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Abstract

Principal component analysis (PCA) involves a signal that is sampled
at some arbitrary but fixed and countable set of locations. Radial Basis
Function (RBF) regression interpolates a-priori known data to arbitrary
locations as a weighted sum of a (radial) kernel function centered at the
data points. In recent work we showed that if the RBF kernel is equated
to the covariance, RBF and Gaussian Process (GP) models perform a
similar computation, differing in what information is assumed known in
advance, and what is known at runtime. Building on the RBF-GP equiva-
lence, we show that if the data covariance is known (or can be estimated),
an RBF-inspired regression can provide data-driven “superresolution” in-
terpolation of given data. This procedure can alternately be interpreted
as a superresolution extension of eigenvector (principal component) data
models, as signal sampling (function evaluation) in a discrete reproduc-
ing kernel Hilbert space (RKHS) generated by the data covariance, or as
an elementary Gaussian process model in which the observations have a
low-rank representation.

1 Introduction

In this paper we demonstrate a data-driven superresolution procedure. The
procedure can alternately be interpreted as a superresolution extension of prin-
cipal component analysis (PCA) data models, or as function evaluation (signal
sampling) in a discrete reproducing kernel Hilbert space (RKHS) generated by
the data covariance.

Terminology. The paper informally equates a radial basis function G(∆) to
a covariance. In so doing we consider covariances C(x, y) = C(‖x− y‖) = C(∆)
corresponding to stationary processes. Throughout the paper the mean of the
process or data is assumed to be zero without loss of generality. We further use
the covariance as the kernel in an RKHS. The reader should also distinguish
continuous functions and the matrices generated by evaluating the continuous
function at discrete locations. Discrete variables are indicated in bold font.
M(d, n,R) denotes the set of real matrices of size d × n. The number of data
points is denoted by n, d is the dimensionality of a single data point in the case
of PCA data, and m is the number of eigenvectors retained in a PCA model. In

1



order to suggest a relationship, related quantities are sometimes denoted with
the same symbol. The usage is explained and is unique within each section.

Principal Component Analysis. PCA represents data in a linear sub-
space obtained from the eigenvectors of the covariance matrix, estimated as
C ≈ 1

nFFT where F ∈M(d, n,R) is a matrix containing the data points fk ∈ Rd
in its columns. We refer to a PCA “model” as

f = Uc + m (1)

where f is a vector representing the signal being modeled, U ∈ M(d,m,R)
are eigenvectors of the covariance matrix C corresponding to the m largest
eigenvalues (m ≤ d), m ∈ Rd is the mean of the data points, and c are PCA
“coefficients”. In this model the data covariance

C = E
[
(f −m)(f −m)T

]
= E

[
UccTUT

]
is replaced with the low rank approximation

C ≈ UΛ1:mUT

where Λ1:m ∈M(m,m,R) denotes the diagonal matrix formed from the largest
eigenvalues.

Strictly speaking PCA is a valid model only in the case where the data is
jointly Gaussian. Nevertheless, this approximate model is adequate in some
applications. For example, a jointly Gaussian model of face proportions has
been widely employed in computer vision [6] and even psychological theory [15].
While PCA is not considered a generative model, it is easy to synthesize new
data having the same covariance as the observed data fk by picking random
coefficients c according to c2k ∼ λk.

To simplify notation, in the remainder of the paper Λ1:m will be denoted
simply as Λ. Also, the covariance matrix C should be understood as represent-
ing either the full rank covariance matrix or a low-rank approximation thereof.
Most of the calculations are unchanged, although C−1 and Λ−1 should be un-
derstood as pseudoinverses in the low-rank interpretation.

RBF regression. RBF regression at a location p has the form

f̂(p) =

n∑
k=1

akG(‖p− pk‖)

where G() is a radial function situated at the n training data locations pk.
Assembling the data values to be interpolated in a vector f , the weights can be
obtained from the linear system

Ga = f

where G is the n × n matrix consisting of the radial basis function evaluated
at all pairs of data locations, Gr,c = G(‖pr − pc‖). This describes the case
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of regression with a positive definite radial kernel G. Other RBF kernels are
conditionally positive definite and require solving a block matrix system [3]. In
matrix-vector notation the regression can be written

f̂(p) = rTG−1f (2)

where r ≡ rp is the vector of the kernel evaluated at the distance between the
evaluation location p and all the training locations pk, i.e.,

r = [G(‖p− p1‖), G(‖p− p2‖), G(‖p− p3‖), · · · , G(‖p− pn‖)] .

Note that the position p is arbitrary.
Gaussian process regression. A discrete Wiener filter estimates the sig-

nal f̂(p) at a location p as a linear weighted sum of the data f at previous or
surrounding locations,

f̂(p) = wT f . (3)

The orthogonality principle states that the error of the optimal estimator is
orthogonal in expectation to the data:

E
[(
f(p)−wT f

)
fT
]

= 0

or equivalently
E
[
f(p)fT

]
= wE

[
ffT
]
.

E
[
ffT
]

= C is the covariance of a zero-mean stationary process and E
[
f(p)fT

]
=

rT is the cross covariance between the signal at the location p and at the data
points f(pk) ≡ fk for k = 1, · · · , n. This gives a linear system Cw = r that
can be used to solve for the weight vector w. Substituting in Eq. (3) gives the
estimator

f̂(p) = rTC−1f . (4)

The variance of the estimator is

E
[(
f −wT f

)2]
= σ2 + E

[
−2fwT f + wT f fTw

]
= σ2 − 2 wTE [f f ] + wTCw

where σ2 is the variance of the (stationary) process, and f ≡ f(p) is written
for brevity. Substituting the cross-covariance r and the weights w = C−1r, we
have

= σ2 − 2wTE [f f ] + rTC−1 C C−1r

= σ2 − rTC−1r .

Eq. (4) and this expression for the variance have the same form as the mean
and variance in Gaussian process (GP) regression [12, 2.19].

In recent work [2] we observed that if the radial basis kernel function is
equated to the covariance, RBF regression has the same computational form
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as Gaussian Process regression, as can be seen from Eqs. (2) and (4). This
correspondence requires simultaneous generalization of the RBF kernel to non-
radial form and a restriction to valid (i.e. positive-(semi)definite) covariances.

In the remainder of this paper we first describe the superresolution proce-
dure. We show that the procedure has the representer of evaluation and repro-
ducing kernel properties of an RKHS, albeit in discrete rather than continuous
form. Finally, we show a computational experiment using the superresolution
procedure.

2 Superresolution

We start from the matrix-vector representation of RBF regression, (2). We will
equate G to a covariance function C, which is a generalization to non-radially
symmetric kernels. “Oriented” flavors of RBF regression have previously ap-
peared in the literature [7, 5]. Since the matrix G is symmetric, it has a low-
rank approximation UΛUT . Substituting this eigenexpansion, the regression
takes the form

f̂(p) = rTC−1f = rTUΛ−1UT f (5)

Denoting c ≡ Λ−1UT f , Eq. (5) can be interpreted as incorporating the re-
sults of a PCA-like representation Uc involving the data covariance eigenvectors
U (we again assume the data mean is zero):

f̂(p) = rTU
(
Λ−1UT f

)
= rTUc

(6)

The discrete principal component model Eq. (1) involves data that is sampled
at some arbitrary but fixed and finite set of locations. Eq. (6) extends this by
premultiplying with r. Recall that r can be interpreted as a vector of cross-
covariances between the location p at which the the regression is evaluated and
the locations of the data points pk,

r = C(p, ·) = [C(‖p− p1‖), C(‖p− p2‖), C(‖p− p3‖), · · · , C(‖p− pn‖)] (7)

If the covariance function C(∆) is known for all offsets ∆ then the data estimate
(6) can be evaluated at arbitrary locations, effectively providing a covariance-
driven superresolution.

We next sketch that function generated with the superresolution estimate
(6) in fact has covariance C. In this section let ri denote the cross-covariance
(7) evaluated at the location pi (rather than at an arbitrary location). The
covariance of the estimated signal is:

E [f(pi)f(pj)] = E
[
rTi C−1f fTC−1rj

]
= rTi C−1 C C−1rj

= rTi C−1rj

= Ci,j

4



0 5 10 15 20

0

5

10

15

0 5 10 15 20

Figure 1: Left: Radial basis interpolation of six points using a Gaussian ker-
nel. Right: equivalent kernels for each of the data points, offset vertically for
visibility.

(For the last step note that ri is the ith row of C, hence multiplying by C−1

gives ei, the indicator vector with 1 in the ith location, otherwise zero).

3 Equivalent kernel

Note that Eq. (4) is more commonly interpreted in a different way. In this
interpretation

f̂(p) =
(
rTC−1

)
f

= b(x)T f .

Here b(x) = C−1r is the vector of equivalent kernels [9] evaluated at location x.
The individual kernels bk(x) are one at the location xk of the kth data point,
and zero at the locations of the other data points (Fig. 1).

4 Interpretation as evaluation in an RKHS

In this section we show that Eq. (5) resembles function evaluation in an RKHS
corresponding to the covariance C.

Representer of evaluation

The kernel in an RKHS acts similarly to a delta function, providing function
evaluation at a particular location under the inner product:

〈f,K(·, x)〉C = f(x) (8)

In our discrete case we propose that

fTC−1rx = f(j) (9)

5



with rx defined as the vector of K(·, x) evaluated at the data points. In the case
of where x is one of the data locations pj ,

rx = Cej

(em is the indicator vector). Then, substituting rx, we have

fTC−1Cej = f(j) .

Reproducing property

Similarly,
〈K(·, x),K(·, y)〉 = K(x, y)

≈
〈
eTxC,Cey

〉
C

= eTxC C−1 Cey = eTxCey = Cx,y .

Inner Product

The analogy between (8) and (9) requires an inner product of the form

〈v1,v2〉C = vT1 C−1v2 .

This can be motivated as follows: in the continuous case, the reproducing kernel
has the (Mercer) expansion:

C(x, y) =

∞∑
k=1

λkuk(x)uk(y)

A signal is also representable in terms of the eigenvectors of the kernel:

f(x) =

∞∑
k=1

ckuk(x) .

The inner product is defined to be〈 ∞∑
k=1

ckuk(x),

∞∑
k=1

dkuk(x)

〉
C

=

∞∑
k=1

ckdk
λk

giving the norm
√∑∞

k=1
c2k
λk

.

In practice in the discrete case the summation is finite. The squared norm
can be written in matrix-vector form

m∑
k=1

c2k
λk

= cTΛ−1c

and re-expressed in terms of the kernel as

m∑
k=1

c2k
λk

= fTUΛ−1UT f = fTC−1f .

We will take the kernel as the covariance matrix, and for simplicity consider
only the case of positive definite covariances. In this case all the eigenvalues are
positive real and the norm is valid.
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5 Computational Experiment
The superresolution estimate (6) requires supplying or estimating a covariance
matrix. In some cases the form of the covariance matrix is known or assumed.
For example, the use of the Discrete Cosine Transform (DCT) in image compres-
sion is motivated by the choice of Cr,c = ρ|r−c|, ρ ≈ 0.9 as a generic covariance
for images [11]. Estimating a nonparametric covariance matrix from data re-
quires care if the number of data points is not sufficient to reliably estimate the
n(n+ 1)/2 parameters of the covariance matrix, and is a subject of continuing
research [10]. Although the covariance must be estimated, even an approximate
covariance might result in better interpolation than would be obtained using
generic spline interpolation.

There are known algorithms for generating multivariate normal random vec-
tors with a specified covariance [8]. One simple algorithm is obtained by con-
sidering the covariance of a linearly transformed random vector x = Tn where
n is an uncorrelated normal random vector (i.e. having an identity covariance
matrix):

Cx = E
[
TnnTTT

]
= TTT .

Thus, if the transform T is a “square root” of a desired covariance matrix
C = TTT , then x will have covariance C (the decomposition is not unique).
T can be obtained using the Cholesky decomposition if the covariance is non
singular. This algorithm is limited to generating vectors x with a fixed number of
samples at offsets corresponding to those that generated the covariance matrix,
whereas our procedure can generate the signal at arbitrary locations.

In Figs. 2-4 we simply select a covariance for the purpose of illustration,
whereas Fig. 5 uses a covariance estimated from real data.

Fig. 2 shows an experiment using the covariance C(∆) = exp(−(15∆)2).
The low-resolution points are interpolated exactly.

Fig. 3 uses the oscillatory kernel C(∆) = exp(−∆2) cos(18∆) to interpolate
randomly sampled data points. This figure illustrates an important difference
between this form of superresolution and spline interpolation: while spline in-
terpolation is generic (data agnostic) and minimizes a form of curvature, the
superresolution is based on the covariance and can potentially emphasize cur-
vature. In this case the chosen kernel forces wild oscillation.

Fig. 4 shows hole filling or “inpainting”, in which a contiguous range of data
are missing and filled in.

Fig. 5 shows inpainting of an approximately periodic signal obtained from
motion capture of a joint angle (x-rotation of left tibia) from a walking motion.
The data for this example was obtained from Subject #2 in [1].

6 Conclusion
Radial basis functions, principal component analysis, and Gaussian processes are
widely used in computer graphics and computer vision. Particular applications
include reconstruction of scanned data [4], motion capture from single-cameras
[13], character animation [14], and many others. As each technique is founded
on pairwise relationships expressed through a two-argument kernel or covariance
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Figure 2: Left column: example signals synthesized with covariance
exp(−(15∆)2). Right column: corresponding superresolution signals. The indi-
cated points are interpolated exactly.

function, it is not surprising that relationships between these techniques can be
discovered. We illustrate the value of exploring these relationships through the
derivation of a data-driven superresolution procedure.
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Figure 5: Inpainting of a joint angle signal from motion capture of a walking
motion [1]. Each subplot shows one third of the signal omitted and estimated.
The covariance is estimated from the original signal (Fig. 6).
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Figure 6: Covariance function estimated from the data used in Fig. 5.
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