
..

..

This is an electronic preprint. To be published in The 30th International

.
Conference on Image and Vision Computing New Zealand (IVCNZ 2015).

An Information Theoretic Approach
to Reflectional Symmetry Detection

Agata Migalska
Wrocaw University of Technology

Wrocaw, Poland
Email: agata.migalska@pwr.edu.pl

John Lewis
Victoria University of Wellington

Wellington, New Zealand
Email: john.lewis@vuw.ac.nz

Abstract—Symmetry is an omnipresent transformation in both
nature and man-made objects. It is remarkable how human
beings are capable of detecting and recognizing symmetries in
the surrounding world without hesitation and without much
apparent mental effort. On the other hand, teaching a machine
to perform the same task has been challenging, resulting in a
variety of approaches and algorithms. In this paper we appeal
to information theory to obtain a novel and general principle
for symmetry detection. Folding an image in half along a line
that coincides with an axis of reflectional symmetry preserves
the statistics of the image, whereas folding along any other
line alters these statistics to become more Gaussian. Symmetric
transforms can thus be detected as those that have the largest
negentropy. Experimental evaluation shows that our algorithm
properly detects the symmetry axes within synthetic and natural
images and is applicable for reflectional symmetry of an arbitrary
order.

Index Terms—symmetry detection, negentropy, angle of reflec-
tion

I. INTRODUCTION

Symmetry can be defined as a geometric transformation,
other than an identity, which, applied to a given mathematical
object, returns an object identical to the input [1].

Seldom does symmetry occur by accident. If two regions
are symmetric it is highly probable that these regions are
related in the real world, or even that they belong to the same
object. Therefore, by detecting symmetry it is possible to start
grouping or segmenting the image without prior knowledge
of image content. As many objects exhibit some degree of
symmetry, symmetry detection can be to the benefit of the
computer vision systems by providing information significant
for image analysis and understanding, shape classification or
recognition. An additional benefit is derived from symmetry
detection in the field of image compression. The existence
of self symmetry of the image lays the foundation for the
fractal image compression, while bilateral symmetry has been
exploited in medical image lossless compression [2].

Perception of symmetry in humans and other animals has
been well-studied and the concluding remarks are that sym-
metry is both attractive and biologically significant [3], [4].
Moreover, it can be detected by simple visual processes [3].
On the other hand, despite the significant research effort made
there is still a need for a robust, widely applicable symmetry
detector [5].

A. Related Work

Symmetry has been thoroughly studied in literature, starting
from philosophical through mathematical to computational
points of view. A theoretical analysis of symmetry, including
the two former outlooks, can be found in a celebrated book by
Weyl [1]. We shall, however, focus our attention on the com-
putational approaches to symmetry detection and recognition,
and on methods for detection of the reflectional symmetry axes
in particular.

Existing methods for symmetry detection can be grouped
into several categories. One approach rests on the characteris-
tics of the Fourier transform, that the symmetry of images in
their frequency domain representations is preserved.

Sun et al. [6] proposed a reflectional symmetry detection
algorithm that employs the gradient orientation histogram of
the input gray-scale image to obtain the directions of the
symmetry axes. Fast Fourier transform is used to obtain the
convolution function from the gradient orientation histogram
of the input image. The peaks in the obtained convolution
function correspond to the orientations of symmetry axes.

A similar method, in terms of use of autocorrelation as a
tool for reflective symmetry detection, was presented in the
work of Kazdhan et al. [7]. A reflective symmetry descriptor is
introduced to assess the level of symmetry, and is obtained by
decomposing the image into concentric circles and computing
the reflective symmetry descriptors on each of the circles.

Another approach was proposed by Derrode and Ghor-
bel [8], who applied the Analytical Fourier-Mellin transform
(AFMT) in order to detect and localize the symmetry axes in
gray-level images. In their method, a functional is constructed
from the Euclidean distance between the AFMT representation
of two objects. The location of its minimum determines the
scale and rotation that should be applied on the first object to
match the second.

Lucchese [9] presented an algorithm that operates on the
image representation in Cartesian coordinates and does not
necessitate computing its polar discrete Fourier transform. The
task of classifying reflectional and rotational symmetries is
accomplished by looking at the point-wise zero crossings of
the difference of the Fourier transform magnitudes along rays.
However, whether the method could be applied to natural or
noisy images was not evaluated.
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Keller and Shkolnisky [10] proposed using a pseudo-polar
grid for Fourier transform computation. Their algorithm for
rotational and reflectional symmetries detection is based on
the properties of an angular correlation (AC), which is shown
to be a periodic signal having frequency related to the order
of symmetry. Retrieval of the tilt angle of reflection axis is
made by registering an image to its upside down version.

A different class of intensity-based algorithms utilizes the
numerical moments calculated from the image.

Shen et al. [11] presented a Shen-Ip Symmetry Detector
for detecting both reflections and rotations, that is based on
first three nonzero generalized complex (GC) moments. In
their method, the fold number is determined by calculating
the biggest common factor of all orders making GC moments
nonzero, and the fold axes are defined by the phase and the
order of the combined moment which is generated from all
the nonzero GC moments.

An approach for testing image symmetries utilizing the
Zernike moments was proposed by Bissantz et al.[12]. The
proposed test statistics are constructed by expressing the
symmetry conditions in terms of restrictions on the Zernike
moments. This work was extended by Pawlak [13], who
proposed an estimator for the tilt angle of reflection. It is
shown that an angle, for which the distance between the
observed function and its symmetric counterpart attains the
minimum, is the true angle of reflection axis. However, the
main drawback of the methods based on moments is their
high computational complexity.

Almost all of the aforementioned methods suffer from the
necessity of transforming the image from Cartesian into the
polar coordinate system. While discretisation of the continuous
image function is already a source of error, the transformation
from one coordinate system to another introduce an additional
geometric error. In order to alleviate this problem a pseudo-
polar grid of concentric squares was employed in [10], while
in [12] a polar pixel tiling scheme [14] is suggested to improve
the accuracy of the Zernike moments computation. However,
whilst resolving accuracy issues, these methods inherently
reduce the clarity of the proposed methods and increase their
computational complexity.

B. Contribution

The algorithm we present identifies the global reflectional
symmetries of gray-scale images. An input image is folded
along a hypothesized symmetry axis passing through the centre
of the image. The intensities within the folded image are
the averaged intensities of the overlapping pixels from both
halves of the input image. Supposing that the folded image
is a realization of a random process the non-gaussianity of its
probability distribution is observed. Our method is based on an
observation that if the hypothesized tilt angle of reflection axis
is correct and both halves of the input image are derived from
one probability distribution then the probability distribution
of the folded image preserves the statistics of the image.
However, if the hypothesized angle is incorrect, the probability
distribution of the folded image becomes more Gaussian.

Since it is commonly believed that images are very non-
Gaussian, high dimensional, continuous signals [15], the most
non-Gaussian distribution corresponds to the true tilt angle of
the symmetry axis. This distance to non-normality is measured
by means of negentropy, a measure previously employed in In-
dependent Component Analysis (ICA)[16], [17] for separating
a multivariate signal into additive subcomponents.

Our contribution in this paper is NegReflection - an accu-
rate and robust method for reflectional symmetry detection.
Unlike other existing methods, the algorithm operates on the
Cartesian grid and does not require any conversion to polar
image representation. Moreover, as shall be presented in the
experimental evaluation section of the paper, our method can
be successfully applied to detect symmetries of an arbitrary
order, i.e. having one or more axes of symmetry, as well as
to detect almost-symmetries in natural images. The novelty
of the proposed method lays in measuring the amount of non-
gaussianity within the folded images to retrieve an information
on symmetry. Such a concept, to our best knowledge, has not
been utilized before. Given the appealing properties of the
discovered relationship it is hoped that its further investigation
will lead to development of robust, widely applicable symme-
try detector.

The rest of the paper is organized as follows. Section II
introduces the proposed method complemented by the neces-
sary theoretical background. Section III outlines the algorithm
and implementation details. Finally, sections IV and V present
experimental results and concluding remarks, respectively.

II. THEORETICAL PRELIMINARIES

Let us consider a two-dimensional intensity image I
recorded on a square, equally-spaced Cartesian grid of size
n× n. Each element of the grid, a pixel, is a discrete sample
from a continuous image function whose value is in [0, 1].

A. Image Symmetry

A two-dimensional function is said to be reflectionally
symmetric if it is invariant to reflection with respect to one
or more straight lines, the reflection axes. A formal definition
of reflectional symmetry is given below.

Definition 1 (Reflectional symmetry): A function ψ : R2 →
R is reflectionally symmetric with respect to the vector
(cos θ0, sin θ0) if

ψ (x, y) = ψ (Sθ0 (x, y)) (1)

where

Sθ0 (x, y) =

(
cos 2θ0 sin 2θ0
sin 2θ0 − cos 2θ0

)(
x
y

)
. (2)

θ0 is the tilt angle of the reflection axis of ψ. A function ψ
has reflectional symmetry of order N if there are N angles
θn that satisfy Equation 1.

A graphical illustration of reflectional symmetry is pre-
sented in Figure 1a, where the symmetry axis passes through
the origin of the coordinate system and is rotated counter-
clockwise about the origin by the tilt angle θ0. In our scheme,
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we make an assumption that the axis of reflection passes
through the center of an image and is rotated about the center
of an image by θ0, as given in Figure 1b. An axis of reflection
is given by y = ax+b where θ0 is a tilt angle, and a = tan θ0
and b = n

2 (1− a) are the slope and intercept, respectively.

..
x
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y
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θ0
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x
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y
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(b)

Fig. 1. 1a) Symmetry axis passing through the origin of the Cartesian
coordinate system and rotated counter-clockwise by tilt angle θ0. 1b) Image
placement with respect to the origin of the coordinate system with row zero
at the top. Symmetry axis, rotated clockwise by tilt angle θ0, passes through
the centre of an image.

A line passing through the centre of an image I splits this
image into two halves, the one above the line represented by
IU and the other below the line represented by IL. Let us now
imagine that we are taking an image and folding it along this
line, which results in an image half the size of the original one.
For each pixel in the resulting image its intensity is an average
of an original pixel at a given position and of a folded one, i.e.
reflected by the above-mentioned line - an axis of reflection,
and is given by

IS (i, j) =
1

2
(IU (i, j) + IL (Sθ0 (i, j))) , (3)

where Sθ0 is a symmetry transformation defined in Equation 2
and i, j ∈ {1, . . . , n}.

In Figure 2 an example of the above-mentioned folding is
given. The upper half of an image and the reflected lower half
are shown in Figure 2a and 2b, respectively, while the result
of taking the average of both is presented in Figure 2c.

(a) Upper half (b) Reflected lower half (c) Folded image

Fig. 2. Two halves of the image (2a and 2b) and their average (2c).

B. Distribution of the Folded Image

Suppose the half-images IU and IL are the n2

2 -element
samples from some one-dimensional probability distributions.
What is the distribution of IS? If the image I is perfectly
reflectionally symmetric and folded along the symmetry axis,
then IS(i, j) = IU (i, j) = IL(Sθ0(i, j)). While from Central
Limit Theorem it arises than an addition of a large number of
independent random variables is approximately normal [18],

it is not reasonable to consider IL and IU independent in this
case. On the other hand, an incorrectly chosen transform Sθ

will result in the addition of regions that are not symmetrically
related and can be considered approximately independent.
Therefore, the probability distribution of the folded image
becomes more Gaussian. Further, as outlined in the Appendix,
the distribution will tend to change gradually as the identified
transform Sθ0 changes from the true symmetry to a transform
that puts unrelated regions in correspondence.

Thus, we hypothesize that in order to determine the true
tilt angle of symmetry axis an amount of gaussianity in the
distribution of the image IS , given a hypothesized tilt angle θ,
is to be observed. To assess this amount of gaussianity we shall
turn our attention to entropy, a basic concept in information
theory, and negentropy - its counterpart that gained popularity
in Independent Component Analysis (ICA)[16], [17] as a
measure of non-gaussianity.

Differential entropy, an extension of Shannon entropy to
continuous probability distributions, is a measure of amount of
the information associated with a continuous random variable.
The more “random”, i.e. unpredictable and unstructured, the
variable is, the larger its entropy. The differential entropy of
a random variable y with density py (η) is defined as

H (y) = −
∫
py (η) log py (η) dη. (4)

A fundamental result of information theory is that a Gaussian
variable has the largest differential entropy among all random
variables under the constraints of mean and variance, meaning
that the Gaussian distribution is the most random or the least
structured of all continuous distributions (whereas the highest
entropy discrete distribution is the uniform distribution). In
order to determine how close the distribution of y is to the
normal distribution negentropy could be used. The negentropy
of a random variable y is defined as

J (y) = H (ygauss)−H (y) (5)

where ygauss is a Gaussian random variable of the same
mean and variance as y. Negentropy can be thought of as a
measure of non-gaussianity or degree of structuredness of the
distribution of y. Negentropy is non-negative, reaching zero if
and only if y has a normal distribution, and is invariant under
invertible linear transformations.

Estimating negentropy from the definition is computation-
ally difficult. Fortunately, to our aid comes the approximation
of negentropy by nonpolynomial functions [17, pg. 118]:

J (y) ≈ k1
(
E
{
y exp

(
−y2/2

)})2
+

+ k2

(
E
{
exp

(
−y2/2

)}
−
√

1

2

)2 (6)

where k1 = 36/
(
8
√
3− 9

)
and k2 = 24/

(
16
√
3− 27

)
[17,

pg. 119]. It should be noted that in [17] two approximation
formulas are given. The above formula was chosen due to the
smaller approximation error (see [17, pg.120-121]) as well as
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due to higher smoothness of the obtained negentropy function
in the course of experimental verification.

Equipped with the above tools we may now state the
primary result presented in this paper.

Proposition 1: Let IS be a folded image, as defined in
Equation 3, of a reflectionally symmetric image I . The tilt
angle of the reflection axis, denoted as θ0, can be estimated
as

θ̂0 = argmax
θ∈Θ

J (IS (θ)) , (7)

where Θ is the set of hypothesized tilt angles.
Thus, finding the tilt angle of reflection axis is equivalent to
finding the angle for which the negentropy of the folded image
is maximized.

III. IMPLEMENTATION DETAILS

To demonstrate Propostion 1, a set of integer valued angles
Θ = {0, 1, 2, . . . , 179} in degrees is considered. It should be
noted that due to periodicity of the tangent function, tanα =
tan (α+ kπ), k ∈ Z, α ∈ [0, π), the set Θ is limited to two
quarters of the circle.

The NegReflection algorithm is as follows.
For every hypothesized angle θ within the set Θ:

1) a reflection axis is calculated and IU and Sθ (IL) are
determined,

2) IS is obtained by averaging values in IU and Sθ (IL),
3) IS is normalized to zero-mean and unit variance,
4) the negentropy of IS is approximated by formula given

in Equation 6.
Finally, following the result presented in Proposition 1, the an-
gle that maximizes the negentropy is selected as an estimated
tilt angle of reflection axis.

The pseudocode of the NegReflection algorithm is given in
Algorithm 1.

Algorithm 1 NegReflection Algorithm
1: procedure NEGREFLECTION(I , Θ)
2: θ0 ←∞
3: J0 ←∞
4: for all θ ∈ Θ do
5: IU , Sθ (IL)← REFLECT(I , θ)
6: IS ← (IU + Sθ (IL)) /2
7: IS ← NORMALIZE(IS)
8: J ← NEGENTROPY(IS) ◃ Equation 6
9: if J < J0 then

10: θ0 ← θ
11: J0 ← J
12: end if
13: end for
14: return θ0 ◃ Tilt angle
15: end procedure

The only transformation of an input image is performed
during the reflect operation, when the upper and the
reflected lower matrices are being constructed. Given an image

matrix I and a tilt angle θ, the slope a and intercept b of a
reflection axis are calculated as well as the slope a⊥ of a
line perpendicular to the reflection axis. For each pixel, the
intercept b⊥ of a perpendicular line is determined as well as
the coordinates (x′, y′) of the point that should be reflected
onto the currently processed pixel location (i, j). If the point
to be reflected is located above the symmetry axis it is stored
at (i, j) location of both resulting matrices. If it is located on
the symmetry axis it is stored only in IU .

IV. EXPERIMENTAL RESULTS

Experimental evaluation of the proposed method was per-
formed on synthetic and natural images. For each test image
the highest negentropy values and their corresponding angles
were determined. Resolved symmetry axes were marked on
each test image for visual verification. The obtained results
are discussed below.

A. Bilateral Symmetry Detection

Bilateral symmetry, i.e. of degree 1, was tested on the set
of synthetic images having symmetry axes rotated by various
angles. Examples of obtained results are given in Figure 3.
Tilt angle is properly recognized to be 60◦ for Image 1 (3a)
and 160◦ for Image 2 (3b). Plots of negentropy as a function
of angle for both images are shown in Figures 3c and 3d,
respectively.

B. Higher Order Symmetry Detection

Higher orders of reflectional symmetry were also tested on
the set of synthetic images, with the order of symmetry ranging
from 2 to 9. The results, presented in Figure 4, show that
negentropy in these cases resembles a periodic function with
the highest peaks corresponding to the angles of symmetry
axes.

C. Symmetries in Natural Images

Finally, in order to evaluate performance of our method
on images that are not perfectly symmetric, the method was
tested on a set of natural images. Obtained results are given in
Figure 5. Even though the plots of negentropy are more noisy,
compared to the results for synthetic images, maximal values
are still observed for the approximately correct angles.

V. CONCLUSION

We presented a 2D symmetry detection algorithm which
detects the reflection axes of symmetry within gray-scale
images. An estimate of the tilt angle of the reflection axis
is proposed as such that maximizes the negentropy of the
image folded along this axis. This formulation is based on
the observation that if an image is split by a true reflection
axis so that both its halves are drawn from the same, non-
Gaussian distribution then the distribution of the folded image
is unchanged and also non-Gaussian. However, if a selection of
a symmetry axis is incorrect and two halves of an input image
are not symmetric then the distribution of the folded image
becomes more Gaussian. The approach is shown to be accurate
and effective in recovering centered reflectional symmetries
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(a) Image 1 (b) Image 2

(c) Negentropy vs angle for Image 1

(d) Negentropy vs angle for Image 2

Fig. 3. Results obtained for images with bilateral symmetry. Maximum
negentropy is attained at the tile angle fo the symmetry axis. Detected axes
are shown in 3a and 3b.

of arbitrary order in gray-scale images, both synthetic and
natural. The formulation of symmetry detection in terms of
information theory also may have interesting consequences
that are not explored in this paper. For example, the probability
density function (pdf) of an image region is insensitive to
permuting the pixel locations, and thus our formulation might
handle symmetries that are only statistical in character – unlike
measures such as simply minimizing a difference between
corresponding pixels.

The work reported here is only targeted at validating the
proposed principle for symmetry identification, and we did not
consider important considerations such as optimization strate-
gies or finding the centre of symmetry. It is hoped that further
algorithmic development and analysis of the properties of the
distributions underlying symmetric regions within images will
eventually lead to development of a robust, widely applicable
symmetry detector.

(a) Image 3 (b) Image 4

(c) Negentropy vs angle for Image 3

(d) Negentropy vs angle for Image 4

Fig. 4. Results obtained for images with higher orders of symmetry. The
observed peaks of negentropy correspond to the tilt angles of the symmetry
axes. Detected axes are shown in 4a and 4b.
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APPENDIX

Denote the discrete pdf (histogram) of a greyscale image as

PIS (v) =
1

N

∑
x,y∈Ω

δ(I(x, y), v)

where Ω is the support of the image I , N is the number of
pixels, v is the grey value, and δ(a, b) is the Kronecker delta.
The pdf of IS in (3) is then

PIS (v) =
1

N

∑
x,y∈Ω

δ

(
1

2
IU (x, y) +

1

2
IL(Sθ0(x, y)) , v

)
Expanding IL in a Taylor series up to the linear term and

denoting p ≡ (x, y),

IL(Sθ(p)) ≈ IL(Sθ0(p)) +∇IL(Sθ0(p)) JS(p, θ0) δθ
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(a) Image 5 (b) Image 6

(c) Negentropy vs angle for Image 5

(d) Negentropy vs angle for Image 6

Fig. 5. Results obtained for natural images with reflectional symmetry. The
observed peaks of negentropy correspond to the tilt angles of the symmetry
axes. Detected axes are shown in 5a and 5b.

where δθ = θ − θ0 and JS(p, θ0) is the Jacobian of the
symmetry transform with respect to θ. If the expansion is
centered about the correct symmetry Sθ0 then IU (x, y) =
IL(Sθ0(x, y)). Substituting this into the discrete pdf expres-
sion,

PIS (v) =

1

N

∑
x,y∈Ω

δ

(
IU (x, y) +

1

2
∇IL(Sθ0(p))JS(p, θ0)δθ , v

)
(8)

It can be seen that a small change to the symmetry parameter
θ leads to a small change in the histogram PI(v) provided
that the image is smooth (∇IL is small). Further, entropy
is a continuous function of the pdf, so we expect that our
information theoretic symmetry measure decays gradually
from a peak at the correct symmetry, as seen in the figures.

It is often assumed that images are piecewise smooth [19],
so the gradient ∇I will be small at most pixels in the sum
in equation (8). This property is not required to identify the

correct symmetry, but if present can allow the application of
optimization algorithms that assume some regularity of the
error function.
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