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ABSTRACT
We present a technique for establishing the temporal alignment
between two videos of a single scene, by measuring the statistical
dependence between the videos using the Hilbert-Schmidt inde-
pendence criterion. Unlike previous approaches our technique does
not require any feature correspondences between views, nor does
it even require the two views to have any scene points in common.
We show that our technique can handle arbitrary camera con�gu-
rations, and can tolerate small camera motions. We demonstrate
results on a number of test sequences, including cluttered outdoor
scenes and those with signi�cant occlusions.
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1 INTRODUCTION
Recording a scene frommultiple cameras is a common task in vision,
and it is generally required that the separate videos be synchronised
before subsequent processing. This is usually done using specialised
equipment in controlled settings.

Specialized equipment is not ideal, however, and not only be-
cause of the cost of such equipment. In outdoor settings (Fig. 1)
it can be awkward to carry along and setup the various timecode
boxes and cables. Motion capture (including vision-based motion
capture) is increasingly common in movie production, and it may
be required to change locations or camera positions between shots
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(in this paper a “shot” refers to a short sequence, typically a few
seconds in length, delimited by discontinuous changes in camera
view). In this setting, even a few minutes of setup time can be a
signi�cant cost, considering that professional actors and a sizeable
crew (makeup artists, stunt people, etc.) are standing by.

When synchronized cameras are not available, videos can be
manually synchronized by aligning a “high frequency” event such
as a foot-fall or the traditional manually triggered clapperboard.
However, this requires that the same event be visible in all cameras,
which requires extra care and is not always possible. For example,
a clapper visible in a camera viewing the scene from in front of a
group of actors may not be visible from cameras viewing the same
group from the side or rear. Videos can also be aligned by aligning
their audio tracks, however this may also be challenging in outdoor
settings due to wind or other factors.

In cases where the camera views are somewhat similar, the tem-
poral synchronisation problem can be approached with computer
vision techniques. If it is possible to detect common feature tra-
jectories in each video, then the desired o�set can be sought as a
variant of a curve matching problem. Identifying corresponding
features is di�cult in itself, however, and is not feasible if the cam-
era views are quite di�erent. More fundamentally, we show that it
is not necessary – it is possible to �nd dependencies between the
statistics of two sets of non-corresponding features from arbitrary
views of a common subject.

In this paper we introduce a technique that can easily synchro-
nise the separate videos of a single shot after the recordings are
obtained. It can directly handle the case of pairs of cameras having
radically di�erent view directions (as shown in the Figures) with
few or even no features in common, and does not require addi-
tional intermediate cameras to propagate the synchronization. Our
approach assumes that separate cameras will maintain a �xed (if
unknown) temporal o�set during the recording, which is true of
modern digital equipment at least over a short period.

Our approach is based on the observation that when the se-
quences are in the correct temporal alignment, separate views of
the same motion will not be independent. By measuring the statisti-
cal dependence we are asking whether it is likely that statistics from
each view are generated by the same underlying object, i.e. whether
they are a function of the same underlying distribution. However,
such a relationship is likely to be complex and not something that
can be discovered with linear correlation or other simple methods.
We employ the Hilbert Schmidt independence criterion (Section 4)
as a measure of the (lack of) statistical independence at various
candidate temporal o�sets.

The resulting method is both simple to implement and robust. It
works with relatively low-quality “features”, and does not require
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Figure 1: Outdoormotion capture sequence from themovieRise of the Planet of the Apes for cameras J (top row) andM (bottom
row). The largest motion in the scene is from the actor at the far left in the top row, who lifts his hands from the ground and
then places them back down again. This actor appears in the foreground at the centre in the bottom row. From left to right
the frames shown are 1, 36, and 70 respectively.

the same features to be visible across the various camera views, nor
even features that are in common across the video from a single
camera. Although our method is targeted at movie production, we
anticipate that it (and the underlying approach) may be used in
other problems.

2 RELATEDWORK
Our survey of related work will be brief, since existing methods
generally require fairly similar camera views having shared features,
and do not address the situation shown in the �gures here in which
the cameras have di�erent or even opposite view directions.

Caspi et al. [Caspi et al. 2006] use features tracked in each view
to estimate the spatial and temporal alignment parameters. Their
algorithm iteratively estimates the spatial and temporal parameters
by minimising the Euclidean distance between pairs of trajectories.
In each iteration the candidate matches are used to estimate the
fundamental matrix between the two views. This may require back-
ground segmentation in order to identify a single moving object
from which a set of feature trajectories can be extracted. Elhayek et
al. [Elhayek et al. 2012] extend the approach of [Caspi et al. 2006]
to deal with multiple cameras and arbitrary time shifts. They use
a RANSAC based trajectory matching approach that allows them
to use arbitrarily tracked features rather than those speci�cally
belonging to a prominent subject.

Whitehead et al. [Whitehead et al. 2005] present a method that
operates in 2D projective space. They �rst estimate the scene geom-
etry using static image features, which are tracked independently
in each camera to build a set of feature trajectories. They then use
the epipolar geometry to establish correspondences between views.
Correspondences are determined by projecting points from each
trajectory in the �rst view onto the epipolar lines de�ned in the
second view. Normalised cross-correlation is used to determine
correct matches and �nally the proposed correspondences are used
to re�ne the initial scene geometry estimate.

Rao et al. [Rao et al. 2003] present a technique for performing
3D view invariant dynamic time warping (DTW) to address this
situation. Given two input videos of the same scene at di�erent
times they �rst manually specify eight matching points between
the two videos. These points are then tracked and the classic DTW
algorithm is used to relate points in one trajectory to points in
another. The authors account for 3D variations in viewpoints by
introducing a shape measure into the DTW cost function.

Tuytelaars and Van Gool [Tuytelaars and Van Gool 2004] demon-
strate an approach that uses known background points to de�ne
a �xed coordinate frame. Feature trajectories are established and
then projected into this 3D coordinate frame, which allows feature
trajectories to be matched across views without the need for camera
calibration.

Douze et al. [Douze et al. 2016] introduce a Fourier-domain
approach to correlating feature descriptors from a pair of videos,
providing very e�cient computation. They also describe an algo-
rithm to align a collection of videos containing some pairs with
widely di�ering views that cannot otherwise be aligned using a
correlation-based approach. The algorithm operates on a graph in
which edges indicate successfully aligned pairs of videos. Although
widely di�ering views cannot be directly aligned, it may neverthe-
less be possible to align them through intermediate views between
them. This approach requires having a su�cient “sampling” of
intermediate camera views, which comes for free in the case of
popular events such as a concert that are recorded by a number of
people. It is less convenient in motion picture production where
additional cameras require additional crew.

Yan and Pollefeys [Yan and Pollefeys 2004] align videos using a
3D extension of the Harris corner detector [Harris and Stephens
1988]. In order to synchronise two videos they �rst detect space-
time interest points by applying a convolution operation to each
video. They then �nd the temporal o�set which generates the
largest correlation between the distributions of interest points from
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the two videos. This requires that the camera views are su�ciently
close that the distribution of features can be related through linear
correlation. It also requires that the scene have su�ciently fast
movement to generate space-time corners. This method is advan-
tageous as it does not require correspondences across views (as is
also the case with our approach).

3 FEATURES
Our method is robust with respect to the choice of the underlying
features, and the results shown here do not require a state-of-the-art
optical �ow algorithm. Initially we tried using the leading several
PCA coe�cients of a relevant sub-window of the images them-
selves, with good results in simple cases. In this paper we show
results using PCA coe�cients of optical �ow vector trajectories
(i.e. integral curves). This is a simple choice that appears to be suf-
�cient in a variety of situations, and we did not experiment with
other types of features. Using the raw optical �ow vectors would
also possible, however the PCA features allowed our approach to
be easily compared to the baseline mutual information measure
(Section 4) using these same features.

In each video we construct the feature matrix Dc = [z1, ..., zm ]
for camera c where each zi is the column vector of vectorised 2D
feature locations in frame i , i 2 (1, . . . ,m). We initialise the tracking
process by selecting a sparse set of points from a uniform grid over
the �rst image in each video. We then use optical �ow [Farnebäck
2003] to track the points through the video (see Section 5). We use a
naive feature tracking implementation that updates the 2D location
of each point according to the �ow vector of its corresponding
pixel, without requiring that the appearance of the feature remains
consistent. We then apply PCA to the matrix Dc to get the reduced
trajectory matrix for camera c

Tc = [t1, ..., tm ]T , (1)

where each vector ti 2 Rk is computed as ti = (U1:k )T (zi � z̄), i.e.,
the projection of zi (with mean removed) onto the leading PCA
basis vectors. We take only k = 2most signi�cant components. The
inputs to our algorithm are the two-dimensional projected vectors
xi = {ti 2 T1} and yi = {ti 2 T2} from each video.

4 MEASURING STATISTICAL DEPENDENCE
The goal of our algorithm is to estimate the statistical dependence
between two video streams. Linear correlation is commonly used
as a measure of statistical dependence, including in previous work
on temporal alignment. Correlation is limited however in that it
only considers the second-order statistical moments. Non-Gaussian
second-order statistics, as well as the third and higher-order mo-
ments and statistics are not captured. Thus, correlation is fully
justi�ed only when the signals are fully speci�ed by their second-
order moments, i.e., the Gaussian case. In practice, the use of linear
correlation requires similar views in which the observed features
have a simple relationship.

In contrast to correlation, mutual information and related in-
formation theoretic measures re�ect all statistical moments. The
mutual information between discrete variables X and Y is given
by I (X ;Y ) = H (X ) + H (Y ) � H (X ,Y ), where H (X ) is the Shannon

entropy of X , H (X ) = �Õ
x 2X p(x) logp(x). Further, mutual infor-

mation (in theory) captures any functional relationship between
variables, i.e., I (X ;Y ) = I (X ; f (Y )) for any deterministic invertible
function f (). This is a more general notion than comparing prob-
ability distributions, and so measures such as KL divergence and
Wasserstein distance are not applicable here. For example, negating
a random variable will in general change its probability density and
thus change its KL divergence with respect to another variable, but
this transformation does not a�ect the mutual information with
the other variable.

While computing the mutual information is straightforward
given the probability densities for X and Y , computing the latter
is di�cult. In practice histograms or Parzen window techniques
are used to estimate these functions from given data. However,
probability densities are notoriously di�cult to estimate from lim-
ited data. The estimated entropy and mutual information can di�er
depending on the chosen bin size or kernel width. Kernel-density
and bin-based methods also su�er from the curse of dimensional-
ity, requiring data that rises exponentially with dimension. Fig. 8
presents the results of bin-based estimation of mutual information
on our problem, showing that it does not perform well in practice.

These problems have led to the development of alternate al-
gorithms such as [Kraskov et al. 2004]. Here we show that the
Hilbert-Schmidt independence criterion [Gretton et al. 2007] can
be used as a robust measure of temporal alignment between feature
trajectories from two videos.

4.1 Reproducing kernel Hilbert spaces
Reproducing kernel Hilbert spaces (RKHSs) are a Hilbert space in
which functions can be represented as a weighted sum of trans-
lated copies of a symmetric kernel function, f (·) = Õn

i=1 �ik(·,xi ).
Functions in a RKHS are more restricted than those in a general
Hilbert space, for example, knowing the value of a function in a
RKHS provides some information about its value at neighboring
points, unlike the case in a general Hilbert space. This is suggested
intuitively from the “convolutional” form of RKHS functions; it can
also be understood from the required decay of the spectrum of the
kernel.

Applications of RKHSs in machine learning are often tied to the
kernel trick. The partially evaluated kernel k(·,x) can be regarded
as a function mapping data x into a (typically high- or in�nite-
dimensional) feature space. The fully evaluated kernel k(x ,�) de-
�nes the similarity between x and �, acting as an inner product
in the high-dimensional space. The feature map k(·,x) is never
explicitly computed as algorithms are expressed using k(x ,�).

The statistical power of the Hilbert-Schmidt independence crite-
rion (de�ned below) for our problem relies on the use of a universal
or characteristic kernel [Sriperumbudur et al. 2010]. Characteristic
kernels have the property that

P = Q i� EX⇠P [k(·,x)] = EY⇠Q [k(·,�)]
i.e., the equality of two probability distributions can be determined
by their expectations in feature space. The Gaussian kernel

k(x ,�) = exp
⇣
�kx � �k2/2� 2

⌘
is characteristic and corresponds to an in�nite-dimensional feature
space. An intuition is provided here by the fact that the series
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expansion of the exponential contains a particular weighted sum of
all powers (in the statistical context, moments) of the data, and two
distributions are equal if and only if all their moments are identical.

4.2 Hilbert-Schmidt independence criterion
The Hilbert-Schmidt independence criterion (HSIC) is de�ned as
the di�erence between joint and marginal distributions, but as
measured through the maximum mean discrepancy (MMD) [Gret-
ton et al. 2012], a kernel-based measure of the di�erence between
distributions

HSIC := MMD
2(PXY , PX ⌦ PY )

rather than with the Kullback-Leibler divergence as in the case
of mutual information. An alternate statement is that HSIC is the
squared Hilbert-Schmidt norm of the cross-covariance in feature
space,

HSIC :=kCXY k2HS

=
��EXY [(�(x) � Ex (�(x))) ⌦ (� (�) � E� (� (�)))]

��2
HS

where� (�) is a feature mapping de�ned analogously to �(x). Under
useful assumptions ([Gretton et al. 2005, Theorem 4]) kCXY kHS = 0
if and only ifX andY are independent. This resembles the statement
that two multivariate Gaussian variables are independent when all
entries of their cross-covariance matrix are zero, but it applies to
arbitrary distributions.

An empirical estimate of the HSIC is given by1

HSIC(X ,Y ) = 1
n2

tr(KHLH) (2)

where K, and L are the Gram matrices for the kernels k(xi ,x j ) and
l(�i ,�j ) respectively. The centering matrix H is given by

H = I � 1
n
11T

with 1 an n ⇥ 1 vector of ones. Note that H is idempotent.
An intuition for this expression can be found by considering the

ith element of the trace,

K̃L̃i,i =
h
k̃i,1, k̃i,2, · · · , k̃i,n

i
·
h
l̃i,1, l̃i,2, · · · , l̃i,n

i

where k̃j,k denotes an element of the centered kernel matrix K̃ =
HKH and likewise for l̃j,k . A particular k̃i j re�ects the relation or
similarity of xi and x j as measured through the kernel

k(xi ,x j ) = h�(xi ),�(x j )iK
where h, iK denotes the inner product in the RKHS corresponding
to this kernel, and likewise for l(�i ,�j ) = h� (�i ),� (�j )iL . This
inner product will be large when the relation between sample xi
and all other x j is similar to the corresponding relation between �i
and all other �j .

We use the Gaussian kernel with the ki j entry of K given by

k(xi ,x j ) = exp

 
�
| |xi � x j | |2

2� 2

!

with � = 40 chosen empirically. The kernel l(·, ·) is de�ned similarly.

1See [Gretton et al. 2005] for the derivation of this expression. The corresponding
unbiased estimate is HSIC(X , Y ) := 1

n(n�1) tr(KHLH)

Unlike mutual information, HSIC does not have an interpretation
in terms of information theoretic quantities (bits or nats). On the
other hand, HSIC does not require density estimation and is simple
and reliable to compute. Kernel distribution embedding approaches
such as HSIC can also be resistant to outliers, as can be seen by
considering the e�ect of outliers under the Gaussian kernel. The
empirical estimate converges to the population HSIC value at the
rate 1/pn independent of the dimensionality of the data, meaning
that it at least partially sidesteps the curse of dimensionality.

5 RESULTS
We demonstrate our results on a number of di�erent test sequences,
across a number of di�erent conditions. Our algorithm permits
an arbitrary con�guration of cameras, as well as arbitrary scene
activity. The only requirement is that the camera �elds of view
overlap. We show that our algorithm can tolerate small camera
motions, however it fails when presented with camera motions
that are large relative to the scene activity. For each pair of videos
we manually specify a sequence of frames in one camera to act as
the reference sequence. We then �nd the selection of contiguous
frames from the test camera that maximises the HSIC de�ned in (2).
We initialise our algorithm by extracting the feature trajectories for
each camera using Farneback dense optical �ow [Farnebäck 2003].
The optical �ow and feature tracking methods are not the state-of-
the-art, however they were chosen for their convenience and ease
of use. We recognise that our algorithm could be straightforwardly
improved by choosing better feature tracking algorithms.

As for computing time, the optical �ow tracking takes most of
the time, and the rest of the process is very fast based on Eq. (2).
For a pair of 100-frame videos of 480⇥270 resolution, the optical
�ow tracking takes 33.7s. The rest of the process, which �nds the
best o�set out of 41 candidates, takes 0.13s for PCA and 4.67s
for HSIC (average 113ms per candidate temporal o�set). We use
2040 uniformly sampled tracking points and 2 PCA coe�cients
to estimate the HSIC. Our experiments are performed on an Intel
Xeon CPU E5-2620 2.00GHz with 47GB RAM.

5.1 Checkerboard sequences
Our �rst experiment consists of pairs of static cameras, with a single
moving checkerboard. These sequences were initially recorded
as input to a multi-view calibration procedure. The ground truth
temporal o�set was given by a hardware synchronisation. A sparse
sample of the feature trajectories from our initial set of points are
shown overlayed in Fig. 2.

The results in Fig. 3 are for two di�erent sets of cameras. Figs. 3(a)
and 3(b) are for cameras C and E while Fig. 3(c) is for cameras F and
G. The correct temporal o�set was -10 and -12 frame for cameras
C/E and F/G respectively. Our results show that our algorithm was
correct for two of the test cases and was within one frame (0.03
seconds) of the correct result in another test. These experiments
were chosen due to the ease with which tracking can be performed.

5.2 Motion capture sequences
We tested our results on a challenging scene that contains three
dynamic actors, a mix of stationary and dynamic cameras and
multiple occlusions. As can be seen in Fig. 4, Fig. 5 and Fig. 6, the
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Figure 2: Three frames from the calibration sequence for camera C (top row) and camera E (bottom row). These images show
only a sparse set of trajectories for ease of visualisation. The images have been cropped and scaled for display.

(a) (b) (c)

Figure 3: Three checkerboard calibration sequences. In this and the subsequent result graphs, the horizontal axis is the tempo-
ral o�set and the vertical axis is the normalized HSIC value, with zero indicating statistical independence and one indicating
maximum dependence. The results in (a) and (b) are for cameras C and E, for frames 1 - 101, and 100 - 200 respectively. The
results in (c) are for frames 100 - 200, with cameras F and G. The ground truth o�sets are -10 and -12 frames for C/E and F/G,
respectively. The results in (b) and (c) are correct while the results in (a) are within one frame of the correct result.

actors are often occluded by scene objects and by the other actors.
The appearance of the scene is relatively uniform and the cameras
are separated by large di�erences in viewpoint. As a result, the
feature trajectories from these scenes are less accurate typically due
to the in�uence of multiple scene elements. In all of the following
motion capture sequences, the cameras are already aligned and
therefore the correct o�set is zero.

The result in Fig. 7(a) is for the images shown in Fig. 4, Fig. 7(c)
is for the images shown in Fig. 5, and Fig. 7(e) is for the sequence
shown in Fig. 6. The results in Fig. 7(a) and (e) return the correct
result while the result in Fig. 7(c) is correct to one frame (0.03
seconds). The results in Fig. 7(b) and Fig. 7(d) are for di�erent

camera pairs from the sequences in Fig. 4 and Fig. 5, respectively.
They are accurate to within three frames (0.1 seconds). Finally, the
results in Fig. 7(f) are from an outdoor motion capture scene for
Rise of the Planet of the Apes (Fig. 1). This scene features multiple
actors who have relatively small and slow motion. The cameras are
widely separated and the �eld-of-views do not overlap entirely. As
a consequence there is relatively little information shared between
the cameras, however as can be seen in Fig. 7(f) our algorithm is
capable of returning correct results.

The same results are shown again in Fig. 8 with the mutual
information results included. As can be seen the HSIC measure
outperforms the mutual information on all the sequences.
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Figure 4: Motion capture sequence from The Hobbit: An Unexpected Journey, for cameras A (top row) and B (bottom row). In
both rows we can see an actor moving from behind another actor towards the centre of the scene. From left to right the frames
shown are 110, 160, and 210 respectively.

Figure 5: Motion capture sequence from The Hobbit: An Unexpected Journey, for cameras F (top row) and H (bottom row). In
the top row we can see an actor moving towards the centre of the scene, while in the bottom row we can see the actor moving
from the centre towards the right hand side, where he becomes occluded. From left to right the frames shown are 160, 210,
and 260 respectively.

6 DISCUSSION AND CONCLUSION
In this work we have shown that the HSIC can be used as a ro-
bust and generally accurate measure for determining the temporal
alignment between two video sequences. Our algorithm can handle
arbitrary, widely di�ering camera views and occlusions because the
HSIC captures the statistical dependence between di�erent views
of the same motion. Contrary to previous work our algorithm does
not require explicit feature correspondences between views, nor
does it require that the same features are even visible in both views.
In addition, our method is frame accurate in many cases, and so is

competitive even with frame-accurate methods that rely using very
similar camera views to provide common features across the views.

Non-integer frame o�sets as well as cameras that record at di�er-
ent frame rates (e.g. 24 vs 60fps) introduce a separate problem. Our
technique does not address this resampling problem, though it may
be handled to some extent with existing techniques. We only con-
sider the case of synchronising two videos, although more videos
may be handled by transitivity. Our method also does not handle
synchronisation of videos where the dominant image movement is
due to movement of the cameras rather than objects in the scene,
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Figure 6: Motion capture sequence from The Hobbit: The Ba�le of the Five Armies for cameras B (top row) and D (bottom row).
In the top row we can see the three actors as they appear from the right hand side, while in the bottom row we can see the
same actors as they appear from the left hand side of the scene. From left to right the frames shown are 330, 390, and 430
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 7: HSIC results for the six test sequences. In every experiment the ground truth o�set is zero frames.

though a small amount of camera movement can be accommo-
dated. Approximate segmentation of moving objects would solve
this problem and allow our method to be applied, however this is in
general more di�cult than the simple temporal alignment problem
we are addressing. Crude segmentation is feasible in some cases

however, such as when the subjects have a clear colour di�erence
from the background (Fig. 1).

We tested our algorithm on a number of challenging sequences,
including scenes with multiple moving actors and multiple occlu-
sions. Our algorithm comfortably tolerates occlusions, as well as
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(a) (b) (c)

(d) (e) (f)

Figure 8: HSIC (blue trace) andmutual information (green trace) results for the six test sequences. In each plot the vertical axis
is the information measure (HSIC or mutual information) normalized to have a maximum value of one, and the horizontal
axis is the frame o�set. In every experiment the ground truth o�set is zero frames. In this experiment themutual information
bin width and HSIC kernel width � were manually adjusted to provide the best results.

small camera motions. Although the method is occasionally inac-
curate, it still gives a solution close to the ground truth within a
few frames and makes the temporal alignment task e�cient. As an
extension, we are interested in testing our algorithm on di�erent
modalities, such as between video-audio or video-acceleration from
an Inertial Measurement Unit (IMU).
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