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Figure 1: Human hand cloning from surface anatomy: (a) palm creases extracted using tensor voting and surface anatomy, (b) estimated hand
joints, (c) feature correspondences; small red dots represent curve segments, (d) cloned 3D model of female hand, (e) cloned 3D model in a
different view and position with inherited skinning properties.

Abstract

The human hand is an important interface with complex shape and
movement. In virtual reality and gaming applications the use of an
individualized rather than generic hand representation can increase
the sense of immersion and in some cases may lead to more ef-
fortless and accurate interaction with the virtual world. We present
a method for constructing a person-specific model from a single
canonically posed palm image of the hand without human guid-
ance. Tensor voting is employed to extract the principal creases on
the palmar surface. Joint locations are estimated using extracted
features and analysis of surface anatomy. The skin geometry of
a generic 3D hand model is deformed using radial basis functions
guided by correspondences to the extracted surface anatomy and
hand contours. The result is a 3D model of an individual’s hand,
with similar joint locations, contours, and skin texture.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; I.4.6 [Image Processing and Computer Vision]:
Segmentation—Edge and feature detection

Keywords: Graphics, Modeling, Vision, Human hand, Anatomy,
Curve detection, Tensor voting

1 Introduction

The hand is a very important interface for humans. Many interac-
tions are performed by hand including object handling, communi-
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cating, and numerous other tasks in everyday life. The human hand
needs to play a similar role in the virtual world in order to allow a
more immersive and accurate interaction within a virtual environ-
ment. A realistic and accurate virtual hand model may be required
for applications in virtual reality, virtual prototyping, animation,
special-effects, games, ergonomics, and medical simulation. How-
ever, modeling an accurate and realistic virtual human hand is dif-
ficult and requires great skill since the human hand has a complex
shape with many degrees of freedom (DOF); an elaborate system of
joints and muscles for control, and subtle skin deformation arising
from the motion of muscles and tendons.

1.1 Related work

The subject has been considered in human computer interaction
(HCI), gesture recognition, medical simulation, as well as in several
important graphics papers. Simple hand models have been devel-
oped for gesture interface research [Wu and Huang 1999] and re-
search related to motion analysis, hand tracking, and gesture recog-
nition. In vision-based tracking and analysis, accurate kinematical
models and joint constraints are required based on biomechanical
and anatomical hand motion analysis, but a hand model with sim-
ple geometry and without skin deformation is used in general [Lin
et al. 2000].

Thompson et al. described an interactive 3D graphics workstation
system for hand surgery practice that encompasses the simulation
of both the kinematics and dynamics of the human hand [Thomp-
son et al. 1988]. A cadaver hand specimen was used to obtain CT
images, from which 3D structures were modeled. The segmenta-
tion of each bone and joint axis was accomplished by manual input
in an interactive 3D display workstation.

In addition to an accurate kinematics model, high quality hand
geometry and skin deformation models are desirable in computer
graphics applications. Moccozet et al. pursue hand modeling
and animation based on Dirichlet free-form deformations (DFFDs)
[Moccozet and Magnenat-Thalmann 1997]. A multi-layer defor-
mation model simulates the intermediate layer between the skeleton
and the skin. Skin deformations use the palm and finger creases as
constraints, based on the observation that each joint of the skeleton



is associated with a hand crease on the surface. However, in their
paper, the creases were determined and designed manually.

Kry et al. use a finite element model (FEM) of the human hand to
obtain models in an example-based approach. The models are then
compressed using principal component analysis, and realtime de-
formation is demonstrated using the GPU acceleration. [Kry et al.
2002].

Albrecht et al. developed a human hand model with its underly-
ing anatomical structure: skin, muscles, and bones [Albrecht et al.
2003]. Hand animation employs a hybrid muscle model. Pseudo
muscles control the rotation of bones based on anatomical analysis
and mechanics. Geometric muscles control the deformation of the
skin using a mass-spring system. The hand skin geometry is based
on a 3D scanner and the bone-joint structure is obtained from a
public 3D skeleton model. Anatomical analysis and physical mod-
els achieve accurate finger movements and skin deformations.

In [Kurihara and Miyata 2004] an example-based deformable hu-
man hand model is derived from medical images. Multiple CT
scans of the hand are taken in several poses. A comparison of bone
shapes and different poses allows the estimation of joint locations.
Hand skin deformation is achieved using the weighted pose space
deformation (PSD) method.

Tsang et al. describe an anatomically accurate skeletal musculoten-
don model of human hand. The hand skeleton can be moved using
muscle activations which derive forward and inverse dynamics sim-
ulation [Tsang et al. 2005].

Determination of realistic hand poses for interacting with other ob-
jects is also a challenging research topic in computer graphics and
robotics. Several papers suggest interesting solutions for this is-
sue [Huang et al. 1995; Kim et al. 2000; ElKoura and Singh 2003;
Pollard and Zordan 2005].

It may be noted that the general approach of deforming a generic
prior model to match individual shape data has been successfully
applied to heads [Kähler et al. 2002] and the whole body [Allen
et al. 2003; Seo et al. 2003], and that problem domain knowledge
was usefully applied in each of these cases.

1.2 Motivations

Virtual reality, simulation, and entertainment applications often dis-
play a proxy of the operator’s hand in the virtual world. The virtual
hand may be driven by camera tracking, a haptic interface, or a sen-
sor/actuator globe, and serves to provide visual feedback on object
interaction as well as enhancing realism. The operator is intended
to regard this virtual hand as their hand for the purpose of interact-
ing in the virtual world. Differences in shape and mechanics be-
tween the operators’ real and virtual hands may therefore cause in-
accuracies in simulations and decrease the sense of immersiveness.
Unfortunately, due to the difficulty, time, and cost of generating a
person-specific hand model, immersive systems today generally use
only a simple generic hand model.

Our goal is to make a realistic person-specific 3D virtual hand
model, including skin geometry, texture, and the underlying skele-
ton. Our process requires minimal human guidance and depends
only on capturing a skin texture image whose viewing direction is
perpendicular to the palm plane. By analysis of the skin texture
of the hand, we extract surface anatomy information and estimate
osseous structure underneath the skin.

Our work is most similar to that in [Albrecht et al. 2003], which
employs an image-based hand deformation method to generate in-
dividual hand models. Their method uses an image and scattered

interpolation to deform a generic hand model, but it requires man-
ually defined correspondences between 3D feature points and the
hand image. Furthermore, the limited numbers of feature corre-
spondences are not enough to generate a completely accurate shape
match between the source picture and the final 3D hand model. We
improve upon their efforts in several ways described next.

1.3 Overview and Contributions

We present an automated method to make a specific human hand
model from an image of the surface anatomy of a human hand. The
method has two main parts.

The first part is a surface anatomy feature-extraction method, based
on tensor voting, to extract the main creases on the palmar skin
and the hand geometry without human guidance. Joint structure is
estimated from an anatomical analysis of the relationships between
the surface anatomy and its osseous structure.

The second part deforms a predefined generic 3D hand model us-
ing scattered data interpolation based on a radial basis functions
(RBFs). A curve segment matching method performs automatic
feature correspondences between the 3D hand model and the con-
tours detected in the hand image. These matches capture the con-
tour of the hand image as well as the geometry of joints, finger tips
and finger valleys.

As our contribution is the modeling of person-specific 3D hand ge-
ometry, issues such as animation of skin deformation, texture cap-
ture, and texture blending are beyond the scope of the paper, and
we rely on existing techniques for these problems. Our generic
model is manually generated using Maya, and the person-specific
hand inherits the skin deformation system of the generic hand. Al-
ternatively sophisticated automated techniques for animated skin
deformation such as [Kurihara and Miyata 2004; Kry et al. 2002]
could be adapted.

We texture mapped the hand using planar projection and manually
blended the palm and dorsal textures. However improved texture
blending techniques such as [Burt and Adelson 1983; Zhou et al.
2005] should be considered.

Figure 2: Process overview: Two main parts are grouped into
four steps in the gray boxes. Supplementary parts which need addi-
tional tools or are beyond the scope of our work are indicated by the
dotted boxes. Numbers beside each box indicate the required user
interaction level; level 2 is fully automatic, level 1 requires no user
interaction but needs some parameters (experimentally fixed in nor-
mal case; Canny edge thresholds, tensor voting σ , finger extraction
thresholds), level 0 needs manual input.



As a result, the final hand model has the same joint structure, hand
geometry, contour curves, and texture map as the original hand im-
age. Our method requires only an image of a hand and requires no
manual input. Figure 2 describes our methods and user interaction
level in each step. The details are covered in the remainder of the
paper.

2 Hand anatomy

The human hand has a complex anatomical structure consisting of
bones, muscles, tendons, skin, and the complex relationships be-
tween them [Brand and Hollister 1999; Kry et al. 2002]. Analysis
of human hand anatomical structures is important in various fields,
including ergonomics, HCI, hand surgery, as well as computer ani-
mation.

The bones of the hand are grouped into three areas: digital, carpal,
and wrist. The digital bones of four fingers consist of distal, middle,
and proximal phalanges with distal interphalangeal (DIP), proxi-
mal interphalangeal (PIP), and metacarpal phalangeal (MCP) joints.
The digital bones of the thumb consist of the distal and proximal
phalange with the interphalangeal (IP) and carpometacarpal (CMC)
joints. The carpal bones are a set of eight small bones, and the wrist
bones are the radius and ulna [Figure 3(a)].

Figure 3: Human hand anatomy: (a) Bone Anatomy 1. Distal
phalanx, 2. Middle phalanx, 3. Proximal phalanx, 4. Metacarpals,
5. Ulna, 6. Radius, A. DIP joint, B. PIP joint, C. MCP joint, D.
IP joint, E. CMC joint; (b) Surface Anatomy 1. Distal phalanx,
2. Middle phalanx, 3. Proximal phalanx, 4. Distal palmar, A. DIP
crease, B. PIP crease, C. Palmar digital crease, D. Distal palmar
crease, E. Proximal palmar crease, F. Thenar crease, G. Distal wrist
crease, F1-5. Thumb, Index, Middle, Ring, Little finger.

In biomechanics, not only the anatomical features but also the me-
chanical joints of the hand are important. Several methods are
suggested to define the mechanical joints. In [Brand and Hollister
1999; Kurihara and Miyata 2004], the axis of rotation between two
bones is defined as a line that does not move in relationship with
either bone while the bones move around each other. On the other
hand, the mechanical joint centers of the hand have been anatom-
ically estimated as the center of curvature of the head of the bone
proximal to the given joint [Buchholz et al. 1992; Youm et al. 1978].

Figure 3(b) shows the basic surface anatomy of the human hand
[Yu et al. 2004]. The three palmar skin regions are the palm, fingers,
and thumb. The palm region has three main creases. The proximal
palmar crease starts from the silhouette edge of the hand near the
head of the metacarpal bone of the index finger and runs through
the hollow of the palm. The distal palmar crease starts from the
head of the metacarpal bone in the little finger and runs through
the hollow, passing the head of the metacarpal bone of the ring and

middle finger. The thenar crease is located between the proximal
palmar crease and distal wrist crease longitudinally.

The fingers have three transverse digital creases, the DIP, PIP, and
palmar digital crease. A DIP crease and palmar digital crease are
located on the thumb. The distal palm area is located between the
line, which starts from the radial end of the proximal palmar crease
to the ulnar end of the distal palmar crease and the palmar digital
creases. The MCP joints of fingers are located in the distal palm
area.

Since the crease on the palmar skin is produced by a skin flexion
fold when the hand is closed, basic creases on the palmar skin have
a strong relationship with the underlying bone structure, resulting
in landmarks used in hand surgery [Brand and Hollister 1999; Yu
et al. 2004]. Bugbee et al. demonstrated the relationship between
creases of palmar skin and superimposed osseous anatomy using
radiograph [Bugbee and Botte 1993]. Since most skin creases of
the palmar skin are consistent with underlying fascia and located
near the center of the curvature of the head of the bone proximal
of the given joint, we observe that the creases can be used as an
estimation of mechanical joints when folding the human hand.

The surface anatomy of the hand, as well as the bone structure, is
unique for an individual human hand [Yu et al. 2004]. Due to their
uniqueness, hand surface features have been proposed for biomet-
ric use. For example, a palm print has three principal lines (distal
palmar, proximal palmar, and thenar creases) that are unique and
unchanging biometrics suitable to identify a person [Shu and Zhang
1998; Jain et al. 1999]. Also, palmistry uses these lines to indicate
individual characteristics.

3 Basic hand geometry extraction

In this paper, we define basic hand geometry as the contour of the
hand, finger tips, and finger “ valleys ” shown in Figure 4(b). Since
we use skin texture as the base hand image, it is generally taken
within good lighting conditions, simple dark background, fingers-
extended natural pose, and fixed camera location. The camera view-
ing direction is perpendicular to the palm plane and the image up
vector is on the axis from wrist joint to middle finger tip. We as-
sume an orthographic camera and explain our method based on the
right hand due to the similarity and symmetry of the left and right
hand.

Generally, contour extraction is a similar problem as background
extraction in computer vision. In our case, since we used a specified
background, a simple Canny edge algorithm [Forsyth and Ponce
2002] followed by a binary image thresholding is enough to ex-
tract a proper contour line [Figure 4(b)]. When we see the surface
anatomy of each finger, their shapes are almost symmetrical and
each finger tip is located on the intersection between the medial axis
curve of each finger and the hand contour curve. Since our canoni-
cal photograph pose has the fingers oriented upward, we can easily
locate the finger extremities by scanning the medial axis curves in
the y-direction. When we sort the fingers with respect to x-axis, we
can easily identify the finger tips for each finger. The finger valleys
are located in between each finger. We trace a contour curve from
each finger tip and define each finger valley as the inflection point
of that curve.

4 Hand crease extraction

The palmar skin has complex geometry with lots of discontinuous
wrinkles. Among the wrinkles, just a few salient creases are mean-
ingful in terms of surface anatomy. Although humans can easily



Figure 4: Palm creases extraction process: (a) Segmented hand image, (b) Basic hand geometry; contour of the hand, five finger tips, four
finger valleys, and medial axis of each finger, (c) Sobel edge image, (d) First tensor voting result, (e) Second tensor voting result (final result)

detect these creases, computers can hardly detect them without hu-
man visual perception. Tensor voting [Guy and Medioni 1996] is
an efficient perceptual grouping framework to detect dense salient
features in noisy input data. We use the tensor voting framework
[Medioni et al. 2000; Tensor-Voting-Framework] to detect principal
creases and extract continuous curves for each crease in the palmar
skin image.

4.1 Tensor voting overview

Extracting main creases from the palmar skin is a similar problem
to inferring salient curves from sparse and noisy data. Tensor vot-
ing can extract salient geometric features (e.g. point, curve, surface)
in a sparse and noisy data set without human guidance. The tensor
voting framework proposed in [Medioni et al. 2000] needs only one
free parameter σ to define the scale of the vote, and handles multi-
dimensional data as well as 2D data for various applications. Tensor
voting can be grouped into two major stages: data encoding using
tensors and linear tensor voting for tensor communication. The in-
put token, a set of points or oriented points in a noisy environment,
can be encoded into a set of geometric features which are salient,
smooth and considerably continuous.

In the case of 2D, each token can be encoded into a second order
symmetric tensor which is equivalent to an ellipse whose major axis
serves as the orientation and the length of that axis is the saliency.
In Figure 5(a), an oriented point is represented by a thin oriented
ellipse. In the voting stage, each token is accumulated into the sec-
ond order symmetric tensor form by votes cast from its neighbors’
predefined voting fields. The voting field can be derived from the
2D stick tensor called the fundamental 2D stick kernel, and it de-
cays the saliency of the vote. In spherical coordinates, the decay of
the 2D stick kernel is of the form:

DF(γ, θ , σ) = e
−( γ2+cθ2)

σ2 (1)

Where, γ is the arc length between voter and receiver, θ is the cur-
vature between voter and receiver, σ is the scale of voting which
defines the size of the neighborhood of each point, and c is a con-
stant. In the Figure 5(b), the osculating circle connecting voter O
and receiver P generates the smoothest circular path connecting O
and P, and the length of normal vector P represents the saliency of
the vote. After voting, the second order symmetric tensor T can be
decomposed into its eigenvectors e1, e2 with related eigenvalue λ1
≥ λ2.

T = [e1,e2]
[ λ1 0

0 λ2

][e1
T

e2T

]
= λ1e1eT

1 +λ2e2eT
2 (2)

Equation 2 can be rearranged with Tc, which represents curve com-
ponent, and Tp, which represents point component encoding junc-
tion information.

T = (λ1−λ2)e1eT
1 +λ2(e1eT

1 + e2eT
2 ) = Tc +Tp (3)

As a result of voting in 2D space, we have two dense vector maps
which represent curve and junction features. The salient curves are
located at the local extrema of map Tc, and they can be extracted
using non-maxima suppression. Please refer to [Guy and Medioni
1996; Medioni et al. 2000] for details.

Figure 5: Tensor Voting: (a) tensor ellipse, (b) 2D stick kernel, (c)
Tensor voting example: left image shows the sparse input tokens
without orientation, middle image is the tokens oriented by ten-
sor voting but still sparse, the right image is the resulting extracted
dense curve.

4.2 Wrinkle extraction using tensor voting

In order to increase the performance of tensor voting, we segment
the hand image. From the hand geometry extracted in section 3, we
can roughly divide hand images into three regions; the palm, thumb,
and four fingers. In the four fingers and thumb region, the medial
axis for each fingers and thumb are calculated. For all pixels in
the four fingers and thumb region, find the nearest medial axis line.
The region which is related to the nearest line of the given pixel is
assigned to the region for that pixel. Finally we achieve six image
segments, like Figure 4(a). The image segments are converted into
the set of edge points using the Sobel edge algorithm [Forsyth and
Ponce 2002]. Although the Canny edge algorithm is generally used
for edge detection, the Sobel edge algorithm shows better perfor-
mance as an input of tensor voting in our experiment [Figure 4(c)].

Since the only free variable σ is not sensitive, we experimentally
define the voting scale σ as large as possible to reduce the influence
of local features which can produce noise. The result of first tensor
voting is in Figure 4(d). In order to eliminate small noises and
achieve smoother curves, we perform a second tensor voting using
the input of the first tensor voting results. In the second voting
stage, the outline of the fingers which are generated by the first
tensor voting is eliminated, since the contour line is salient and can
cause errors in the voting process. The final result of tensor voting



is the set of salient wrinkle curves and each curve is smooth and
mostly continuous [Figure 4(e)].

4.3 Palm crease extraction

Now we have images of continuous principal wrinkles of the palm
and each of the fingers but they do not yet correspond to the im-
portant creases of surface anatomy. In the palm region, we have
three anatomically meaningful creases, the distal palmar, proximal
palmar, and thenar crease [Figure 3]. Since the wrinkle curves
achieved from tensor voting are continuous and have longer length
than other curves, we can extract these creases using a tree search
algorithm that employs knowledge of hand geometry.

Variables: R=region, r=start point, W=wrinkle, P=path,
L=path length

1 Define region R using basic hand geometry [Section 3];
2 Scan R finding start points ri of wrinkle curve Wi;

/* Where ri = {r1, ..., rn},Wi = {W1, ...,Wn}, ri ∈ R*/;
3 for all ri do
4 while Traverse curve from ri to the end using DFS do
5 if found the largest path Pi then
6 Wi ←− Pi; Li ←− Length(Pi);

7 if IsMaximum(Li) then
8 Crease C ←− Wi;

9 Repeat step 1 to 8 for each anatomical region R;

Algorithm 1: Palm crease extraction algorithm

First, we assign anatomical region R to find the starting point of
the crease. For example, the root of the distal palmar crease can be
located in region Rd(Rd ∈ R) in Figure 9 (a). The region Rd can be
defined easily using hand geometry features such as finger valley
4 and the MCP joint of thumb. The MCP joint of thumb can be
roughly estimated using the finger line of thumb and finger valley
1. The region for the root of the proximal palmar crease can be
assigned by similar anatomical analysis. Since the start points of
several wrinkle curves can be in the region R, we should find the
main crease among these wrinkle curves. First, we extract every
wrinkle curve and its arc length using depth first search (DFS), since
our wrinkle curve has no loops. For every start point ri (ri ∈ region
R), traverse wrinkle curve using DFS and assign the largest path Pi
as the wrinkle curve Wi having length Li. The wrinkle curve Wi
which has the largest length among Li is assigned to the crease C
within the area R. We summarize the method in Algorithm 1. Green
curves in the Figure 9(a) are the extracted proximal palmar crease
and the distal palmar crease.

4.4 Finger crease extraction

We propose a simple method to extract the crease of each finger
from the given wrinkle images. First, label in turn each segmented
image in section 4.2 as finger region Ri, (i for each finger). Then,
assign finger line Fi using the least square line fit of the medial axis
curve of each finger region Ri (calculated in section 3). For each
finger, perform the following operations in Algorithm 2 to extract
representative lines of finger creases. The result is in Figure 9(b).

5 Hand modeling

We made a generic 3D hand model [Figure 6(c),(e)] which has skin
geometry, joint skeleton, and skin deformation using Maya [Alias]
and Poser [CuriousLab]. The skin geometry is exported from Poser

Variables: R: finger region, F: finger line, p: current position,
W: wrinkle curves, O: orthogonal line(F, p), O’:
Selected lines, C: Selected crease line, threshold1
and threshold2 are defined after experiment.

1 for each finger region Ri and line Fi do
2 while Trace Fi from finger tips to wrist using pi do

/* pi(1≤ i≤ 5, pi ∈ Ri) is a current tracing position
*/;

3 if pi is an intersection point between
Fi and Wik = {Wi1, ...,Win} then

4 Calculate a line Oik = {Oi1, ...,Oin}, which is
orthogonal to Fi and passes through the intersec-
tion point;

5 for all pixels Xi ∈ creases of Ri do
6 if |Xi−Oik|< threshold1 then

vote(Oik);

7 if vote(Oik) > threshold2 then
O′ik ←− Oik, where O′ik = {O′i1, ...,O

′
im};

8 if O′ik is verified by the hand geometry such as finger
region, tips, and valleys then

Cik ←− O′ik, where Cik = {Ci1, ...,CiN};

Algorithm 2: Finger crease extraction algorithm

and bound to the joint skeleton using Maya for skin deformation
and convenient joint control. The joint skeleton has accurate biome-
chanical structure using 21 joints (including finger tips and wrist)
[Figure 6(e)].

Each joint has a different degree of freedom for better control. Al-
though carpal and wrist bones consist of several bone segments,
since the radio carpal joint plays the most important part of over-
all movement, we defined one three-DOF mechanical joint for the
wrist joint. DIP and PIP joints of each finger and the IP and MCP
joints of thumb have one DOF. MCP joints of each finger have two
DOF for the simplicity of control and the CMC joint of the thumb
has three DOF due to its complexity. For simple notation, we will
call the generic 3D hand model a generic hand, the 2D hand fea-
tures extracted from the picture a source hand, and the remodeled
3D hand model a clone hand. The generic 3D hand model is re-
shaped as a clone hand that has the same mechanical joints, contour
curve, and texture map as the unique human hand.

5.1 Joint modeling

From the careful analysis of hand surface anatomy (consisting of
the basic hand geometry and creases extracted in the previous sec-
tion), we can estimate mechanical joint locations of the source
hand. From the finger crease lines Cin and finger lines Fi obtained
in section 4.4., we can find DIP and PIP joints of the four fingers
and the IP and MCP joints of the thumb. Since the finger lines are
the medial axis, the mechanical joints are located on the intersec-
tion points between the crease lines Cin and finger lines Fi. If two
creases are extracted near a joint, we locate the joint at the lower
crease with the analysis of surface anatomy.

When we consider smooth skin deformation with crease con-
straints, MCP joints of the the four fingers should be located in the
distal palm area [Figure 9(c)]. From each finger line Fi we can cal-
culate line segment Si, which is between the related digital crease
and the line H, which is defined by start points of distal palmar



Figure 6: Hand clone results: (a) picture of source hand, (b) clone
hand model with texture mapping, (c) skin geometry of generic
hand model, (d) deformed skin geometry of clone hand, (e) joint
skeleton of generic hand model (each circle is a joint location), (f)
modified joint skeleton of clone hand

crease Ha and the start point of proximal palmar crease Hb [Fig-
ure 9(c)]. Within each segment Si, we can arrange MCP joints at
approximately one-third of Si from the line H with the analysis of
surface anatomy in section 2.

The two highest curvature points, Wa and Wb of the ulnar and ra-
dial side of contour curve in wrist area, can represent the anatomi-
cal boundary between the wrist bones (ulna and radius) and carpal
bones. These two points, Wa and Wb, are simply calculated by the
highest curvature points of contour within the wrist region, which is
below the MCP joint of the thumb. The wrist joint can be estimated
by mid-position of Wa and Wb [Figure 9(c)].

We have extracted every mechanical joint except the thumb CMC
joint with analysis of surface anatomy. However, since the CMC
joint of the thumb has relatively complex movements compared
with other joints, and 2D surface anatomy cannot give enough in-
formation, estimating the CMC joint is very difficult. We position
the thumb CMC joint based on the following anatomical analysis.
First, the metacarpal bone of the thumb is parallel to line M and
starts from the MCP joint of thumb [Figure 9(c)]. Line M can be
calculated by least square line fitting on the middle part of con-
tour curve segment between the highest curvature point Wb and the
MCP joint. The axis of the radius bone is parallel to the medial
axis of wrist and passes point Wb. Since the anatomical CMC joint

is located on the end of the metacarpal bone, the mechanical CMC
joint can be on the intersection point between the axis of the radius
bone and metacarpal bone.

From the extracted 2D joints, we can modify the joint skeleton of
the 3D generic hand. Since the origin and the y-axis of the generic
hand model is determined by the wrist joint and the vector from
wrist joint to middle finger tip, respectively, a simple affine trans-
formation matrix Ms can transfer the source hand coordinate to the
generic hand coordinate. For accurate scaling, we measured hand
length from the wrist to the middle finger tip when taking the hand
picture. The generated joint skeleton model for clone hand is shown
in Figure 6(f).

5.2 Skin modeling

In addition to the joints, the contour of the hand is a unique and
important feature of a person’s hand. Curve segment matching can
allow automatic feature correspondence between the source hand
and generic hand. From the corresponding features we can warp
entire geometry using scattered data interpolation based on the ra-
dial basis functions (RBFs).

5.2.1 Curve segment matching

From the joint modeling process in section 5.1, we can obtain a
joint skeleton model with 21 corresponding features. The skin ver-
tices related to the joint skeleton can be used as the corresponding
feature between the generic and source hand. In addition to these
21 features, contour of the hand provides good feature correspon-
dences, since the source hand picture is also a skin texture image
taken in the specific viewing direction and pose [Figure 6(a)].

When we deform the hand skin, the mesh between creases should
be continuous. The contour of the hand can be divided into 30
curve segments Gi = {G1, ...,G30} based on the hand creases and
geometry from the analysis of hand surface anatomy [Figure 1(c)];
each Gi consists of ordered 3D vertices Vij = {Vi1, ...,Vin} along
the curve segment Gi, where n is chosen to represent curve segment
geometry sufficiently and Gi are carefully extracted when making a
generic hand model using the related joint skeleton.

Figure 7: Curve segment matching example: (a) Curve matching
example of curve segment S2(s2,e2): s2 is on the intersection be-
tween contour and the palmar distal crease of little finger, and the
e2 is on the intersection between contour and the PIP crease of little
finger, (b) Curve segment 2 in generic hand model

Every Gi is transformed to the source hand coordinate using the
inverse matrix of Ms in section 5.1. The transformed curve seg-
ments are G′i = {G′1, ...,G

′
30} and each segment G′i consists of trans-

formed 2D points V′ij. With curve segment matching based on the
arc length, we can find corresponding feature of V′ij in the source
hand image. Our algorithm can accumulate small errors within its
traversing step but it shows acceptable results in our experiment.



The method is described in Algorithm 3 and an example of curve
segment 2 is in figure 7.

Variables: G: curve segments of the generic hand, G’: trans-
formed curve segments of the generic hand, S:
curve segments of the source hand, V’: trans-
formed vertices composing a curve segment G’

1 Define curve segment Si(si,ei) = {S1, ...,S30} from hand
anatomy [Figure 1(c)];
/* si: start point of segment, ei: end point of segment */;
/* Each G′i correspond with segment Si using its anatomical
location */;

2 Calculate arc length of G′i and Si;
3 Calculate scaling γ = length(Si)/ length(G′i);
4 for all segment i do
5 for all vertices j in segment i, V ′i, j = {V ′i,1, ...,V ′i,n} do

Calculate D j = |V ′i, j+1−V ′i, j| /* n: number of ver-
tices on the G′i */;

6 Initialize s′j = pk = si; /* s′j : current start point, pk :
pixels in the Si */;

7 while traverse pk from si to ei do
8 Calculate D′j = |pk− s′j|;
9 if D′j ≥ γD j then

10 Assign pk as the corresponding feature of Vi, j+1;
11 s′j ←− pk;

Algorithm 3: Curve segment matching algorithm

5.2.2 Skin deformation

With the set of point locations xi = {x1, ...,xn} and their values fi =
{ f1(x1), ..., fn(xn)} we can find function R(x) which gives smooth
interpolation of these data using radial basis functions (RBFs) [Carr
et al. 2001].

R(x) = P(x)+
n

∑
i=1

λiφ(|x− xi|), x ∈ Rd (4)

In equation 4, P(x) is a low-degree polynomial, λi is a real val-
ued weigh, φ is a basis function, and n is the number of control
points. Our RBFs R(x) are defined by the corresponding feature
points achieved in section 5.2.1, and its distance vector between
the generic hand and source hand. The thin plate spline (TPS),
φ(r) = r2 logr is used as our basis function for smooth deforma-
tion of our skin mesh, since TPS interpolates specified points while
minimizing an approximate curvature [Bookstein 1989].

The vertices of the generic hand mesh are displaced by the RBFs
resulting in a clone hand which has the same contour curve, hand
geometry, and joint location as the source hand. The depth value of
hand geometry was not considered in RBFs deformation, since the
features for depth could not be obtained from the 2D source hand
image. Instead, the generic hand depth is proportionally scaled by
the hand length measured in section 5.1.

6 Results

Our automated method generates a person-specific human hand
model with similar joint structure and skin geometry to the source
individual’s hand. The similarity between the original and cloned
hand can be seen in Figure 6(a) and (b). While texturing and an-
imated skin deformation are beyond the scope of this paper, some

Figure 8: Hand clone result in various view points

supplementary properties of our process help reduce the effort in-
volved in these tasks:
• The source hand image can be re-used as the skin texture map

in the 3D clone hand. Due to the similarity of contour shape
and scaling between the clone hand and the skin texture, the
texture mapping can be executed using simple planar projec-
tion in the camera direction.

• Also, because our generic hand model has a joint skeleton
bound to skin geometry, it is easy to control the final model us-
ing this joint skeleton [Figure 6(f)]. If the generic hand model
has animated skin deformation or other properties, the clone
hand inherits those characteristics properly.

These supplementary properties are demonstrated in Figure 8, and
Figure 1(e) where the individualized model is textured by planar
projection, and the skin deformation system from the underlying
generic Maya hand model is used to deform the skin guided by
rotations of the skeleton joints.

We tested our method by creating five human hand models having
different age, sex, and scale; a four year-old girl, a five year-old
boy, a large male, an average female, and an average male. We took
hand picture in specific conditions described in section 3 and used
two generic hand models, a low resolution mesh (13372 triangles
with 6715 vertices), and a high resolution mesh (32784 triangles
with 16423 vertices). The results are shown in Fig 10. The first row
shows extracted joint information, the second row shows rendered
clone model with texture maps, the third row shows the polygon
mesh, and each column demonstrates cloning a particular source
hand.

Our method requires setting several thresholds to extract creases;
Canny edge detection, tensor voting, and crease extraction. Once



set the default thresholds are sufficient during our test provided
good lighting conditions (without significant shadows on surfaces)
in the source image.

7 Conclusions

In this paper, we presented a method to make a person-specific
hand model using the surface anatomy visible in a single photo-
graph of that individual’s hand. We extracted basic hand geometry
and creases using tensor voting for the surface anatomy features.
The joint structure was inferred from the surface anatomy features.
Finally, we deformed skin geometry using RBFs with automated
feature correspondences based on the curve segment matching.

As a result, we can create a virtual hand clone that has the same
contour geometry, joint skeleton, and skin texture map as the source
person. Since the algorithm has no human guidance (other than
threshold adjustment in difficult cases) and the only information
required is a palmar skin image, the method is easily applied.

Since we only use a palm picture, we cannot measure hand thick-
ness accurately, relying instead on an approximate depth propor-
tional to hand length. This approximation may result in an erro-
neous depth of the joints within the mesh. Because the CMC joint
of the thumb has very complex mechanisms in terms of biomechan-
ics and anatomy, accurate CMC joint modeling from a 2D image
cannot be guaranteed.

Also, because our method relies on important creases on the palmar
skin, we cannot apply our algorithms to an atypical human hand; for
example, those with missing or vague important creases, or with
corns, calluses, and any significant scar on the palmar surface.

On the other hand, our overall approach does not prohibit the in-
tegration of additional information, such as additional texture pho-
tographs from other angles, and accurate depth data from a volu-
metric scanner.
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Figure 9: Crease extraction and joint modeling: (a) Green curves are the extracted palm creases (b) Blue lines are the location of finger crease
(c) Blue dots are the calculated joint locations

Figure 10: Hand clones of five people: the first row is a set of source hand images and extracted joint information, the second row is a set of
rendered clone models with texture maps, and the third row is a set of polygon meshes of the clone models; (a) a four year-old girl of 12cm
hand length (low resolution mesh), (b) a five year-old boy of 13cm hand length (low resolution mesh), (c) an average female of 16.5cm hand
length (low resolution mesh), (d) an average male of 18.5cm hand length (high resolution mesh), (e) a large male of 21cm hand length (high
resolution mesh).


