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ABSTRACT
This paper describes SmartCanvas, an intelligent desk sys-
tem that allows a user to perform freehand drawing on a
desk or similar surface with gestures. Our system requires
one camera and no touch sensors. The key underlying tech-
nique is a vision-based method that distinguishes drawing
gestures and transitional gestures in real time, avoiding the
need for “artificial” gestures to mark the beginning and end
of a drawing stroke. The method achieves an average classifi-
cation accuracy of 92.17%. Pie-shaped menus and a “rotate-
to-and-select” approach eliminate the need for a fixed menu
display, resulting in an “invisible” interface.

Categories and Subject Descriptors
H.5.2 [Information Systems Applications]: User Inter-
faces—Input devices and strategies, Interaction styles; I.5.2
[Pattern Recognition]: Design Methodology—Classifier
design and evaluation, Pattern analysis

General Terms
Algorithms, Human Factors

Keywords
Intelligent user interface, gesture recognition, Support Vec-
tor Machine

1. INTRODUCTION
Many vision-based desk systems [1, 3, 5, 13] allow users to

create and manipulate graphical objects (circle, rectangle,
etc.) with gestures. However, to allow freehand drawing
without touch sensors, a key problem is that a mechanism
is required to discriminate drawing strokes and transitional
strokes, i.e., whether a user is drawing on the desk or is just
relocating the fingertip to the starting position of the next
stroke.
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One simple solution is to mount a camera (as camera 1
in Fig 1) to monitor whether a finger touches the surface or
not. This approach requires two cameras, however, and the
placement of camera 1 is crucial to the system operation.

In another approach, as shown in a demo video of a draw-
ing board system [1], a user’s thumb is extended for switch-
ing from transition mode to draw mode (see Fig 2). With
such a mechanism, a user’s drawing speed is limited due to
the frequent mode switch.

Figure 1: a vision system with two cameras, one
to detect whether a finger touches the surface, the
other to track the finger’s trajectory.

Figure 2: left, transition mode; right, extending the
thumb, draw mode.

A third mechanism requires a user’s fingertip to stay still
for a few seconds both in the beginning and at the end of a
drawing gesture so that the system can recognize the stroke
[3].

The latter two mechanisms require that extra gestures be
inserted into drawing sequence, and the user must change
his or her drawing behaviors to fit the system.

In one experiment, we showed two videos of gesture se-
quences to 5 persons, one delineating the character “Z”, and
the other delineating “=”. Although the fingertip trajecto-
ries of the two sequences are almost the same (see Fig 3),
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all 5 persons were able to correctly correlate sequences to
characters.

An analysis of the two sequences shows that differences
are visible in temporal dimensions. As in Fig 3 lower left,
the velocity patterns for three drawing strokes are similar
whereas in Fig 3 lower right, a transitional stroke (the mid-
dle one) is different from the two drawing strokes.

The observation leads to a relatively simple and efficient
(real-time) method for classifying transitional gestures and
drawing strokes, based on combining Support Vector Ma-
chines and a Finite State Machine.

Figure 3: upper, spatial fingertip trajectories for
drawing the characters “Z” and “=”; lower, veloci-
ties along time dimension for drawing “Z” and “=”.

This gesture classification method forms the foundation
of a vision-based augmented desk system called SmartCan-
vas, which allows a user to perform freehand drawing using
gestures.

The remainder of the paper is organized as follows: after
reviewing related work, section 3 describes our method to
recognize and classify gestures; section 4 considers menu de-
sign of the SmartCanvas system; section 5 discusses future
research and concludes the paper.

2. RELATED WORK
Several augmented digital desk systems have been pro-

posed that allow users to draw on a desk. As in [5] and [13],
drawing is performed on a physical basis using pen and pa-
per. With a camera tracking the desk, these systems provide
a set of functions that greatly enhance the user’s ability to
interact with the content on paper, thus improving a user’s
efficiency and productivity.

In [3] a gesture-driven desk system is described. It is re-
ported that to draw simple images using two hands, users
achieve better performance than using a traditional mouse
and keyboard based system (Adobe Illustrator). Users are
able to draw in two ways: either using predefined shapes
(circle, rectangle, etc.), or using freehand strokes.

An algorithm using Hidden Markov Models [8] is proposed
for automatic handwriting gesture recognition. A Uni-stroke
alphabet set is used so that no transitional gestures exist
within a character’s stroke sequence. Recognition rates be-
tween 88% and 100% are achieved.

Many gesture tracking and recognition algorithms have
been proposed, from simple 2-D algorithms to sophisticated
3-D view and pose recovery. The gesture tracking algorithm

used in our system is similar to the ones proposed in [4], [6],
and [11].

3. HANDWRITING GESTURE RECOGNI-
TION

In this section, a simple but effective algorithm for 2-D
hand and fingertip tracking is first explained. Then we intro-
duce our method to classify transitional strokes and drawing
strokes using Support Vector and Finite State Machines.

3.1 Tracking Hands and Fingertips
Real time hand recognition and fingertip tracking is achie-

ved by a vision-based method, which is summarized as fol-
lows.

It is assumed that hands are the only naked skin regions
in the view of a camera (we require that users wear long-
sleeve shirts, and the camera is adjusted so that a user’s face
is not in the view).

Hands are segmented from the remainder of a scene us-
ing a method proposed in [7]. In an environment of fre-
quently changing luminance (as in our lab), instead of RGB
color space, the I1I2I3 color space is used [9] and histograms
of skin and non-skin color distribution are built upon I2I3
plane.

Figure 4: function S(θ) is defined as the distance of
the farthest skin pixel from palm center C0 at angle
θ, θ ∈ [0, 2π).

Figure 5: fingertips are located as local maxima of
S(θ).

The center C0 of a hand is defined as the point on the
hand that maximizes its distance to the closest hand region
boundary. C0 is located by applying a morphological erosion
operation.

For each hand pose, a function S(θ) is constructed as the
distance of the farthest skin pixel from C0 at angle θ (see
Fig 4). Fingertips are located as the local maxima of S(θ)
(see Fig 5). To reduce skin region segmentation noise, a
median filter is applied to S(θ) before locating fingertips.
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A Kalman filter is applied to track a 2-D fingertip tra-
jectory. An observation �p and a system state �s are defined
as:

�p = (x, y)T

�s = (x, y, vx, vy)T

where (x, y) is the position of a fingertip, and (vx, vy) is the
velocity.

The system is described as:

�st+1 = F · �st + G · �wt

�pt = H · �st + �vt

where �pt and �st refer to the observation and the system state
at frame t, F is the state transition matrix, G is the driven
matrix, H is the observation matrix, �wt is the system noise,
and �vt is the observation noise. Here the velocity is assumed
constant, which is compensated for by adding system noise
�wt. For detailed formulation of Kalman filter, see [11] and
[12].

3.2 Stroke Classification Using Support Vec-
tor Machine

This subsection explains our method of using a Support
Vector Machine (SVM) to classify strokes into two cate-

gories: transitional strokes (T̂ ) and drawing strokes (D̂).
A stroke is defined as a segment of fingertip motion that

is consistent both spatially and temporally. The end of a
stroke is identified by:

1. a sharp change of orientation in fingertip trajectory;
or

2. the fingertip stays still for a few frames (not a few
seconds).

Support Vector Machine is well known for its performance
on object classification by maximizing margins. The differ-
ence of a T̂ stroke and a D̂ stroke is in temporal dimensions.
Thus, SVM classification is performed on the velocity infor-
mation of strokes. The velocity v =

√
v2

x + v2
y in each frame

is learned as the output of the fingertip tracking algorithm
and Kalman filtering. A stroke (k frames) is associated with
a velocity k-size vector �v.

The state vector of a stroke is defined as:

�s = [n(�v), α(�v), β(�v)]

where n(�v) is a size-n vector, which is obtained by resam-
pling �v along the time dimension and then normalizing it so
that ‖n(�v)‖2 = 1; α(�v) is defined as the average velocity of
the stroke; β(�v) is the smooth-ness of the stroke, which is
computed as in Appendix A.

The input vector for the SVM is W · �s , where W is a
weighting matrix:

W(n+2)×(n+2) = diagonal([wn, ..., wn, wα, wβ]).

The training set for the SVM consists of 231 strokes (101
transitional strokes and 130 drawing strokes). The 231 stro-
kes are segmented and manually labeled from a gesture se-
quence drawing 26 English characters twice (by person A).

The trained SVM was applied on 4 gesture sequences per-
formed by person A (sequences are different from the train-
ing data), and achieved an average rate of correct classifi-
cation 80.87%. The same SVM was applied to 2 gesture
sequences performed by person B, and achieved 74.36%.

The input video size is 640x480 pixels. The processing
(tracking and SVM classification) is done in real time (20
frames per second) on a PC with a Pentium 4 CPU 2.4GHz.

Clearly, the classification with SVM alone is not accurate
enough.

Table 1: Total stroke numbers and mistakenly clas-
sified stroke numbers in each experiment. Classifi-
cation is based on SVM.

A1 A2 A3 A4 B1 B2
Total Stroke 36 35 21 23 35 43
Misclassified 4 6 4 8 7 13

3.3 Improved Classification with Finite State
Machine

The perfect pattern for a stroke sequence would be:

T̂ − D̂ − T̂ − D̂ − T̂ − D̂ − T̂ − D̂ − ...

However, this does not always occur. For example, one
drawing sequence for the character “B” is (see Fig 6):

D̂ − T̂ − D̂ − D̂.

Figure 6: the character “B” consists of 4 strokes, of
which the 1st, 3rd, and 4th are drawing strokes, and
the 2nd is a transitional stroke.

To model stroke sequences, we defined a Finite State Ma-
chine (FSM) of two states (D̂ as draw and T̂ as transition)

(see Fig 7). The probabilities of state transfer from D̂ to T̂

(72.8%) and from T̂ to D̂ (100.0%) are much higher than

from D̂ to D̂ (18.2%) and from T̂ to T̂ (0.0%). The proba-
bilities are approximated by analyzing the training sequence
for the SVM.

Figure 7: a Finite State Machine with two states.
Each state transfer is labeled with a probability.

As seen from Fig 3 lower left and Fig 6, most D̂-D̂ stroke
patterns have the following two properties (“D̂-D̂” condi-
tion):

1. the velocity patterns of the two strokes are similar;
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2. few frames exist between two strokes (the fingertip
stays still for very short a while).

We can improve the classification accuracy by combining
SVM and FSM.

Instead of training one SVM, we train n SVMs using n
different sequences (each containing 115 strokes from draw-

ing 26 English characters). A stroke Ŝ is classified using all

n SVMs. D(Ŝ) is the number of SVMs which classifies Ŝ as

a D̂ stroke; T (Ŝ) is the number of SVMs which classifies Ŝ

as a T̂ stroke. Stroke Ŝ is classified as D̂ with confidence
D(Ŝ)/n if D(Ŝ) > T (Ŝ); Ŝ is classified as a T̂ stroke with

confidence T (Ŝ)/n if T (Ŝ) > D(Ŝ).

The general strategy is: we follow the perfect pattern (a T̂

succeeds a D̂ and a D̂ succeeds a T̂ in turn) unless a stroke
is classified by SVM with high confidence. The detailed
algorithm consists of the following rules:

1. a stroke sequence always starts from a transitional
stroke; this requires a user always relocate his or her
fingertip before draw a stroke at the beginning of a se-
quence; thus, we ensure the first stroke always matches
the perfect pattern.

2. if a stroke is classified with high confidence by SVMs,
then the classification is final;

3. if a stroke is classified with low confidence, and the
state transfer is D̂ to T̂ or T̂ to D̂, then the classifica-
tion is final;

4. if a stroke is classified with low confidence, and the
state transfer is D̂ to D̂: if the stroke and the previous
stroke satisfy the “D̂-D̂” condition, then the stroke is
classified as a D̂, otherwise, the stroke is classified as
a T̂ .

5. if a stroke is classified with low confidence, and the
state transfer is T̂ to T̂ , then the stroke is classified as
a D̂ (we assume no two adjacent T̂ strokes, i.e., a user
always moves to the starting position of next drawing
stroke without “doodling”).

Based on the improved algorithm, we perform the 6 ex-
periments again. The same-person classification accuracy is
92.17%. The cross-person classification accuracy is 76.92%.
A video showing sequence A1 is available at:

http://graphics.usc.edu/ ˜zmo/SC/demo1.avi.

Table 2: Total stroke numbers and mistakenly clas-
sified stroke numbers in each experiment. Classifi-
cation is based on the improved algorithm.

A1 A2 A3 A4 B1 B2
Total Stroke 36 35 21 23 35 43
Misclassified 1 1 4 3 4 14

The classification accuracy on sequence B2 is still low. By
analyzing the data, we realize that there are several T̂ to T̂
strokes in sequence B2. After a D̂ stroke, person B often
moves back to a specific resting position (stroke T̂1) before

moving to the starting position of next D̂ stroke (stroke

T̂2), producing a sequence as “...-D̂-T̂1-T̂2-D̂-...”, which is in
contradiction to the assumption of the algorithm.

3.4 Misclassified Strokes Correction
Of all 27 misclassified strokes in Table 2, 16 are D̂ strokes

misclassified as T̂ strokes.
It is observed that when a D̂ stroke is misclassified (the

stroke is not rendered on the screen as expected), users tend

to repeat the D̂ stroke immediately, trying to correct the
mistake. This pattern is:

Ŝ1 − Ŝ2 − Ŝ3,

where Ŝ1 is the misclassified D̂ stroke, Ŝ2 is the T̂ stroke
that moves back to the staring position of Ŝ1, and Ŝ3 is a
repeat of Ŝ1. Thus, the ending point of Ŝ2 and the starting
point of Ŝ1 should be close, and the trajectories of Ŝ1 and
Ŝ3 should be similar (“Correction” condition).

When three adjacent strokes Ŝ1, Ŝ2, and Ŝ3 satisfying
“Correction” condition are identified, Ŝ1 and Ŝ3 are classi-
fied as drawing strokes, and Ŝ2 is classified as a transitional
stroke.

Unfortunately, with a misclassified T̂ stroke, we have no
effective mechanism to correct the error.

4. SMARTCANVAS: THE SYSTEM
SmartCanvas is a gesture-driven system for a virtual draw-

ing desk. A user’s index fingertip is used to draw on a regular
desk or similar surface. A camera (connected to a PC) is
positioned above the desk to track the finger motion and
hand gestures. The fingertip trajectory is tracked and seg-
mented into strokes, and strokes are classified as drawing
strokes and transitional strokes. Drawing strokes are ren-
dered in real time on the screen (when the end of a D̂ stroke
is identified), and transitional gestures are ignored.

The system also provides menus that allow a user to select
pen color. As reported in [2], pie menus improve over linear
menus in both seek time and error rates (mouse as input
device). And as reported in [3], in a gesture-driven system,
pie menus are also preferable to linear menus. Thus, pie
menus are implemented in SmartCanvas.

Figure 8: menu items are displayed in a pie shape;
the thumb is extended to switch from draw mode to
menu mode; the index finger is rotated to locate a
menu item.

A user switches from draw mode to menu mode by ex-
tending the thumb finger (as in Fig 8). Such mode switch
mechanism is reasonable, because menu selection is not fre-
quent.

Because our system does not project menus onto the desk
(as in [3]), moving fingers to the location of a menu item
for a selection would be inconvenient, because it requires
the user to coordinate the fingertip motion on desk with the
motion of the pointer on screen.

Thus, instead of “move-to-and-select”, we use a “rotate-
to-and-select” mechanism. Menu items are displayed in the
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upper half of a pie shape (0-π), and each menu item (with
total of k submenus) covers an angle range of π/k. A menu
item is selected if the index finger’s orientation is within
the angle range of that menu item for a few seconds. This
“rotate-to-and-select” approach takes advantage of a finger’s
proprioception [10]. A video demonstrating the menu selec-
tion along with a drawing sequence is available at:

http://graphics.usc.edu/ ˜zmo/SC/demo2.avi.
No eraser function is provided. However, “white” is pro-

vided as one of the available pen colors, which is also the
background color. Thus, selecting a “white” pen will pro-
duce the same effect as an eraser, which allows a user to
make corrections.

5. CONCLUSION
Any vision-based drawing system will require an unobtru-

sive means of distinguishing transitional strokes from draw-
ing strokes. In this paper, we show that transitional strokes
can be distinguished from drawing strokes in real time us-
ing a combination of Support Vector Machines and a Finite
State Machine. Experiments show that our method achieves
average classification accuracy of 92.17%.

Our method works best with the drawing behavior as fol-
lows:

1. drawing strokes occur with the fingertip touching desk
(with a certain degree of strength);

2. transitional strokes occur with the fingertip moving
swiftly above the desk;

3. users do not “doodle” (after a drawing stroke, the fin-
ger moves directly to the staring position of next draw-
ing stroke).

We believe this behavior is typical of most people.
The method enables us to build a virtual drawing desk

with a minimum hardware requirement: a regular desk (no
touch sensors) and a camera that connects to a PC. Further,
a user is able to draw on a desk fluently with no need of
inserting extra “artificial” gestures into drawing sequences.

The menus in SmartCanvas are pie-shape, making use of
the reported gain over linear menus. Instead of “move-to-
and-select”, a “rotate-to-and-select” approach is used for
“pie” menu selection.

The major disadvantage of the SmartCanvas system is
that strokes are rendered on a screen whereas drawing is per-
formed on a desk. A user’s eyes switch between the screen
and the desk frequently. Also, fine tuning of drawing is
difficult by using fingertips. Further research is needed to
address these problems.
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APPENDIX

A. STROKE SMOOTHNESS

Input: �v[1..k]
Output: β(�v)
1: count = 0;
2: For i = 2 To k − 1 Do

3: If (�v[i] − �v[i − 1]) · (�v[i + 1] − �v[i]) < 0 Then

4: count + +;

5: End-If

6: End-For

7: Return: count
(k−2)

243


