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Abstract—In this work, we demonstrate a method called
Deep Hand Pose Machine(DHPM) that effectively detects the
anatomical joints in the human hand based on single RGB
images. Current state-of-the-art methods are able to robustly
infer hand poses from RGB-D images. However, the depth map
from an infrared camera does not operate well under direct
sunlight. Performing hand tracking outdoors using depth sensors
results in unreliable depth information and inaccurate poses.
For this reason we were motivated to create this method which
solely utilizes ordinary RGB image without additional depth
information. Our approach adapts the pose machine algorithm,
which has been used in the past to detect human body joints. We
perform pose machine training on synthetic data to accurately
predict the position of the joints in a real hand image.

I. INTRODUCTION

Hand pose plays a crucial role in manipulating objects and
delivering messages via sign language, interactions with a
computer, and mobile devices. Hand pose estimation is the task
of automatically estimating the hand pose in order to support
fluid human-computer interaction. Unfortunately, the motion
blur from an optical system, object occlusion, and partial
visibility can complicate this task. To tackle these problems,
there are a few commercial products that have been developed
such as Leap Motion1 which utilizes IR cameras to capture the
depth information of the hand and to track the skeletal joints
of the user. New approaches to hand tracking are still an active
field for researchers.

When creating a physical simulation, one could treat hand
structure as a kinematic skeletal model. During runtime solv-
ing, the optimization process could involve kinematic con-
straints for more accurate refinements. Additional anatomical
and physical information, such as body fat and inertia, is
usually unnecessary when concentrating solely on solving the
problems associated with hand pose estimation.

Since the success of deep learning, which has helped to
master the challenges presented by ImageNet [1], the number
of researchers utilizing deep learning in their different fields
of expertise has greatly increased. A deep learning model is
compromised of a large number of concatenated layers, which
are parameterized by a large number of weights. However,
collecting the necessary training data often relies on extensive
manual effort.

1https://www.leapmotion.com/

We introduce Deep Hand Pose Machine (DHPM) and
Synthetic Hand training data generation in this paper. The
pose machine trained on synthetic data is based on the
similarities between virtual and real hand models. They both
share information such as anatomical structure and texture.
Additionally, a deep learning model needs a huge amount of
data to make learning tractable. Based on these factors, we
show (in section III) our work on hand modeling and data
generation.

DHPM takes utilizes pose machine [2] [3] to provide a
way to sequentially localize the joints in the human body by
considering both image and spatial context directly. The hand
involves both hierarchical articulated motion as well as the
possibility of occlusion. To address this, we instead use a level-
wise grouping approach for the design of DHPM.

Our main contributions are (a) synthetic hand data gener-
ation, including a method of animating the hand model, and
camera setups, (b) the construction of an effective sequential
learning model that considers the spatial context between
joints; and (c) data augmentation on YCbCr color space that
avoids the color mismatch inherent in a virtual hand model.
We also provide an analysis of both the validation dataset and
segmented real hand images.

II. RELATED WORK

Hand tracking and pose estimation has been the subject of
research for several decades. Since the release of the com-
mercial RGB-D camera Microsoft Kinect and its development
api, attention has substantially shifted from RGB cameras to
RGB-D cameras. For instance, [4] [5], using multiple RGB-D
cameras for hand capturing to avoid self-occlusions. On the
other hand, single depth camera approaches are also popular
under restricted ranges of capturing [6][7][8]. These non-
temporally coherent methods sometimes suffer from unreli-
able depth information that makes the optimization converge
inaccurately.

Synthetic data acquisition from a virtual model is also a
promising solution for simulating hand pose. Most researchers,
for example [9][10][11][12], who have been rendering depth
images for training have utilized a fixed camera and this
makes capturing the entire possible range of a hand motion
problematic. Data generation from an egocentric point of view
[13] provides a way to improve the prediction for portable
devices such as Google Glasses or a Go-Pro camera. Their978-1-5386-4276-4/17/$31.00 ©2017 IEEE



Fig. 1. Our articulated hand model with different marks representing the level
of the hand and the phalanges being; level-1, the distal interphalangeal joints
(DIP); level-2, the proximal interphalangeal joints (PIP); level-3, metacar-
pophalangeal joints (MCP) and level-4: wrist. In this paper, we only address
DIP, MCP, and the wrist.

method also requires more user effort, as they must refine 3d
pose estimation from 2d annotations, since it has only semi-
automatic labeling.

Pose estimation techniques can be categorized into discrimi-
native and generative methods. Generative methods, as seen in
[14] [15] [16], fit a template model onto raw data, such as the
depth information we mentioned previously. The optimization
process is performed at runtime by minimizing the target
function with some kinematic constraints. Simultaneously, the
temporal context is also considered in order to avoid jittering.

In contrast, discriminative methods [17] [8] [18] estimate
the pose through an off-line pre-trained model. Usually solving
performance is more efficient when compared to the iteratively
optimized generative approach. The pre-trained model might
lack a full-range of training data thus making the prediction
made by the discriminative approach unreliable.

III. SYNTHETIC DATA

The motivation behind training with synthetic data is be-
cause of the similarity between virtual data and real data such
as: contours, textures in vision domain, and the same number
of phalanx bones anatomically speaking. Instead of spending
much more time on collecting training data and labeling, we
demonstrate that synthetic images rendered from a 3d object
are able to be used to construct our training dataset.

A. Hand model

Fig. 1 shows our articulated hand model with textures,
marked on each joint to denote the level of the fingers. Level-1
to level-4 the distal interphalangeal joints(DIP), proximal inter-
phalangeal joints(PIP), metacarpophalangeal joints(MCP), and
the wrist are represented. There are in total 20 degrees of free-
doms 2 of movement in our hand model that we animated into

2each DIP and PIP has 1 degree of freedom, MCP has 2 degrees of freedom

Fig. 2. Generation of training data using the commercial software Autodesk
Maya. Given a hand model, we create four trajectories centered on the middle
MCP with a camera attached. Each trajectory will be evenly partitioned into
six positions, resulting in each hand pose. At frame i:

(
xcp

)
i

has 24 training
rendered images.

Fig. 3. An example showing the sequence of animation under category
c ← [1, 1, 1, 1, 1], which represents that all fingers are able to crunch
simultaneously with four different camera views listed in rows. The camera
configurations such as focal length and field of views (FOV) are manually
adjusted, to ensure the whole hand is visible in the image.

a specific category c where c ∈ {00001, 00010, ...., 11111}.
Fig. 3 shows binary coded configuration of the hand’s finger
movements. Each category is a sequence of hand movements
from the neutral pose (with a stretched palm) to the target
pose. For instance c ← 00001 is from neutral to the pose
where the little finger is fully crunched, c ← 11111 means
the sequence from neutral hand to fist. In total, there are 31
categories in our settings.

B. Rendering

In order to capture all possible hand footage x ∈ Rw×h,
we created four trajectories around the hand model with a
camera attached. See Fig. 2 for more detail. Each trajectory is
evenly partitioned into four positions that allows the camera
to render the hand model. Under the same configuration of
lighting and camera parameters, we sampled a training element
by rendering the image, as well as its 2d location joint labels.



Fig. 4. Deep hand pose machine (DHPM) is a deep architecture comprising T stages, where each stage is implemented using a convolutional neuron
network. The beginning stage S1 only utilizes the incoming training images. Similarly, the subsequent stages St where t ∈ {2, ..., T} takes the same images
as well as the feature φ produced from previous stage St−1. φ is the localization feature function that is applied on the result of stage St−1. This architecture
effectively captures long-range spatial information [2]. .

IV. METHOD

A. Deep Hand Pose Machine

Instead of detecting the human hand joints individually, we
perform a level-wise grouping based strategy that makes the
training tractable. We denote the location of p-th landmark
Yp ∈ χ ⊂ R2 where p ∈ [1, ..., P ] and χ is a set of all image
locations. Training belief label b∗ ∈ Rw×h is then applied in
the form of n Gaussian distributions around each joint p ∈ Pl

where Pl ∈ Rn×2 is a set of n 2d joint locations at level l. For
instance, P1 ∈ R5×2 represents a set of finger tip locations.

A pose machine model Ml is a network that is composed
of several stages St where t ∈ {1, ..., T} is the indexes of the
stages. In the following we drop l for notational simplicity.

Each stage has its own predictor gt(·) which is trained to
predict the specific G. One could think of the result from the
predictor as the score of a heat map, denoting the confidence
of the predicted result. Our DHPM pipeline is shown in Fig
4.

The predictor g1 at the first stage S1 is quite different
from the others since there is no previous information coming
through. It takes the raw image x and produces the belief
values.

g1(x)→ b1 (1)

where b1 ∈ Rw×h is the activation from S1. All stages St

where t ∈ {2, ..., T} except the first one will take the spatial
context φt>1 and the processed input data x′:

gt(x
′, φt(z, bt−1))→ bt (2)

where φt>1 is the receptive field that is mentioned in [2],
which can refine the result in the next stage, and x′ is coming
from the image data x with a few convolutional layers on top.

B. Convolutional neural network

In the previous section we showed how the architecture of
DHPM is constructed. The parameters could be learned from

Fig. 5. The output heat map from each stage, overlapped with the original
input source. From left to right shows the results of S1, S2 and S3

respectively. We see that the distribution gradually converges on the locations
of the MCP joints. In this case the blurry heat distribution gradually converges
on MCP joints.

any number of optimization approaches, such as random forest
or convolutional neural network (CNN), involved in pose
machine. Our network architecture is comprised of five blocks
of layers and followed by two 1x1 fully connected convolution
layers [19] . Each block contains a convolutional layer with
various kernel sizes, the non-linear activation function ReLU ,
and a batch-normalization layer. Such a configuration has been
proved to have the ability to learn a deep model effectively.

C. Data augmentation

To prevent creating a huge dataset off-line, we perform
data augmentation during training. Specifically, the image
is randomly rotated, scaled, and translated, by sampling the
parameters r, s, and t from a uniform distribution with:

r ∼ U(0, 360)

s ∼ U(0.8, 1.2)

ti ∼ U(−15, 15)
(3)

where r is the angle of the R rotation matrix, s are the diagonal
elements of the scaling matrix and ti is the translation vector



Fig. 6. The result of YCbCr hand image perturbation in data augmentation.
This approach allows the training to accommodate color mismatch from the
synthetic dataset.

according to the axis i ∈ {1, 2, 3} and forming the vector t.

x∗ = R · S · x+ t

y∗ = R · S · y + t
(4)

Additionally, to eliminate the skin color bias in our training
data, we also perform data augmentation in color space. In
this work we manipulate the luminance and chrominance of a
given image during training. Namely, each training datum x is
formed in RGB color space. We then transform it into YCbCr
color space with scholastic perturbation:

Y ′ = Y + εY

Cb′ = Cb+ εCb

Cr′ = Cr + εCr

(5)

where εY ,εCb, εCr is the perturbation factors which samples
from the Gaussian with unit variance and zero mean.

D. Learning algorithm

The problem of vanishing gradients [2] [20] where the mag-
nitude of the learned gradient will decrease exponentially with
n while training n-layers when back-propagated towards the
front layer. To alleviate such problem, intermediate supervision
is crucial that boosts learned gradients. There are many ways
to solve this problem in the machine learning community, for
instance skipping the connection model such in ResNet [21].

The convolutional pose machine proposed by [2] can be
considered as an intermediate supervision methods that avoids
a vanishing gradient [20]. More specifically, the convolutional
pose machine is repeatedly applied as a loss function at each
stage in order to boost the learning gradient in the deep model.
The loss ft at stage St minimizes the matrix norm of the
objective:

ft = ||bt − b∗||2F (6)

Fig. 7. The training error during 200 epochs with 3 training models on DIP,
MCP, and the wrist respectively. This shows the degree of training difficulty
from MCP, DIP to wrist.

By summing all the objectives we obtain:

F =

T∑
t=1

ft (7)

We used Adam optimizer [22] for training with learning
rate 0.0002, all lasso weight regularization 0.0001, dropout
0.001, batch size 16.

V. EVALUATION

In this section we show results of our experiments in pre-
dicting a validation dataset (Fig. 8) and applying the assorted
hand images from internet (Fig. 9). We apply our algorithms
on the following three levels: Distal Interphalangeal (DIP),
metacarpophalangeal (MCP) and wrist from left column to
right respectively in each subject. Fig. 7 illustrates our training
error in 200 epoches.

Fig. 8 shows experiments on the validation dataset, which
are not available to DHPM during training. The three cat-
egories show how the belief heat-map increases confidence
around the target as the number of stages get higher. Addition-
ally, the invariance to the affine transformation of hand shows
DHPM is generalized to learn structurally. For instance, it can
recognize DIP from those similar features around finger tips.

Fig. 9 shows experiments on real hand images downloaded
from the internet with background removal. Here we are
interested in how DHPM which is trained on synthetic images
generalizes to real images. The first block column shows the
prediction based on DIP footage, with the correct exterior
finger joints instead of the interior information. which is
sensitive to the edge of the hand. The MCP experiment shows
same effect (comparing Fig. 8) and the wrist shows reliable
prediction.

VI. CONCLUSION

We demonstrated a technique for predicting the placement
of the hand joints when the given a single RGB image.



Fig. 8. Prediction of the validation dataset. Each row shows specific hand pose, with the prediction of DIP, MCP, and wrist in each block column. All three
elements in such block represents the heat map bt from St where t ∈ {1, 2, 3} from left to right. The experiment shows how diffuse heat maps bi become
concentrated at subsequent stages bj where i < j. For instance in second block column, the heatmap b1 is scattered widely on whole hand image from MCP
prediction b1; and it gradually converges to MCP joints at stage 3, namely b3.

Fig. 9. Prediction of real hand images from the internet with background removal. The limitation of DHPM is in predicting hidden information, as can be
seen in the third and fourth rows.

The Deep Hand Pose Machine(DHPM) uses receptive field
for spatial context around the joint that improves the result.
Additionally, we showed our level-wise learning for the com-
plicated hand structure that makes the learned model tractable.
In the future we would like to solve the domain adaptation
problems for reducing the gap between training and test data.
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Montiel, and D. Ramanan, 3D Hand Pose Detection in
Egocentric RGB-D Images. Cham: Springer Interna-
tional Publishing, 2015, pp. 356–371.

[14] N. K. Iason Oikonomidis and A. Argyros, “Efficient
model-based 3d tracking of hand articulations using
kinect,” in Proceedings of the British Machine Vision
Conference. BMVA Press, 2011, pp. 101.1–101.11.

[15] S. Melax, L. Keselman, and S. Orsten, “Dynamics based
3d skeletal hand tracking,” 2017.

[16] A. Tagliasacchi, M. Schroeder, A. Tkach, S. Bouaziz,
M. Botsch, and M. Pauly, “Robust articulated-ICP for
real-time hand tracking,” Computer Graphics Forum
(Symposium on Geometry Processing), vol. 34, no. 5,
2015.
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