
Skinning math tutorial

j.p.lewis
jun 05

• WA
n is the animatied transform from the local space of bonen to world space (A is for ‘animated’). In the figure,

– WA
1 is R1, meaning that the world space position of a pointp in the local space of bone 1 ispw = R1p,

– WA
2 is R1T1R2,

– WA
3 is R1T1R2T2R3.

• WR
n is the corresponding transform fromrest position of bonen to world space. The rest position typically has most

rotations set to zero, so the arms are straight out to the side for example.

– In the figure,WR
1 is I (identity),WR

2 is T1, andWR
3 is T1T2.

The standard skinning algorithm is a weighted blend of a vertex as transformed by various surrounding coordinate systems. In
the figure, the vertexp is attached to bone 1, but it is influenced by bones 2,3 also. The world position of this vertex will be

pw = w1 × transformed-by(p,bone1)+ w2 × transformed-by(p,bone2)+ w3 × transformed-by(p,bone3)

with the weightsw1, w2, w3 chosen by the user (or initialized by the skinning algorithm).

The transformed-by(p,bone) takes the pointp and moves it to positionb for bone2, and positionc for bone3. This is
done as follows:

• the vertex is first transformed from the local coordinate system of its “parent” bone into the localrestcoordinate system
of the other (transforming) bone. This is done by first taking it into world space, then applying the inverse of the world
space rest transform for the other bone – the inverse takes it back into local space. For a point attached to bonem,
transforming into bonen’s local space is

WR
n

−1
WR

m

In the figure, the transform for pointp (attached to bone1) into bone2’s local space is

WR
2

−1
WR

1 = T1
−1I = T1

−1

1



and the transform forp into bone3’s local space is

WR
3

−1
WR

1 = T1T2
−1I = T2

−1T1
−1

(remember in general(AB)−1 = B−1A−1, though in this particular example only transforms are involved, so the order
does not matter).

• After the point is found in the local rest space of the other bone, simply transform it into world space using that bone’s
animated transform. Thus (referring to the figure),

b = WA
2 WR

2

−1
WR

1 p

= (R1T1R2)(T1)−1(I)p
= R1T1R2T1

−1p

and

c = WA
3 WR

3

−1
WR

1 p

= (R1T1R2T2R3)(T1T2)−1(I)p
= R1T1R2T2R3T1

−1T2
−1p

• The final position of the vertex is then
pw = w1p + w2b + w3c

For rendering or other purposes it may be necessary to transform this world space position back into the local coordinate
system of the parent bone of the vertex. This is done by multiplying

p′ = WA
1

−1

giving p′, the “skinned” local position ofp.

To implement this, functions that computeWR
n ,WA

n are needed:

• Wrest(bone) returns the 4x4 transform that takes a point from the bone’s local space into world space. It computes this
by starting at the bone, and walking up its parents to the root of the creature, at each node accumulating the transform
by multiplying on the left by the node’s local rest position transform. This means that each bone has to know it’s rest
position as well as it’s current animated position.

• Wanim(bone) does the same thing except it accumulates the animated transforms.

2


