Author(s)
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transformation that seek to minimize or maximize various
class separability criteria, class consistency is a computable
measure that scores the utility of 2–D orthogonal projections
to visually preserve a given class structure which can be used
to choose the best views in a large matrix of scatterplots.

Definition 3 (Consistent View v(X)) Let X be a n–D data
space X ⊆ Rn. Let C = τ(X) =

{
c1, · · · ,cm

}
be the class

structure of X with m classes.
We call a view v(C) consistent with C iff

∀x′ ∈ v(X)∀p′ ∈ nbh(x′) : clabel(p′) = clabel(x′) (1)

with x′ is the 2–D projection of a data point x, nbh(x′) =
{p′ ∈ v(X)|d(x′, p′) < ε}, and d denotes a metric defined in
X .

The level of consistency of a view depends on the defini-
tion of the threshold ε in the neighborhood function nbh(p′)
which depends on the application scenario and task at hand.
In the following section we propose methods to calculate the
class consistency of a given view v(X).

4. Class Consistency Algorithms

In this section we propose two methods for calculating class
consistency, the centroid distance metric and distribution
consistency. The distance metric can be used as a very ef-
ficient method to compute the class consistency of a view
v(X) if the class structure C(X) describes convex classes.
Distribution consistency is more general, but more expensive
to compute. Since class consistency characterizes the extent
to which the classes are preserved in a 2–D view, class con-
sistency utilizes similar criteria used in traditional clustering
algorithm to compute consistency scores. Note that in con-
trast to clustering algorithms, class consistency is meant to
measure the utility of a given 2–D view to faithfully convey
a given class structure to the user. A natural question is to
utilize alternative clustering measures such as graph cuts in
class consistency, which is left for future work.

4.1. Distance Consistency

Partitioning clustering algorithms such as k-means are
widely used in data analysis. These methods create in gen-
eral convex cluster models, because they aim to partition the
data space into k clusters in a way that the quadratic distance
of all cluster members to the centroid (the scatter around the
centroid) is minimized. More precisely, we can observe that
the distance between a cluster member and its centroid is
minimal in comparison to all other centroids. We call that
the centroid distance CD.

Definition 4 (Centroid Distance CD) Given a data space X ⊆
Rn and a class structure C(X) defining m classes. Let ci be
a class and centr(ci) its centroid, and let x be x ∈ X with
clabel(x) = i. CD describes the property of class members
that the distance d(x,centr(ci)) to its class centroid should

be always minimal in comparison to the distance to all other
centroids, thus

d(x,centr(ci)) < d(x,centr(c j)) ∀ j : 1≤ j ≤ m; j �= i (2)

and d denotes a metric defined in X . CD(x,centr(ci)) = true
denotes that the centroid property for x and its centroid
centr(ci) is fulfilled.

The centroid distance CD is a good measure for the com-
pactness and separation of classes in high-dimensional data
spaces, and a low dimensional embedding capturing this ba-
sic property should also show separated classes. Note, if the
embedding of two class centers in v(X) just differs by a small
ε, then the centroid distance property is always violated. We
can use the centroid distance as an efficient measure for cal-
culating consistency for given 2–D orthogonal projections.
The idea of our consistency algorithm is to measure how
well CD is preserved in a 2–D orthogonal projection. We
evaluate a view by computing the percentage of data points
for which CD is violated. Distance consistency will there-
fore be defined as the classification error of class members
using CD.

Definition 5 (Distance Consistency DSC) Let X ⊆ Rn be a
n–D data set with k data points. Let C(X) be a class structure
of X defining m classes C(X) = {c1, · · · ,cm}. Let ci be a
class and centr(ci) its centroid in C(X). Let clabel(x) be
the class label of a point x ∈ X . Let v(X) be a 2–D view
of X , then distance consistency DSC(v(C)) is defined as the
classification error

DSC =

∣∣x′ ∈ v(X) : CD(x′,centr′(cclabel(x))) �= true
∣∣

k
(3)

with x′ is the 2–D projection of the data point x and
centr′(ci) is the 2–D projection of the centroid of class ci.

We normalize the classification error to improve inter-
pretability (score between 0 and 100). In practice, the num-
ber of clusters generated by a clustering algorithm is rather
small relative to the number of data points. We only compute
the distances of each point to this small set of cluster centers,
and additionally we terminate the computation if we find a
center that violates the centroid distance CD. Because of this
property the computation time is roughly O(k).

To demonstrate the usefulness of our measure we chose
the pre-classified UCI [NHBM98] wine data set which has
3 distinct clusters defined by 3 different kinds of wine and
13 attributes describing their chemical properties. Figure 2
shows a well and poorly rated view of the wine data (the
class structure is visualized using 3 different colors). In the
well rated view (Figure 2 (a)) all 3 distinct clusters are sep-
arated. In contrast to the well-rated view in Figure 2 (a), the
poorly rated view (Figure 2 (b)) completely merges the green
class with the red and blue classes. In Figure 2 (b) it is not
clear that there are 3 classes in n–D.
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(a) (b) (c) (d)

Figure 3: Basic Idea of Distribution Consistency – Top
row: hypothetical spatial distributions of projected data,
with two classes represented as red and green. Bottom row:
hypothetical histograms showing the proportion of data of
each class in a small region such as a pixel. (a) The classes
are clearly separated. (b) Classes are overlapping, and the
histogram has higher entropy as a result. (c) Classes are
overlapping in the indicated region, but the amount of data is
small. The contribution of this region is weakly weighted. (d)
Classes are spatially interleaved on a fine scale. Although
each individual pixel contains only one class of data, the
distribution has low distribution consistency when class pro-
portions are estimated over a small window.

4.2. Distribution Consistency

In this section we propose an extension of our distance con-
sistency approach to accommodate more general spatial dis-
tributions that cannot be characterized as compact classes.

First consider a small region such as a single pixel (the
size of the region will be reconsidered below). If the region
contains data from only one class, consistency is completely
satisfied. If the region contains an equal mixture of data from
all classes, the region is least satisfactory according to this
criterion.

Definition 6 (Entropy as a Measure of Randomness)
Let C(X) = {c1, · · · ,cm} be a class structure of a high-
dimensional data space X ⊆Rn describing m classes. Calling
pc ≡ pc(x,y) as the number of data points of class c ∈C(X)
in the region centered at screen location x,y, the entropy of
the class data probability density within the region

H(x,y) =− ∑
c∈C(X)

pc

∑ pc
log2(

pc

∑ pc
) (4)

is a measure of consistency violation, having minimum value
zero if the region contains data from only one class (Figure
3 (a)), and maximum value log2 m if all m classes are mixed
equally (Figure 3 (b)).

This measure could be integrated over the whole image.
However, doing so would weight regions equally, regardless
of the amount of data they contain. Arguably, it is more im-
portant to be consistent in regions that contain more data.

Thus, we weight the measure according to the amount of
data in the region, p(x,y)≡ ∑c∈C(x) pc (see Figure 3 (c)).

Definition 7 (Distribution Consistency DC) Let C(X) =
{c1, · · · ,cm} be a class structure of a high-dimensional data
space X ⊆Rn describing m clusters. Let v(X) be a 2–D view
of X then distribution consistency DC(v(X)) is a integrated
and weighted measure with

DC = 100− 1
Z ∑

x,y
p(x,y)H(x,y) (5)

The 1/Z is a normalizing constant chosen to improve in-
terpretability. We choose 100/(log2(m)∑x,y ∑ pc) to give a
score between 0 and 100.

The performance of this measure on some difficult two-
class synthetic distributions is shown in Figure 4. Note in
particular Figure 4 (b), showing non-convex distributions
that could not be handled with our earlier algorithm, and
(d), showing a concentric (equal center, differing variance)
distribution with partial but not complete overlap.

The region over which pc is defined should be reconsid-
ered now. If this region is a pixel, as suggested above, the
measure will attempt to select views where individual pixels
are consistent, but will allow pixels representing different
classes to be intermixed arbitrarily. It is usually preferable
however to have pixels of a single class grouped together,
at least to the extent possible without violating other con-
siderations. This will discourage “interleaved” data patterns
such as in Figure 3 (d) (although such projections may be
rare, note that grid-like data patterns do commonly arise in
visualizations of network intrusion scans as different hosts
and ports are accessed in sequence). The measure is altered
to consider this by defining pc(x,y) to be the “amount” of
data in a larger region σ centered at x,y, more specifically,
the integral of the projected data under a weighting kernel
of width σ. The choice of kernel width is an issue. In our
case however, the kernel width has a direct interpretation as
the size of a region over which classes should (preferably)
not be mixed. The desired kernel width can thus be specified
interactively with a slider.

Distribution consistency is relatively insensitive to the
choice of σ except in the case of interleaved patterns such
as Figure 3 (d). To demonstrate this, an interleaved pattern
similar to Figure 3 (d) was added to the set in Figure 4. The
following table shows the distribution consistency rankings
for the patterns from Figure 4, with the relative ranking of
the new pattern indicated numerically (from left to right):

σ = .5% 100 (a) (b) (c) (d) (e)
σ = 5% (a) (b) (c) (d) 24 (e)

It can be seen that with σ set to 5% of the image width, the
interleaved pattern is rated as having low consistency (24),
but the ranking of the other patterns is unchanged.
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(a) 99 (b) 74 (c) 51 (d) 29 (e) 15

Figure 4: Rating of several synthetic patterns by distribution consistency – the distribution consistency score is indicated
below each figure. From left to right: (a) separate distributions, (b) separate non-convex distributions, (c) distributions partially
overlap, (d) concentric distributions (same center, different variance), (e) identical distributions.

5. Selecting Good Views in Large SPLOM

The challenge in exploratory data analysis is to find the
highly revealing views of a high-dimensional data space. We
demonstrate the benefit of class consistency for the interac-
tive exploration of classes in large matrices of scatterplots.
For this purpose, we integrated our class consistency mea-
sures into an exploration system called Class Explorer.

To demonstrate the usefulness of our class consis-
tency measures we chose two pre-classified data sets. The
UCI [NHBM98] wine data set which has 3 distinct clus-
ters defined by 3 different kinds of wine and 13 attributes
describing their chemical properties. The WHO HIV data
set [Wor08] consists of 159 attributes describing socio-
economic properties of 194 member countries such as birth
attended by skilled health personal, life expectancy, access
to safe water sources etc. The member countries are classi-
fied into 6 HIV risk groups.

Figure 5 shows typical exploration scenarios. In Figure 5
(a) it is difficult to manually detect good views to the wine
data in reasonable time; even for moderate numbers of at-
tributes. Our system computes the class consistency for each
scatterplot, and the user can define class consistency thresh-
olds via interactive sliders to fade out ’poor’ views. After
the consistency threshold is set to 80 many irrelevant views
are faded out. It is easy to see that scatterplots which show
all 3 clusters separated are detected as good views. The user
may now analyze the remaining views, by selecting them
for detailed analysis. Additionally, the user can interactively
navigate through a ranking of views according to their class
consistency, to analyze highly ranked scatterplots.

Figure 5 (b) shows a more reasonable scenario. The map-
ping of the 159 dimensions of the WHO data space into
2–D scatterplots results in over 12.000 unique views to the
6 HIV risk groups. An analyst typically inspects views till
interesting patterns are found. Views that are cluttered or
where the clusters mix provide little insight and are often
considered uninteresting. Clearly, a human analyst cannot
afford to look at every scatterplot in that huge SPLOM to
explore mutual relationships of HIV risk groups because of
his/her limited attention. Again, after the consistency thresh-
old is set to 80, nearly 97% of the scatterplots are faded

out. Figure 5 (b) shows a small part of the SPLOM of the
159-dimensional WHO data set. Scatterplots with low con-
sistency scores are faded-out, and even the distribution of
highlighted views across the SPLOM can reveal relations. In
the WHO’s SPLOM, many rows exclusively contain views
with high consistency scores. A closer look at the dimension
of one of these rows surprisingly shows that total expendi-
ture on health as percentage of gross domestic product sep-
arates high-risk and low-risk cluster well. Besides this filter-
ing step our method allows to rank views from high to low
consistency values as shown in Figure 5 (b).

6. Evaluation

6.1. Consistency on Different Data Sets

To evaluate our technique, we applied the consistency mea-
sures to a number of different data sets, including Iris,
Wine, and Boston Housing data sets from the UCI reposi-
tory [NHBM98], synthetic data sets, and unclassified data
sets as well. For classified data, the consistency measure
ranks how consistently the high dimensional classes are rep-
resented in the 2–D embeddings. For unclassified data we
applied a clustering algorithm to generate a high dimen-
sional class structure, and applied the consistency measure
to analyze the consistency of the 2–D projections.

The max and mean distance consistency for all data sets
are shown in Figure 6. The left figure shows that the num-
ber of consistent views decreases with increasing number of
dimensions but our distance consistency measure still iden-
tifies a number of good views. For the Iris data for example,
which is fairly simple since one of the three cluster can be
linearly separated, our approach rated the views on average
with DSC = 90.

For the Boston Housing data set we experimented with
different numbers of classes. For this data set, the mean con-
sistency decreases with increasing number of classes due to
the decreasing separation between classes as shown in Fig-
ure 6. However, our measure still identifies good views with
consistency with more than DSC = 70 as shown in the right
figure. In general, these experiments show that our consis-
tency measure is able to identify views that reveal the class
structure in n–D.
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(a1)

(a2)

(a) Wine (13 Dimensions)

(b) WHO (159 Dimensions)

Figure 5: Interactive Selection of good scatterplots – in-
teractive threshold sliders to fade out poor views supports to
find good views interactively (a) . In this example, views be-
low DSC = 80 are faded out. The projection of dimensions
(1,11) for example has a high consistency of DSC = 86,
as shown in (a2). (b) In the WHO example, views below
DC = 80 are faded out. Many irrelevant views are faded-
out and the number of views to look at can be interactively
reduced to a manageable size.

6.2. Comparison with human judgement

We performed a small experiment to show the performance
of our automated consistency measure in comparison to the
human selection of good views. We asked 10 people from
the graphics laboratory at Stanford to select 5 good views
in different scatterplot matrices. We ran our experiments on
a number of real-world and artificial data sets and the size
of the matrices of scatterplots varied from small (4 and 8
dimensions) to very large (13 and 30 dimensions). We com-
puted recall and precision to demonstrate the performance of
our distance consistency.

Figure 7 shows the result of this experiment. The left fig-
ure shows that the performance of distance consistency is
clearly related to the good views selected by humans. Fur-
thermore, even for a large number of dimensions (hundreds
of views) the automatically detected views are consistent
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Figure 6: Normalized max and mean distance consistency
for Iris (a), Olive (b), Wine (c), Boston Housing (d), Bul-
garia Health [Bul08] (e), Health [NHBM98] (f), Artificial
(g), WHO (h) – it shows that the number of good views de-
creases but our technique identifies a number of good 2–D
views for these data sets (left). For the Boston Housing data,
the consistency decreases with increasing number of clusters
due to the decreasing separation between clusters (right).
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Figure 7: Precision and Recall – even for a large number of
dimensions the automatically detected good views correlates
to over 50% with people’s judgement of good views. Addi-
tionally we see that our distance consistency violates the hu-
man understanding of a good view only in a small number
of views.

with at least half of the sample population’s judgments of
what a good view is.

The right figure shows the effectiveness of our distance
consistency. We can see that distance consistency finds some
good views that are not selected by the user. We inspected
these views and made the following two observations. First,
human viewers have little preference when shown views dif-
fer in consistency by about 5% or less as rated by our mea-
sure, so the choice between fairly similar views is somewhat
arbitrary. The second observation is that human observers
may simply fail to notice every good view in datasets with
more than a handful of plots. We can also see that even for a
large number of dimensions our distance consistency detects
almost all good views selected by the human, and therefore
is in line with human judgement.
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6.3. Comparison of consistency methods

Rather than repeating all these evaluations on the distribu-
tion consistency measure, we chose to simply examine the
correlation between this measure and the distance consis-
tency measure. The correlation between these measures is
reasonably strong and is not sensitive to the kernel width (σ)
parameter in the optimal region. This table shows the corre-
lation as a function of σ for the Wine and Iris data:

σ correlation (wine) correlation (iris)
.03 71 81
.04 71 84
.05 70 86

In summary, our experiments show that our consistency
measures are in line with human selection of good views.

7. Summary and Conclusion

In this paper we introduced class consistency as a crite-
rion for automatically ranking and selecting good views to a
class model from among the numerous possible projections
of a high-dimensional data set. Class consistency character-
izes the extent to which the class neighborhood structure in
the high-dimensional data is preserved in a low-dimensional
view. This method can be applied to data with preexisting
categorical labels, or to data that has been organized into
classes with a clustering algorithm.

Two computable measures of consistency were presented.
The first, distance consistency, is easy to implement and is
well suited for data with convex clusters. We found that this
measure is correlated with people’s preferred views of a va-
riety of real world data sets. The second measure, distribu-
tion consistency, is more general and can assess non-convex
and interleaved data distributions. We compared these two
measures on a variety of data sets and found that they were
highly correlated. The use of these consistency measures
can reduce or eliminate the need for the analyst to manually
search among a large number of data projections.

One issue that became apparent during our studies is that
with increasing number of dimensions or clusters it is harder
to find views that are highly consistent. The chances that
clusters mix increases as the dimension and the number of
clusters increase. This is a serious problem in real-world data
analysis, in which case the analyst might consider other vi-
sualization techniques. Thus, class consistency can be used
as a warning sign that suggests other techniques should be
tried.

In this paper, we only considered scatterplot matrices. A
natural question is whether these ideas can be applied to
other types of visualizations. We could consider alternative
projections or embeddings, or completely different visual
metaphors. Consistency is a very powerful idea and could
be generalized in many ways.
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