
NASA
Neural Articulated Shape Approximation

Boyang Deng1, JP Lewis1, Timothy Jeruzalski1, Gerard Pons-Moll2,
Geoffrey Hinton1, Mohammad Norouzi1, and Andrea Tagliasacchi1

1 Google Research
2 MPI for Informatics

Abstract. Efficient representation of articulated objects such as human
bodies is an important problem in computer vision and graphics. To ef-
ficiently simulate deformation, existing approaches represent 3D objects
using polygonal meshes and deform them using skinning techniques. This
paper introduces neural articulated shape approximation (NASA), an al-
ternative framework that enables efficient representation of articulated
deformable objects using neural indicator functions that are conditioned
on pose. Occupancy testing using NASA is straightforward, circumvent-
ing the complexity of meshes and the issue of water-tightness. We demon-
strate the effectiveness of NASA for 3D tracking applications, and discuss
other potential extensions.

Keywords: 3D deep learning, neural object representation, articulated
objects, deformation, skinning, occupancy, neural implicit functions.

1 Introduction

There has been a surge of recent interest in representing 3D geometry using
implicit functions parameterized by neural networks [36,19,38,9]. Such represen-
tations are flexible, continuous, and differentiable. Neural implicit functions are
useful for “inverse graphics” pipelines for scene understanding [48], as back prop-
agation through differentiable representations of 3D geometry is often required.
That said, neural models of articulated objects have received little attention.
Articulated objects are particularly important to represent animals and humans,
which are central in many applications such as computer games and animated
movies, as well as augmented and virtual reality.

Although parametric models of human body such as SMPL [32] have been in-
tegrated into neural network frameworks for self-supervision [26,37,39,47], these
approaches depend heavily on polygonal mesh representations. Mesh representa-
tions require expert supervision to construct, and are not flexible for capturing
topology variations. Furthermore, geometric representations often should fulfill
several purposes simultaneously such as modeling the surface for rendering, or
representing the volume to test intersections with the environment, which are not

ar
X

iv
:1

91
2.

03
20

7v
2

 [
cs

.C
V

]
 1

6
M

ar
 2

02
0

2 Deng et al.

Fig. 1: Teaser – (left) Traditional articulated models map pose parameters θ
to a polygonal mesh M(θ) via linear blend skinning; if one desires to query
the occupancy of this representation, acceleration data structures need to be
computed (e.g. axis align bounding box tree). (right) Conversely, NASA learns
an implicit neural occupancy Oω, which can be queried directly.

trivial when polygonal meshes are used [23]. Although neural models have been
used in the context of articulated deformation [3], they relegate query execution
to classical acceleration data structures, thus sacrificing full differentiability.

Our method represents articulated objects with a neural model, which out-
puts a differentiable occupancy of the articulated body in a specific pose. Like
previous geometric learning efforts [36,11,38,8], we represent geometry by indi-
cator functions – also referred to as occupancy functions – that evaluate to 1
inside the object and 0 otherwise. Unlike previous approaches, which focused
on collections of static objects described by (unknown) shape parameters, we
look at learning indicator functions as we vary pose parameters, which will be
discovered by training on animation sequences. We show that existing meth-
ods [36,38,8] cannot encode pose variation reliably, because it is hard to learn
the occupancy of every point in space as a function of a latent pose vector.

Instead, we introduce NASA, a neural decoder that exploits the structure of
the underlying deformation driving the articulated object. Exploiting the fact
that 3D points in local body part coordinates do not change with pose, we classify
the occupancy of 3D points as seen from the coordinate frame of each part. Our
main architecture combines a collection of per-part learnable indicator functions
with a per-part pose encoder to model localized non-rigid deformations. This
leads to a significant boost in generalization to unseen poses, while retaining
the useful properties of existing methods: differentiability, ease of spatial queries
such as intersection testing, and continuous surface outputs. To demonstrate the
flexibility of NASA, we use it to track point clouds by finding the maximum
likelihood estimate of the pose under NASA’s occupancy model. In contrast to
mesh based trackers which are difficult to implement and require data structures
for the computation of closest point projections, our tracker requires a few lines
of code and is fully differentiable. Overall, our contributions include:

1. We propose a neural model of articulated objects to predict differentiable
occupancy as a function of pose – the core idea is to model shapes by networks
that encode a [quasi] piecewise rigid decomposition;

Neural Articulated Shape Approximation 3

2. The results on learning 3D body deformation outperform previous geometric
learning algorithms [38,8,38], and are on-par with a hand-crafted statistical
body model [32];

3. The differentiable occupancy supports efficient constant time queries, avoid-
ing the need to convert to separate representations, or the dynamic update
of spatial acceleration data structures;

4. We algebraically derive a technique that employs occupancy functions for
tracking 3D geometry via an implicit occupancy template, without the need
to ever compute distance functions.

2 Related work

Neural shape approximation provides a single framework that addresses prob-
lems that have previously been approached separately. The related literature
thus includes a number of works across several different fields.

Skinning algorithms. Efficient articulated deformation is traditionally accom-
plished with a skinning algorithm that deforms vertices of a mesh surface as the
joints of an underlying abstract skeleton change. The classic linear blend skin-
ning (LBS) algorithm expresses the deformed vertex as a weighted sum of that
vertex rigidly transformed by several adjacent bones; see [22] for details. LBS is
widely used in computer games, and is a core ingredient of some popular vision
models [32]. Mesh sequences of general (not necessarily articulated) deforming
objects have also been represented with skinning for the purposes of compression
and manipulation, using a collection of non-hierarchical “bones” (i.e. transforma-
tions) discovered with clustering [24,29]. LBS has well-known disadvantages: the
deformation has a simple algorithmic form that cannot produce pose-dependent
detail, it results in characteristic volume-loss effects such as the “collapsing el-
bow” and “candy wrapper” artifacts [30, Figs. 2,3], and for best results the
weights must bemanually painted by artists. It is possible to add pose-dependent
detail with a shallow or deep net regression [30,3], but this process operates as
a correction to classical LBS deformation.

Object intersection queries. Registration, template matching, 3D tracking,
collision detection, and other tasks require efficient inside/outside tests. A disad-
vantage of polygonal meshes is that they do not efficiently support these queries,
as meshes often contain thousands of individual triangles that must be tested for
each query. This has led to the development of a variety of spatial data structures
to accelerate point-object queries [31,42], including voxel grids, octrees, kdtrees,
and others. In the case of deforming objects, the spatial data structure must
be repeatedly rebuilt as the object deforms. A further problem is that typical
meshes may be constructed (or deformed) without regard to being “watertight”
and thus do not have a clearly defined interior [23].

Part-based representations. For object intersection queries on articulated
objects, it can be more efficient to approximate the overall shape in terms of
a moving collection of rigid parts, such as spheres or ellipsoids, that support

4 Deng et al.

Fig. 2: Notation – (left) The ground truth occupancy O(x|θ̄) in the rest frame
and the pose parameters θ̄≡{B̄b}Bb=1 representing the transformations of B
bones. (right) T frames of an animation associated with pose parameters {θt}Tt=1

with corresponding occupancy {O(x|θt)}Tt=1; each θt encodes the transforma-
tions of B bones. Note we shorthand {∗y} to indicate an ordered set {∗y}Yy=1.

an efficient querying [40]. Unfortunately this has the drawback of introducing a
second approximate representation that does not exactly match the originally de-
sired deformation. A further core challenge, and subject of continuing research,
is the automatic creation of this part-based representation [1,18,20]. Unsuper-
vised part discovery has been recently tacked by a number of deep learning
approaches [11,33,7,12,16]. In general these methods address analysis and corre-
spondence across shape collections, and do not target accurate representations of
articulated deforming objects. Pose-dependent deformation effects are also not
considered in any of these approaches.

Neural implicit object representation. Finally, several recent works repre-
sent objects with neural implicit functions [36,8,38]. These works focus on the
neural representation of static shapes in an aligned canonical frame and do not
target the modeling of transformations. Our work can be considered an extension
of these methods, where the core difference is its ability to efficiently represent
complex and detailed articulated objects (e.g. human bodies). Comparisons to
these closely related works will be revisited in more depth in Section 6.

3 Neural Articulated Shape Approximation

This paper investigates the use of neural networks and implicit functions for
modeling articulated shapes in Rd. Let θ denote a vector representing the pose
of an articulated shape, and let O :Rd→{0, 1} denote an occupancy function
defining the exterior and interior of an articulated body. We are interested in
modeling the joint distribution of pose and occupancy, which can be decomposed
using the chain rule into a conditional occupancy term, and a pose prior term:

p(θ,O) = p(O|θ) p(θ) (1)

This paper focuses on building an expressive model of p(O|θ), that is, oc-
cupancy conditioned on pose. Figure 2 illustrates this problem for d=2, and
clarifies the notation. There is extensive existing research on pose priors p(θ) for
human bodies and other articulated objects [45,4,26]. Our work is orthogonal to
such prior models, and any parametric or non-parametric p(θ) can be combined

Neural Articulated Shape Approximation 5

with our p(O|θ) to obtain the joint distribution p(θ,O). We delay the discussion
of pose priors until Section 5.2, where we define a particularly simple prior that
nevertheless supports sophisticated tracking of moving humans.

In what follows we describe different ways of building a pose conditioned
occupancy function, denoted Oω(x|θ), which maps a 3D point x and a pose
θ onto a real valued occupancy value. Our goal is to learn a parametric oc-
cupancy Oω(x|θ) that mimics a ground truth occupancy O(x|θ) as closely as
possible, based on the following probabilistic interpretation:

p(O|θ) ∝
∏
x∈Rd

exp{−(Oω(x|θ)−O(x|θ))2} , (2)

where we assume a standard normal distribution around the predicted real valued
occupancy Oω(x|θ) to score an occupancy O(x|θ).

We are provided with a collection of T ground-truth occupancies {O(x|θt)}Tt=1

associated with T poses. With a slight abuse of notation, we will henceforth use
x to represent both a vector in Rd, and its Rd+1 homogeneous representation
[x; 1]. In our formulation, each pose parameter θ represents a set of B posed
bones/transformations, i.e., θ≡{Bb}Bb=1. To help disambiguate the part-whole
relationship, we also assume that for each mesh vertex v∈V, the body part
associations w(v) are available, where w(v)∈[0, 1]B with ‖w(v)‖1=1.

Given pose parameters θ, we desire to query the corresponding indicator
function O(x|θ) at a point x. This task is more complicated than might seem,
as in the general setting this operation requires the computation of generalized
winding numbers to resolve ambiguous configurations caused by self-intersections
and non-necessarily watertight geometry [23]. However, when given a database
of poses Θ={θt}Tt=1 and corresponding ground truth indicator {O(x|θt)}Tt=1, we
can formulate our problem as the minimization of the objective:

Loccupancy(ω) =
∑
θ∈Θ

Ex∼p(x)

[
(O(x|θ)−Oω(x|θ))

2
]

(3)

where p(x) is a density representing the sampling distribution of points in
Rd (Section 4.4) and Oω is a neural network with parameters ω that repre-
sents our neural shape approximator. We adopt a sampling distribution p(x)
that randomly samples in the volume surrounding a posed character, along with
additional samples in the vicinity of the deformed surface.

4 Pose conditioned occupancy O(x|θ)

We investigate several neural architectures for the problem of articulated shape
approximation; see Figure 3. We start by introducing an unstructured archi-
tecture (U) in Section 4.1. This baseline variant does not explicitly encode the
knowledge of articulated deformation. However, typical articulated deformation
models [32] express deformed mesh vertices V reusing the information stored
in rest vertices V̄. Hence, we can assume that computing the function O(x|θ)

6 Deng et al.

Fig. 3: The three architectures for p(O|θ). The unstructured model employs a
global MLP conditioned on pose, the rigid model expresses geometry as a com-
position of B rigid elements, while the deformable model via a composition of
B deformable elements; we highlight the differences between models in red.

in the deformed pose can be done by reasoning about the information stored at
rest pose O(x|θ̄). Taking inspiration from this observation, we investigate two
different architecture variants, one that models geometry via a piecewise-rigid
assumption (Section 4.2), and one that relaxes this assumption and employs a
quasi-rigid decomposition, where the shape of each element can deform accord-
ing to the pose (Section 4.3); see Figure 4.

4.1 Unstructured model – “U”

Recently, a series of papers [8,38,36] tackled the problem of modeling occupancy
across shape datasets as Oω(x|β), where β is a latent code learned to encode
the shape. These techniques employ deep and fully connected networks, which
one can adapt to our setting by replacing the shape β with pose parameters θ,
and using a neural network that takes as input [x,θ]. Leaky ReLU activations
are used for inner layers of the neural net and a sigmoid activation is used for
the final output so that the occupancy prediction lies in the [0, 1] range.

To provide pose information to the network, one can simply concatenate the
set of affine bone transformations to the query point to obtain [x, {Bb}] as the
input. This results in an input tensor of size 3+16×B. Instead, we propose to
represent pose as {B−1b t0}, where t0 is the translation vector of the root bone in
homogeneous coordinates, resulting in a smaller input of size 3+3×B; we ablate
this choice against other alternatives in the supplementary material. Our
unstructured baseline takes the form:

Oω(x|θ) = MLPω(x, {B−1b t0}︸ ︷︷ ︸
pose

) (4)

4.2 Piecewise rigid model – “R”

The simplest structured deformation model for articulated objects assumes ob-
jects can be represented via a piecewise rigid composition of elements; e.g. [40,35]:

O(x|θ) = max
b
{Ob(x|θ)} (5)

Neural Articulated Shape Approximation 7

Fig. 4: Our NASA representation models an articulated object as a collection of
deformable components. The shape of each component is controlled by the pose
of the subject, in a way that take inspiration from pose-space correctives [30].

We observe that if these elements are related to corresponding rest-pose ele-
ments through the rigid transformations {Bb}, then it is possible to query the
corresponding rest-pose indicator as:

Oω(x|θ) = max
b
{Ōbω(B−1b x)} (6)

where, similar to (4), we can represent each of components via a learnable in-
dicator Ōbω(.)=MLPbω(.). This formulation assumes that the local shape of each
learned bone component stays constant across the range of poses when viewed
from the corresponding coordinate frame, which is only a crude approximation
of the deformation in realistic characters, and other deformable shapes.

4.3 Piecewise deformable model – “D”

We can generalize our models by combining the model of (4) to the one in (6),
hence allowing the shape of each element to be adjusted according to pose:

Oω(x|θ) = max
b
{Ōbω(B−1b x︸ ︷︷ ︸

query

|θ)} (7)

Similar to (6) we use a collection of learnable indicator functions in rest pose {Obω},
and to encode pose conditionals we take inspiration from (4). More specifically,
we express our model as:

Oω(x|θ) = max
b
{Ōbω(B−1b x, Πb

ω

[
{B−1b t0}

]︸ ︷︷ ︸
part-specific pose

)} (8)

Similarly to (6), we model Ōbω(.) via dense layers MLPbω : R3+D→R. The operator
Πb
ω : RB×3→RD is a learnable linear subspace projection – one per each bone

b. This choice is driven by the intuition that in typical skinned deformation
models only small subset of the coordinate frames affect the deformation of a
part. We employ D=4 throughout, see ablations in the supplementary material.
Our experiments reveal that this bottleneck greatly improves generalization.

4.4 Technical details

The overall training loss for our model is:

L(ω) = Loccupancy(ω) + λLweights(ω) (9)

8 Deng et al.

where λ=5e−1 was found through hyper-parameter tuning. We now detail the
auxiliary loss, the architecture backbones, and the training procedure.

Auxiliary loss – skinning weights. As most deformable models are equipped
with skinning weights, we exploit this additional source of information to facil-
itate learning of the part-based models (i.e. “R” and “D”). We label each mesh
vertex v with the index of the corresponding highest skinning weight value
b∗(v)= arg maxb w(v)[b], and use the loss:

Lweights(ω) = 1
V

1
B

∑
θ∈Θ

∑
v

∑
b

(
Ōbω(v|θ)− Ib(v)

)2
(10)

where Ib(v)=0.5 when b=b∗, and Ib(v)=0 otherwise – recall that by convention
the 0.5 level set is the surface represented by the occupancy function. Without
such a loss, we could end up in the situation where a single (deformable) part
could end up being used to describe the entire deformable model, and the trivial
solution (zero) would be returned for all other parts.

Network architectures. To keep our experiments comparable across baselines,
we use the same network architecture for all the models while varying the width of
the layers. The network backbone is similar to DeepSDF [38], but simplified to 4
layers. Each layer has a residual connection, and uses the Leaky ReLU activation
function with the leaky factor 0.1. All layers have the same number of neurons,
which we set to 960 for the unstructured model and 40 for the structured ones.
For the piecewise (6) and deformable (8) models the neurons are distributed
across B=24 different channels (note B×40 = 960). Similar to the use of grouped
filters/convolutions [28,21], such a structure allows for significant performance
boosts compared to unstructured models (4), as the different branches can be
executed in parallel on separate compute devices.

Training. All models are trained with the Adam optimizer, with batch size 12
and learning rate 0.0001. For better gradient propagation, we use softmax when-
ever a max was employed in our expressions. For each optimization step, we use
1024 points sampled uniformly within the bounding box and 1024 points sampled
near the ground truth surface. We also sample 2048 vertices out of 6890 mesh
vertices at each step for Lweights. The models are trained for 200K iterations for
approximately 6 hours on a single NVIDIA Tesla V100.

5 Dense articulated tracking

Following the probabilistic interpretation of Section 3, we introduce an appli-
cation of NASA to dense articulated 3D tracking ; see [44]. Taking the negative
log of the joint probability in (1), the tracking problems can be expressed as the
minimization of a pair of energies [44]:

arg min
θ(t)

Efit(D
(t),θ(t)) + Eprior(θ

(t)) (11)

Neural Articulated Shape Approximation 9

where D={xn}Nn=1 is a point cloud in Rd, and the superscript (t) indicates the
point cloud and the pose associated with the tth frame. The optimization for θ(t)

is initialized with the minimizer computed at frame (t−1). We also assume θ(0)

is provided as ground truth, but discriminative models could also be employed to
obtain an initialization [43,26]. In what follows, we often drop the (t) superscript
for clarity of notation. We now discuss different aspects of this problem when
an implicit representation of the model is used, including the implementation of
fitting (Section 5.1) and prior (Section 5.2) energies, as well as details about the
iterative optimization scheme (Section 5.3).

5.1 Fitting energy

If we could compute the signed distance function (SDF) Φ of an occupancy O
at a query point x, then the wellness of the fit of O to the data can be measured
as:

Efit(D,θ) =
∑
x∈D

‖Φ(x|O,θ)‖2 (12)

The time complexity of computing SDF from an occupancy O that is discretized
on a grid is linear in the number of voxels [15]. However, the number voxels
grows as O(nd), making naive SDF computation impractical for high resolutions
(large n) or high dimensions (in practice, d≥3 is already problematic). Spatial
acceleration data structures (kdtrees and octrees) are commonly employed, but
these data structures still require an overall O(n log(n)) pre-processing (where
n is the number of polygons), and they need to be re-built at every frame (as
θ changes), and do not support implicit representations of the geometry being
tracked.

Recently, Dou et al. [13] proposed to smooth an occupancy function with a
Gaussian blur kernel to approximate Φ in the near field of the surface. Following
this idea, our fitting energy can be re-expressed as:

Efit(D,θ) =
∑
x∈D

‖N0,σ2 ~O(x|θ)− 0.5‖2 (13)

whereN0,σ2 is a Gaussian kernel with a zero mean and a variance σ2, and ~ is the
convolution operator. This approximation is suitable for tracking, as large values
of distance should be associated with outliers in a registration optimization [5],
and therefore ignored. Further, this approximation can be explained via the
algebraic relationship between heat kernels and distance functions [10]. Note
that we intentionally use O instead of Oω, as what follows is applicable to any
implicit representation, not just our neural occupancy Oω.

Dou et al. [13] used (13) being given a voxelized representation of O, and
relying on GPU implementations to efficiently compute 3D convolutions ~. To

10 Deng et al.

circumvent these issues, we re-express the convolution via stochastic sampling:

O(x|θ) ~N0,σ2 =

∫
O(s|θ)g(x− s|0, σ2) ds (definition of convolution) (14)

=

∫
O(s|θ)g(s− x|0, σ2) ds (symmetry of Gaussian) (15)

=

∫
O(s|θ)g(s|x, σ2) ds (definition of Gaussian) (16)

= Es∼Nx,σ2
[O(s|θ)] (definition of expectation) (17)

Overall, Equation 17 allows us to design a tracking solution that directly op-
erates on occupancy functions, without the need to compute signed distance
functions [45], closest points [44], or 3D convolutions [13]. It further provides a
direct cost/accuracy control in terms of the number of samples used to approxi-
mate the expectation in (17). However, the gradients ∇θ of (17) also need to be
available – we achieve this by applying the re-parameterization trick [27] to (17):

∇θ

[
Es∼Nx,σ2

[O(s|θ)]
]

= Es∼N0,1
[∇θO(x + σs|θ)] (18)

5.2 Pose prior energy

An issue of generative tracking is that once the model is too far from the target
(e.g. fast motion) there will be no proper gradient to correct it. If we directly
optimize for transformation without any constraints, there is a high chance that
the model will degenerate into such a case. To address this, we impose a prior:

Eprior(θ={Bb}) =
∑

(b1,b2)∈E

∥∥(t̄b2 − t̄b1)−B−1b1 tb2
∥∥2
2

(19)

where E is the set of directed edges (b1, b2) on the pre-defined directed rig with
b1 as the parent, and recall tb is the translation vector of matrix Bb. One can
view this loss as aligning the vector pointing to tb2 at run-time with the vector
at rest pose, i.e. (t̄b2 − t̄b1). We emphasize that more sophisticated priors exist,
and could be applied, including employing a hierarchical skeleton or modeling
the density of joint angles. The simple prior used here is chosen to highlight the
effectiveness of our neural occupancy model independent of such priors.

5.3 Iterative optimization

One would be tempted to use the gradients of (13) to track a point cloud via itera-
tive optimization. However, it is known that when optimizing rotations centering
the optimization about the current state is heavily advisable [44]. Indexing time
by (t) and given the update rule θ(t)=θ(t−1)+∆θ(t), the iterative optimization
of (13) can be expressed as:

arg min
∆θ(t)

∑
x∈D(t)

∥∥∥Es∼Nx,σ2

[
Oω(s|θ(t−1) +∆θ(t))

]
− 0.5

∥∥∥2 (20)

Neural Articulated Shape Approximation 11

where in what follows we omit the index (t) for brevity of notation. As the pose θ
is represented by matrices, we represent the transformation differential as:

Oω(x|θ +∆θ) = Oω(x|{(Bb∆Bb)
−1}) = Oω(x|{∆B−1b B−1b }), (21)

resulting in the optimization:

arg min
{∆B−1

b }

∑
x∈D

∥∥∥Es∼Nx,σ2

[
Oω(s|{∆B−1b B−1b })

]
− 0.5

∥∥∥2 (22)

where we parameterize the rotational portion of elements in the collection {∆B−1b }
by two (initially orthogonal) vectors [51], and re-orthogonalize them before inver-
sion within each optimization updateB(i+1)

b =B
(i)
b (∆C

(i)
b)−1, where∆Cb=∆B−1b

are the quantities the solver optimizes for. In other words, we optimize for the
inverse of the coordinate frames in order to avoid back-propagation through
matrix inversion.

6 Results and discussion

We describe the training data (Section 6.1), quantitatively evaluate the perfor-
mance of our neural 3D representation on several datasets (Section 6.2), as well
as demonstrate its usability for tracking applications (Section 6.3). We conclude
by contrasting our technique to recent methods for implicit-learning of geome-
try (Section 6.4). Ablation studies validating each of our technical choices can
be found in the supplementary material.

6.1 Training data

Our training data consists of sampled indicator function values, transformation
frames (“bones”) per pose, and skinning weights. The samples used for train-
ing (3) come from two sources (each comprising a total of 100, 000 samples):
1○ we randomly sample points uniformly within a bounding box scaled to 110%
of its original diagonal dimension; 2○ we perform Poisson disk sampling on the
surface, and randomly displace these points with isotropic normal noise with
σ=.03. The ground truth indicator function at these samples are computed by
casting randomized rays and checking the parity (i.e. counting the number of in-
tersections) – generalized winding numbers [23] or sign-agnostic losses [2] could
also be used for this purpose. The test reconstruction performance is evaluated
by comparing the predicted indicator values against the ground truth samples on
the full set of 100, 000 bounding box samples. We evaluate using mean Intersec-
tion over Union (IoU), Chamfer-L1 [14] and F-score (F%) [46] with a threshold
set to 0.0001. The meshes are obtained from the “DFaust” and “Transitions”
sub-datasets of AMASS [34], as detailed in Section 6.2.

12 Deng et al.

Model mIoU↑ Chamfer L1↓ F%↑

U .702 .00631 46.15
R .932 .00032 93.94
D .959 .00004 98.54

Table 1: AMASS / DFaust

Model mIoU↑ Chamfer L1↓ F%↑

U .520 .01057 26.83
R .936 .00006 96.71
D .965 .00002 99.42

Table 2: AMASS / Transitions

Fig. 5: The qualitative performance of our three models in reconstructing the
occupancy function on the (left) DFaust and (right) Transitions dataset.

6.2 Reconstruction

We employ the “DFaust” portion of the AMASS dataset to verify that our model
can be used effectively across different subjects. This dataset contains 10 sub-
jects, 10 sequences/subject, and ≈300 frames/sequence on average. We train
100 different models by optimizing (9): for each subject we use 9 sequences for
training, leaving one out for testing to compute our metrics. We average these
metrics across the 100 runs, and report these in Table 1. Note how learning a
deformable model via decomposition provides striking advantages, as quantified
by the fact that the rigid (R) baseline is consistently better than the unstruc-
tured (U) baseline under any metric – a +49% in F-score. Similar improvements
can be noticed by comparing the rigid (R) to the deformable (D) model, where
the latter achieves an additional +5% in F-score. Figure 5 (second row) gives a
qualitative visualization of how the unstructured models struggles in generalizing
to poses that are sufficiently different from the ones in the training set.

We employ the “Transitions” portion of the AMASS dataset to further study
the performance of the model when more training data is available for a single
subject. This dataset contains 110 sequences of one individual, with ≈1000+
frames/sequence. We randomly sample ≈250 frames from each sequence, ran-
domly select 80 sequences for training, and keep the remaining 30 sequences for
testing; see our supplementary material. The conclusions are identical to the

Neural Articulated Shape Approximation 13

Fig. 6: A few frames of our neural model tracking the point cloud of the DFaust
“hard” (02-09) sequence; these results can be better appreciated in our video.

p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

U 3 3 .845 .00383 61.63
D 3 3 .968 .00004 99.08

oracle âĂŞ âĂŞ .976 .00004 99.01

Table 3: DFaust “easy” (00-01)

p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

U 3 3 .686 .00700 50.63
D 3 3 .948 .00006 96.48

oracle âĂŞ âĂŞ .959 .00006 96.80

Table 4: DFaust “hard” (02-09)

ones we made from DFaust. Further, note that in this more difficult dataset
containing a larger variety of more complex motions, the unstructured model
struggles even more significantly (U→R: +70% in F-score). As the model is
exposed to more poses compared to DFaust, the reconstruction performance is
also improved. Moving from DFaust to Transitions results in a +1% in F-score
for the deformable (D) model.

6.3 Tracking

We validate our tracking technique on two sequences from the DFaust dataset;
see Figure 6. Note these are test sequences, and were not used to train our model.
The prior p(θ) (Section 5.2) and the stochastic optimization ~ (Section 5.1) can
be applied to both unstructured (U) and structured (D) representations, with
the latter leading to significantly better performance. The quantitative results
reported for the “easy” (Table 3) and “hard” (Table 4) tracking sequences are
best understood by watching our supplementary video. It is important to
note that in this application we are not trying to “beat” traditional baselines,
but rather seek to illustrate how NASA, once trained, can be readily used as a
3D representation for classical vision tasks. For the purpose of this illustration,
we use only noisy panoptic point clouds (i.e. complete [13] rather than incom-
plete [45] data), and do not use any discriminative per-frame re-initializer as
would typically be employed in a contemporary tracking system.

14 Deng et al.

6.4 Discussion

The recent success of neural implicit representations of geometry, introduced
by [8,38,36], has heavily relied on the fact that the geometry in ShapeNet
datasets [6] is canonicalized : scaled to unit ranges and consistently oriented.
Research has highlighted the importance of expressing information in a canon-
ical frame [49], and one could interpret our method as a way to achieve this
within the realm of articulated motion. To understand the shortcomings of un-
structured models, one should remember that as an object moves, much of the
local geometric details remain invariant to articulation (e.g. the geometry of
a wristwatch does not change as you move your arm). However, unstructured
pose conditioned models are forced to memorize these details in any pose they
seek to reconstruct. Hence, as one evaluates unstructured models outside of their
training manifold, their performance collapses – as quantified by the +49% per-
formance change as we move from unstructured to rigid models; see Table 1. One
could also argue that given sufficient capacity, a neural network should be able
to learn the concept of coordinate frames and transformations. However, multi-
plicative relationships between inputs (e.g. dot products) are difficult to learn
for neural networks [25, Sec. 2.3]. As changes of coordinate frames are nothing
but collections of dot products, one could use this reasoning to justify the lim-
ited performance of unstructured models. We conclude by clearly contrasting
our method, targeting the modeling of O(x|θ) to those that address shape com-
pletion O(x|D) [17,50,41,2]. In contrast to these, our solution, to the best of our
knowledge, represents the first attempt to create a “neural implicit rig” – from
a computer graphics perspective – for articulated deformation modeling.

7 Conclusions

We introduce a novel neural representation of a particularly important class of
3D objects: articulated bodies. We use a structured neural occupancy approach,
enabling both direct intersection queries and high quality surface representations
competitive with classic hand-crafted mesh representations. The representation
is fully differentiable, and enables tracking of realistic articulated bodies – tradi-
tionally a complex task – to be almost trivially implemented. Crucially, our work
demonstrates the value of incorporating a task-appropriate inductive bias into
the neural architecture. By acknowledging and encoding the quasi-rigid part
structure of articulated bodies, we represent this class of objects with higher
quality, and significantly better generalization.

Future directions. One natural direction for future work would be to reduce
the amount of supervision needed. To name a few goals in increasing order of
complexity: 1○ Can we learn the posing transformations {B̃b} automatically?
2○ Can the representation be generalized to capture populations of deformable
bodies? (i.e. the β parameters of SMPL [32]). 3○ Are these representations also
effective for differentiable rendering? 4○ Can a 3D representation of articulated
motion be learnt from 2D supervision alone?

Neural Articulated Shape Approximation 15

References

1. Anguelov, D., Koller, D., Pang, H.C., Srinivasan, P., Thrun, S.: Recovering artic-
ulated object models from 3d range data. In: Uncertainty in Artificial Intelligence
(2004) 4

2. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
arXiv preprint arXiv:1911.10414 (2019) 11, 14

3. Bailey, S.W., Otte, D., Dilorenzo, P., O’Brien, J.F.: Fast and deep deformation
approximations. SIGGRAPH (2018) 2, 3

4. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it
smpl: Automatic estimation of 3d human pose and shape from a single image. In:
ECCV (2016) 4

5. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. In: SGP
(2013) 9

6. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv:1512.03012 (2015) 14

7. Chen, Z., Yin, K., Fisher, M., Chaudhuri, S., Zhang, H.: Bae-net: Branched au-
toencoder for shape co-segmentation. In: ICCV (2019) 4

8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. CVPR
(2019) 2, 3, 4, 6, 14, 19

9. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d
shape reconstruction and completion. In: CVPR (2020) 1

10. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: A new approach to
computing distance based on heat flow. ACM TOG (2013) 9

11. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.:
Cvxnet: Learnable convex decomposition. CVPR (2020) 2, 4

12. Deng, B., Kornblith, S., Hinton, G.: Cerberus: A multi-headed derenderer.
arXiv:1905.11940 (2019) 4

13. Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S.R., Kowdle, A., Es-
colano, S.O., Rhemann, C., Kim, D., Taylor, J., et al.: Fusion4d: Real-time perfor-
mance capture of challenging scenes. ACM TOG (2016) 9, 10, 13

14. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: CVPR (2017) 11

15. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions.
Theory of computing (2012) 9

16. Gao, L., Yang, J., Wu, T., Yuan, Y.J., Fu, H., Lai, Y.K., Zhang, H.: Sdm-net: deep
generative network for structured deformable mesh. ACM TOG (2019) 4

17. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Deep structured implicit
functions. CVPR (2019) 14

18. de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated
bodies. In: SGP (2008) 4

19. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Atlasnet: A
papier-m\ˆ ach\’e approach to learning 3d surface generation. arXiv preprint
arXiv:1802.05384 (2018) 1

20. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear program-
ming. ACM TOG (2011) 4

21. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep Roots: Improving
CNN efficiency with hierarchical filter groups. In: CVPR (2017) 8

16 Deng et al.

22. Jacobson, A., Deng, Z., Kavan, L., Lewis, J.: Skinning: Real-time shape deforma-
tion. In: ACM SIGGRAPH Courses (2014) 3

23. Jacobson, A., Kavan, L., Sorkine-Hornung, O.: Robust inside-outside segmentation
using generalized winding numbers. ACM TOG (2013) 2, 3, 5, 11

24. James, D.L., Twigg, C.D.: Skinning mesh animations. SIGGRAPH (2005) 3
25. Joseph-Rivlin, M., Zvirin, A., Kimmel, R.: Momen(e)t: Flavor the moments in

learning to classify shapes. In: CVPR Workshops (2019) 14
26. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human

shape and pose. In: CVPR (2018) 1, 4, 9
27. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2013) 10
28. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-

lutional neural networks. In: NIPS (2012) 8
29. Le, B.H., Deng, Z.: Smooth skinning decomposition with rigid bones. ACM TOG

(2012) 3
30. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to

shape interpolation and skeleton-driven deformation. In: SIGGRAPH (2000) 3, 7
31. Lin, M.C., Manocha, U.D., Cohen, J.: Collision detection: Algorithms and appli-

cations (1996) 3
32. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A

skinned multi-person linear model. SIGGRAPH Asia (2015) 1, 3, 5, 14
33. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disen-

tangling of object shape and appearance. arXiv:1903.06946 (2019) 4
34. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass:

Archive of motion capture as surface shapes. ICCV (2019) 11
35. Melax, S., Keselman, L., Orsten, S.: Dynamics based 3d skeletal hand tracking. In:

Graphics Interface (2013) 6
36. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy

networks: Learning 3d reconstruction in function space. arXiv:1812.03828 (2018)
1, 2, 4, 6, 14, 19

37. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting:
Unifying deep learning and model based human pose and shape estimation. In:
International Conference on 3D Vision (3DV) (sep 2018) 1

38. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learn-
ing continuous signed distance functions for shape representation. CVPR (2019)
1, 2, 3, 4, 6, 8, 14, 19

39. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human
pose and shape from a single color image. In: CVPR (2018) 1

40. Remelli, E., Tkach, A., Tagliasacchi, A., Pauly, M.: Low-dimensionality calibration
through local anisotropic scaling for robust hand model personalization. In: ICCV
(2017) 4, 6

41. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
CVPR (2019) 14

42. Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley Longman Publishing Co., Inc. (1990) 3

43. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from single depth
images. In: CVPR (2011) 9

44. Tagliasacchi, A., Bouaziz, S.: Dynamic 2d/3d registration. Proc. Symposium on
Geometry Processing (Technical Course Notes) (2018) 8, 10

Neural Articulated Shape Approximation 17

45. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust articulated-icp for real-time hand tracking. In: SGP (2015) 4, 10, 13

46. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do
single-view 3d reconstruction networks learn? In: CVPR (2019) 11

47. Tung, H., Wei, H., Yumer, E., Fragkiadaki, K.: Self-supervised learning of motion
capture. In: NeurIPS (2017) 1

48. Valentin, J., Keskin, C., Pidlypenskyi, P., Makadia, A., Sud, A., Bouaziz, S.: Ten-
sorflow graphics: Computer graphics meets deep learning (2019) 1

49. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized
object coordinate space for category-level 6d object pose and size estimation. In:
CVPR (2019) 14

50. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In: NeurIPS (2019) 14

51. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation repre-
sentations in neural networks. In: CVPR (2019) 11

18 Deng et al.

8 Supplementary material

Please see the animated results of reconstruction and tracking in the supple-
mentary video. Please see the details of the dataset in the supplementary
data split files. Note that, except Figure 9 where we use AMASS/Transitions
due to its diversity of poses, we adopt AMASS/DFaust for all the other studies.
Also note that due to computational limitations, we evaluate on one motion se-
quence only in Figure 10. We select a sequence that has a median reconstruction
performance as a representative example.

Loccupancy mIoU↑ Chamfer L1↓ F%↑

Cross-Entropy .959 .00006 98.01
L2 .959 .00004 98.54

Table 5: Loccupancy

Lweights mIoU↑ Chamfer L1↓ F%↑

7 .845 .00351 76.64
3 .959 .00004 98.54

Table 6: Lweights
Fig. 7: Ablation study of the loss used for fitting the occupancy function (L2
vs. binary cross-entropy), and the ablation study of the impact of the skinning
weight loss in Eq. (10) on the right.

Losses ablation – Figure 7. One can view O(x|θ) as a binary classifier that
aims to separate the interior of the shape from its exterior. Accordingly, one can
use a binary cross-entropy loss for optimization, but our experiments suggest
that an L2 loss perform slightly better. Hence, we employ the L2 loss for all of
our experiments; see Table 5. We also validate the importance of the skinning
weights loss in Table 6 and observe a big improvement when Lweights is included.

Model mIoU↑ Chamfer L1↓ F%↑

R .933 .00021 94.13
D\Π .926 .00023 92.23
D .959 .00004 98.54

Table 7: Projection Π

D 1 2 4 8 16

mIoU↑ .955 .957 .959 .958 .957
Chamfer L1↓ .00130 .00004 .00004 .00199 .00004

F%↑ 98.00 98.38 98.54 98.09 97.85

Table 8: Projection size D
Fig. 8: Ablation of our (per-part) linear subspace projection.

Linear subspace projection Π – Figure 8. Note that the rigid model (R)
actually outperforms the deformable model (D) if one removes the learnt linear
dimensionality reduction (D\Π); see Table 7. This is a result only observed
on the test set, while on the training set D\Π performs comparably. In other
words, Π helps our model to achieve better generalization by enforcing a sparse
representation of pose. In Table 8, we report the results of an ablation study
on the dimensionality of the projection, which was the basis for the selection
of D=4.

Neural Articulated Shape Approximation 19

θ mIoU↑ ChamferL1↓ F%↑

D {B−1
b } .962 .00003 99.22

D {B−1
b x} .959 .00003 98.86

D {B−1
b t0} .965 .00002 99.42

Table 9: θ for D.

MLP input mIoU↑ ChamferL1↓ F%↑

U [x, {B−1
b t0}] .520 .001057 26.83

U [{B−1
b x}] .865 .00019 86.61

D [{B−1
b x}, {B−1

b t0}] .965 .00002 99.42

Table 10: [x,θ] for U model.
Fig. 9: Ablations of pose representations.

Analysis of pose representations – Figure 9. In Table 9, we ablate sev-
eral representations for the pose θ used by the deformable model. We start by
just using the collection of homogeneous transformations {B−1b }. Note that the
query point encoded in various coordinate frames is also an effective pose rep-
resentation {B−1b x}, which has a much lower dimensionality. Finally, we notice
that rather than using the query point, one can pick a fixed point to represent
pose. While any fixed point can be used, we select the origin of the model t0
for simplicity, resulting in {B−1b t0}. The resulting representation is compact and
effective. Table 10 shows a similar analysis for the unstructured model (metrics
for D provided for reference). Note how the performance of U can be significantly
improved by providing the network with the encoding of the query point x in
various coordinate frames – that is, the network is no longer required to “learn”
the concept of changes of coordinates.

Model 24×8 24×16 24×24 24×32 24×40

U .539 .538 .601 .642 .653
R .913 .902 .931 .939 .946
D .917 .915 .946 .950 .952

Table 11: IoU metric.

Fig. 10: We evaluate the performance of the model as we increase the number of
units used for each of the 24 parts in the set {8, 16, 24, 32, 40}. The number of
layers in each sub-network is held fixed to 4.

Analysis of model size – Figure 10. Both rigid (R) and deformable (D)
models significantly outperform the results of the unstructured (U) model, as
we increase the neural network’s layer size and approach the network capacity
employed by [8,38,36].

20 Deng et al.

p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

D 7 7 .952 .00005 97.24
D 7 3 .948 .00005 97.50
D 3 7 .965 .00004 98.79
D 3 3 .968 .00004 99.08

Table 12: DFaust “easy” (00-01)

p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

D 7 7 .546 .01430 44.31
D 7 3 .891 .00032 86.15
D 3 7 .862 .00258 79.05
D 3 3 .948 .00006 96.48

Table 13: DFaust “hard” (02-09)

Fig. 11: Ablations for the tracking application

Tracking ablations – Figure 11. In the tracking application, we ablate with
respect to the pose prior (p(θ)) and the use of random perturbations to approx-
imate the distance function via convolution (~). First, note that the best results
are achieved when both of these components are enabled, across all metrics.
We compare the performance of our models on easy vs. hard sequences. Hard
sequences more clearly illustrate the advantages of the algorithms proposed.
We validate the usefulness of the pose prior in avoiding tracking failure (e.g.
IoU : 44.31%→ 86.15%). The use of random perturbations allow the optimiza-
tion to converge more precisely (Chamfer: .00258→ .00006).

Fig. 12: Distribution of F-Score across the AMASS/DFaust dataset.

Metrics distribution on AMASS/DFaust. Rather than reporting aggre-
gated statistics, we visualize the IoU errors of all of the 100 DFaust experiments,
and sort them by the performance achieved by the deformable model (D). Note
how the deformable model achieves consistent performance across the dataset.
There are only two sequences where the rigid model performs better than the
deformable model.

