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Abstract

WPSD (Weighted Pose Space Deformation) is an example based skinning method for articulated body animation.

The per-vertex computation required in WPSD can be parallelized in a SIMD (Single Instruction Multiple Data)

manner and implemented on a GPU. While such vertex-parallel computation is often done on the GPU vertex

processors, further parallelism can potentially be obtained by using the fragment processors. In this paper,

we develop a parallel deformation method using the GPU fragment processors. Joint weights for each vertex

are automatically calculated from sample poses, thereby reducing manual effort and enhancing the quality of

WPSD as well as SSD (Skeletal Subspace Deformation). We show sufficient speed-up of SSD, PSD (Pose Space

Deformation) and WPSD to make them suitable for real-time applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture-
Parallel processing, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Curve, surface,
solid and object modeling, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Animation.

1. Introduction

Skinning is an important part of realistic articulated body
animation and is an important topic of computer graphics
and animation. Generally, skinning can be categorized into
algorithmic, physically-based, and example-based methods.
Although widely used, simple algorithmic skinning schemes
cannot capture the complexity and subtlety of real skin de-
formation, and revised approaches will be required to in-
crease character animation realism. Physically-based skin-
ning is based on the biomechanics of skin deformation aris-
ing from the motions of muscles and tendons. Although this
approach can generate physically accurate simulations of
each layer, it is not at present suitable for real time applica-
tions such as gaming due to the large computation required.
Example-based methods capture some of the complexity of
real skin deformation by interpolating scanned or sculpted
examples of the desired skin shape in various poses. Al-
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though this requires gathering a sufficient number of sam-
ples and some pre-calculation, example-based methods can
potentially be used in real-time applications due to their rel-
atively simple real-time computation.

Weighted pose space deformation (WPSD) is an exam-
ple based skinning method that generates high quality skin-
ning with a limited number of sample poses [KM04]. Al-
though it can generate an accurate skinning, it requires more
computation than the original pose space deformation (PSD)
[LCF00], since joint distances are computed independently
for each vertex. As such, this method has not been suitable
for real-time applications.

Furthermore, both WPSD and SSD require joint weights
for each vertex, and accurate joint weights are required to
achieve good results. However, the weights are usually man-
ually generated by artists, which requires effort and great
skill in the case of a complex skeletal system such as the
human hand.

In this paper, we present a parallel WPSD algorithm (in-
cluding automatic determination of joint weights) suitable
for SIMD architectures such as current GPUs. The joint
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weights for each vertex are automatically computed from the
sample poses. This can enhance the skinning quality not only
of SSD but also WPSD, since both methods require accurate
joint weight values.

The deformation required in WPSD and SSD is indepen-
dent for each vertex and this per-vertex computation can be
parallelized in a SIMD architecture. The GPU is a general
SIMD architecture having one-sided (unidirectional) com-
munication to texture memory. We demonstrate our parallel
WPSD method using GPU fragment processors. In our ex-
periments, we can speed up SSD, PSD, as well as WPSD
to around 20 times faster than on the CPU (from 1.2FPS to
25FPS speed-up of WPSD on a detailed model having 22836
triangles with 11574 vertices) using a modern graphics card,
thus making WPSD a feasible real-time skinning solution
for various applications including games, virtual reality, and
other real-time simulations.

2. Related work

Many commercial software packages generate skin defor-
mation arising from joint movement using a method known
as (linear blend) skinning, Skeletal Subspace Deformation
(SSD), enveloping, etc., based in part on work published by
Thalmann et al. [MTLT88]. SSD is based on the weighted
blending of affine transformations of each joint and used in
many real-time applications due to its simple and fast com-
putation. However, it also exhibits some well known artifacts
such as skin that collapses around the joints at increasing
bend angles, and a variety of solutions for these problems
have been published [Web00, WP02, MTG03, KZ05].

Recently, example-based methods [LCF00, SRC01,
ACP02, KJP02, KM04] have permitted more complex
skinning effects such as muscle bulges and major wrinkles,
while also addressing the artifacts of simple algorithmic
schemes. In these methods, a number of provided (scanned
or sculpted) samples of the desired skin shape are simply
interpolated based on the creature’s pose (and possibly addi-
tional abstract control “dimensions”). These example-based
methods can also be considered as a non-parametric ap-
proach to skin deformation. In common with non-parametric
sampling methods in texture synthesis (and more generally
in statistical regression), the amount of memory for these
methods grows with the number of training samples, but
arbitrary distributions can be approximated.

Some of the most impressive example-based results to
date are those of Kurihara and Miyata’s hand model derived
from medical images [KM04]. Since acquiring 3D medi-
cal images is relatively expensive, they developed weighted
pose space deformation (WPSD) to generate proper skinning
from a limited number of pose samples. They modify the dis-
tance between poses using the joint weights of each vertex to
provide a more appropriate distance measure for skinning.

Although the joint weights for each vertex are important

data for SSD and WPSD calculations, they have traditionally
been manually generated by skilled artists. Least-squares
based vertex weight estimation was shown in the skinning
methods [WP02, MTG03]. James et al. describe mesh based
skinning including estimation of bone parameters and ver-
tex weights for each bone [JT05]. In their paper, the vertex
weights of each joint are calculated by NNLS (non-negative
least squares) and we derive a similar approach to calculate
weights for SSD and WPSD.

In recent years, since the performance of GPUs has been
improving more rapidly than that of CPUs, and GPUs have
many processing units serving as a SIMD parallel architec-
ture, many algorithms have been accelerated by GPU pro-
gramming [LHK∗04, PF05, GPG]. Deformation and skin-
ning algorithms can also be enhanced by GPUs and several
papers have profited from this [JP02, KJP02, BK05, JT05].

However, in previous research, since vertex information
cannot be accessed in the fragment program, GPU-based
vertex deformation is usually performed by vertex programs.
In this paper, we develop a parallel WPSD method using the
fragment processors to gain greater parallelism and perfor-
mance.

Person-specific data modeling and its deformation is also
an interesting topic in realistic articulated body simulation.
Rhee et al. described human hand modeling from surface
anatomy of the person [RNL06]. Anguelov et al. developed
shape completion and animation of people, derived from the
set of range scan data and example based deformation in
pose and shape space [ASK∗05].

Physically inspired skinning should be also recognized as
another important area of articulated body animation. How-
ever, we entrust the review of the subject to the recent related
papers [AHS03, CBC∗05, PCLS05, SNF05].

3. Skin deformation

Example-based skinning problems can be described by the
following general equation,

v(pa) = S(v0 +D(pa)) (1)

where pa is an arbitrary pose, v(pa) is a vertex of a de-
formed target surface of the arbitrary pose, v0 is an unde-
formed (rest pose) vertex, S is the SSD function, and D(pa)
is a displacement as a function of the arbitrary pose.

In skeletal subspace deformation the displacement D(pa)
is omitted and the target surface is calculated by SSD as
a blend of affine transforms of v0 [section 3.1]. Skinning
methods related to PSD use the displacement of an arbitrary
pose D(pa), calculated by interpolation in pose space [sec-
tion 3.2].

c© The Eurographics Association and Blackwell Publishing 2006.



T. Rhee, J.P. Lewis, and U. Neumann / EG 2006
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(d) (e) (f)

Figure 1: Skinning result of each algorithm: (a) SSD, (b) PSD, (c) WPSD, (d) Difference between SSD and PSD (blue dotted

area), (e) Difference between SSD and WPSD (blue dotted area), (f) Difference between PSD and WPSD (blue dotted area);

areas around blue and red arrows represent unexpected results of SSD and PSD respectively.

3.1. Skeletal subspace deformation (SSD)

SSD [MTLT88] is based on the weighted blending of an
affine transformation of each joint by equation 2.

va = S(v0) = (
n joint

∑
j=1

w jTj)v0 (2)

where n joint is the number of joints, va is a vertex in an
arbitrary pose pa, v0 is a vertex in the rest pose, and w j

is a joint weight that defines the contribution of joint j’s
transformations to the current vertex. The weight w j can
be assigned by the artist to control deformation and usu-
ally ∑

n joint

j=1 (w j) = 1.0. This simple algorithm is used in many
commercial graphics packages and real-time rendering ap-
plications but shows several limitations, because the defor-
mation of this method is restricted to the subspace of the
affine transformation of the joints [LCF00].

3.2. Pose space deformation (PSD)

If we have a sufficient set of examples to describe the move-
ment of an articulated object, we can interpolate displace-
ment in “pose space” [LCF00]. Each sample pose consists
of sample skin geometry and the related joint skeleton, and
a vector containing the joint angles represents the pose.

If we translate each skinning sample k to the rest coordi-
nate frame using inverse SSD, the displacement between the

sample vertex vk and the rest pose vertex can be calculated:

dk = (
n joint

∑
j=1

w jTj)
−1

vk − v0 (3)

where vk is a vertex in sample pose pk and dk is the displace-
ment of this vertex relative to v0 in the sample pose pk; the
other variables are defined as in equation 2. Note that the
inverse here is of the weighted sum of affine transforms.

After defining the displacement of each pose, the dis-
placement at an arbitrary pose can be calculated by RBF
(Radial Basis Function) [LCF00] or normalized radial basis
function [KM04] interpolation of the example poses’ dis-
placements.

The displacement da of a vertex in an arbitrary pose pa

can be calculated as

da = D(pa) =
npose

∑
k=1

rk(pa)dk (4)

where npose is the number of sample poses, da is a displace-
ment of the vertex in an arbitrary pose pa, and the weight
rk(pa) defines the contribution of each sample pose.

Normalized Radial Basis Functions can smoothly interpo-
late pose space using:

ft(pa) =
npose

∑
k=1

λ t,kφk(γk) (5)

where ft(pa) is the radial basis weight function for example
t evaluated at an arbitrary pose pa, npose is the number of
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sample poses, λt,k are real valued weights between pose t

and k, φk are the radial basis functions, and γk is the distance
between the pose pk and the arbitrary pose pa (defined as the
Euclidian distance between the joint vectors of each pose).

The weight rk(pa) is calculated using normalized RBFs
and is used in equation 4 to calculate the displacement da of
a vertex in an arbitrary pose pa:

rk(pa) =
fk(pa)

∑
npose

t=1 ft(pa)
(6)

Gaussian radial basis functions φk(γk) = exp(
−γ2

k

2σ2 ) are one
possible choice of the basis and the constant σ can be speci-
fied experimentally [LCF00].

3.3. Weighted pose space deformation (WPSD)

WPSD is developed by Kurihara et al. [KM04] to deform
their example-based human hand model derived from med-
ical images. In the original PSD, the distance between two
poses pa and pk having n joint number of joints for each pose
is defined as

γk(pa, pk) =

√

√

√

√

n joint

∑
j=1

(pa, j − pk, j)2 (7)

In equation 7, since the γk is the difference of n joint -
dimensional joint vectors of related poses, every vertex in
the pose pk has same distance γk resulting in the same
weight rk(pa) in every vertex of the pose pk. Further-
more, because each element of the joint vector equally con-
tributes to the distance calculation, two vectors having a
same value but different order generate same pose distance.
For example, three different joint vectors p1 = (θ,0,0), p2 =
(0,θ,0), p3 = (0,0,θ) have same distance between them and
it can cause unexpected results in PSD.

In WPSD [KM04], Kurihara et al. modify the distance
definition between poses using joint weight of each vertex
i to give proper weight to each element of a joint vector,

γi,k(pa, pk) =

√

√

√

√

n joint

∑
j=1

wi, j(pa, j − pk, j)2 (8)

where γi,k(pa, pk) is the distance between pose pa and pk of
vertex i, and wi, j is weight of joint j of vertex i used in equa-
tion 2. From this definition, a more accurate pose distance is
obtained and it generates better skinning in arbitrary poses,
especially when the poses are far from the examples.

Figure 1 shows result of three different skinning methods,
but we entrust the detail comparison between quality of each
algorithm to their original papers [MTLT88,LCF00,KM04].

4. Computing joint weights from samples

The joint weights of each vertex are important to generate
accurate skinning in SSD (equation 2) as well as in WPSD

(equation 8). In many applications, the weights are manually
generated by skilled artists and it is hard to generate accurate
values when a number of joints are involved in deforming
a region. In this paper, we automatically calculate the joint
weights of each vertex from the sample poses to enhance the
accuracy of the weight value. This results in better skinning
and reduces the elaborate manual work required to create
weight maps.

In each sample pose pk, we have following equation based
on SSD:

ṽk − ek = (
n joint

∑
j=1

w jTj)v0 (9)

where ṽk is a particular vertex from skin sample k, the right
hand side is the SSD deformation of vertex v0 from the rest
pose, ek is a displacement between the SSD deformation and
ṽk, and the other variables are as in equation 2.

If we have sufficient examples involving the same set of
n joint joints, we have npose equations of the form:

ṽk − ek = (
n joint

∑
j=1

v jw j) (10)

where v j is v0 transformed by Tj. Although the ek is un-
known, we can solve for weights that minimize the ek in
a least squares sense by stacking the equations 10 (with ek

omitted) into a linear matrix system

‖v−Aw‖2 (11)

where w is a n joint -dimensional weight vector, v is a 3npose-
dimensional vector containing the vertex ṽi from every sam-
ple, and A is a 3npose×n joint matrix .

>From equation 11, we can calculate w from the given
value of v and A to reduce the error of this equation. We use
the non-negative least square (NNLS) method to solve this
problem and it determines positive weight values minimiz-
ing error in equation 10. The calculated weight vector w is
normalized to satisfy ∑

n joint

j=1 w j = 1.0.

In order to avoid a singular matrix A, the number of poses
should be greater or equal to the number of overall DOF
(Degree Of Freedom) of the joint vector (each joint has 3
DOF), and the sample poses should be sufficiently different.

James et al. used a similar approach to estimate vertex
weights in each joint [JT05] and we demonstrate their efforts
in our skinning method.

5. Parallel deformation on GPU

Skinning deformations vary across vertices. In SSD and
WPSD, this per-vertex computation is independent for each
vertex and can be parallelized by a SIMD parallel architec-
ture. We developed a parallel skinning algorithm for SSD
and WPSD that is suitable to GPUs having a SIMD archi-
tecture with one-side communication to texture memory.
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5.1. Parallel WPSD

The computation cost of the SSD skinning algorithm is
O(nvertex × n joint ) from equations 1, 2, PSD is O(nvertex ×
n joint × npose) from equations 1, 2, 4, and WPSD is
O(nvertex × n joint × npose × npose × npose) from equations 1,
2, 4, 5, 6. Where, computation cost of original PSD is de-
fined by equation 1, 2, 4, since ri is same in all vertices and
di can be pre-calculated.

The number of joints n joint and poses npose can be reduced
to the smaller numbers using the method developed by Kry
et al. [KJP02], as will be discussed in section 5.2.1 with ef-
forts to reduce texture memory space.

In previous research, the Eigenskin method based on PSD
was developed using GPU vertex programming [KJP02].
The vertex program uses a relatively small number of slow
processing units compared with the fragment processors,
and the per-vertex computation cost of the original PSD
is O(n joint × npose). Therefore WPSD, having higher per-
vertex computation cost O(n joint × npose × npose × npose),
can clearly benefit from parallel computation on fragment
processors.

5.2. Parallel WPSD on GPU

We developed parallel skinning using the GPU fragment
processors and demonstrate our method using three render-
ing passes. In order to minimize real-time computation, we
separate possible pre-calculation steps and save the results
into texture memory using texture maps. Because the value
in the texture memory is not changed in the successive defor-
mation, it can be pre-computed and stored in the read-only
texture memory.

In the first and second pass, per-vertex deformation is cal-
culated in the fragment program and the results are stored
in texture maps using the FBO (Frame Buffer Object) exten-
sion [Gre05]. These texture maps are bound to the geometry
of the rest pose with their texture coordinates. In the third
pass, each vertex in the rest pose is changed by the deformed
vertex stored in the output texture generated in the first and
second passes using vertex texture fetch.

5.2.1. Packing data into textures

The fragment processors cannot access vertex information.
Instead, we can use texture memory to send data to the frag-
ment program. Information needed in the fragment program
is packed into texture maps and stored into texture memory.

Geometry information from the rest pose is stored into
two RGB texture maps, a vertex texture Tv and normal tex-
ture Tn; each has size nvertex × 3. These textures represent
parameter v0 in equation 2 and each 3D element (x, y, z) is
stored into the (r, g, b) value of a texel [Figure 2].

The joint weights calculated in section 4 are also stored

Figure 2: Packing data into textures: texture map Ti can be

Tv, Tn, Tw1, Tw2, and Td j . V(vertex), N(normal), W(weight),

J(joint index), and D(displacement) represent each texel

(RGB(A)) value of the related texture. Td consist of eight Td j

storing displacements of each pose j.

in the texture maps. In general, the distribution of skin-
ning effects in an articulated body is local to several joints
[MMT97,KJP02], even in a region as complicated as a hand.
For example, deformations arising from the PIP (Proximal
Interphalangeal) joint of index finger do not propagate to
the other fingers, and deformation on the middle phalanx of
index finger is only affected by the movement of PIP and
DIP(Distal phalanx) joints. From this observation, we can
reduce joint weight storage from the actual number of joint
n joint to a smaller number of “principal joints” ñ joint selected
by sorting on the weight value. We threshold ñ joint at four in
our tests with an additional four elements to hold the related
joint index. As a result, we can save the joint weights of en-
tire geometry in two RGBA textures Tw1, Tw2 each with size
nvertex × 4(rgba) and store the entire information required
for SSD [equation 2] in four textures Tv, Tn, Tw1, and Tw2.

The displacement values calculated by equation 3 can be
stored in npose displacement textures; npose is the number of
sample poses. In case of complex joint structures and a large
DOF model, we need many sample poses to calculate ac-
curate joint weights and PSD deformation. However, since
the joint weights can be pre-calculated, we can reduce the
number of sample poses needed in real-time PSD compu-
tation. PCA (Principal Component Analysis) of pose space
can yield an orthogonal basis called “ Eigendisplacement ”
[KJP02]. If we reduce the size of pose space from npose to
ñpose “principal poses” (ñpose < npose), we can reduce the
number of displacement textures. In our paper, we set ñpose

as eight in our experiment and save displacements of all
poses into a RGB texture Td having size nvertex ×8(ñpose)×
3(rgb).

Therefore, from the two important observations of “prin-
cipal joints” and “principal poses”, the original computation
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cost for SSD, PSD, and WPSD discussed in section 5.1 can
be reduced using ñ joint and ñpose rather than n joint and npose.

In the original PSD, since the weight ri in equation 4 is the
same at every vertex, we do not need to calculate this value
in the GPU. Since the size of this value is just ñpose, we can
simply pass them to the GPU as parameters without gener-
ating a texture map. Therefore, we store all the information
needed to calculate the original PSD at this point.

In order to reduce real-time computation, we pre-calculate
Tj in equation 2 and λ in equation 5 and store them into
another one channel texture Tx having size ñpose × (ñpose +
ñ joint × 3(x,y, z)).

As a result, we store all the variables required to
calculate WPSD, PSD, and SSD in six texture maps:
Tv,Tn,Tw1,Tw2,Td , and Tx. The values in the texture maps
are stored in the texture memory at setup time, since they
are not changed during the deformation process.

In current graphic card architectures, data transfer from
CPU to GPU is slow compared with memory access within
the GPU. Since the only data changed in each deformation
and passed from CPU to GPU is a joint vector pa (size =
n joint ) representing the current arbitrary pose, the memory
access rate in our method is very efficient; In the original
PSD method, an additional rk value (size = ñpose) is required.

5.2.2. Configurations for fragment program

Variables: Tout = output texture, Tv = vertex texture

1 /* Set orthographic camera with same size of quad */;
2 gluOrtho2D(-1, 1, -1, 1);
3 bind(FBO);
4 /* Bind Tout and set to FBO drawbuffer */;
5 bind(Tout ), SetFBOdrawbuffer(Tout);
6 bind(Tv);
7 enable(fragment program);
8 /* Set viewport to the resolution of the texture */;
9 glViewport(0, 0, texWidth, texHeight);

10 /* Render a quad into Tout using FBO */;
11 glBegin(GL_QUADS);
12 { glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
13 glTexCoord2f(1, 0); glVertex3f( 1, -1, -0.5f);
14 glTexCoord2f(1, 1); glVertex3f( 1, 1, -0.5f);
15 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
16 };
17 disable(fragment program);

Algorithm 1: Configuration of fragment program for ver-
tex refering and direct rendering into texture

Since vertex information cannot be accessed by the frag-
ment program, vertex deformation on a GPU is usually per-
formed by a vertex program [KJP02, BK05]. Although, we

cannot access vertex data in the fragment program, the ef-
ficiency of parallel computation on a fragment program is
higher, since the fragment processor has more processing
units and each of them has more computation power than a
vertex processor. The fragment processing system is a gen-
eral SIMD architecture using fragment streams as input data;
each fragment is assigned to a fragment processor to calcu-
late its final color value independently and in parallel.

We developed a parallel WPSD algorithms using the frag-
ment processors to enhance the extent of parallel compu-
tation. Geometry information like vertex positions and nor-
mals are stored in texture maps Tv and Tn as described in
section 5.2.1 and the vertex information is referred in the
fragment processors to calculate final color values.

In order to assign each vertex value stored in a texture
map to a fragment, we bind the geometry texture Tv or Tn

to a quad and render it using an orthographic camera having
the same width and height as the quad. Furthermore, since
the viewport is set to the same resolution as the textures,
each fragment is exactly matched with each texel holding the
vertex information, and we can access each vertex using the
texture coordinates of the fragment; vertex weights and dis-
placements stored in the texture maps can also be accessed
by similar methods.

A similar idea was developed in [PBMH02] to calculate
ray tracing in a fragment program and is used in GPGPU
(General Purpose computation on GPUs) applications [GPG,
LHK∗04, PF05].

The FBO (Frame Buffer Object) extension [Gre05] sup-
ports rendering into an attached texture. This saves memory
and time, since there is no copy operation from frame buffer
to texture buffer. We implemented our WPSD algorithm us-
ing the fragment program with the FBO extension to store
the result directly into texture maps accessed by vertex pro-
gram in the next pass. A summary of this method is shown
in Algorithm 1.

5.3. GPU implementation

We implemented GPU deformation using three rendering
passes, and the basic architecture is described in figure 3.

In the first pass, we parallelize per-vertex deformation us-
ing GPU fragment processors. The data required to calculate
this deformation is stored in the textures as described in sec-
tion 5.2.1 and the deformation for each vertex is calculated
in a fragment processor. In a given arbitrary pose defined by
a joint vector, SSD is computed by equation 2 using texture
maps Tv, Tw1, Tw2 and Tx; refer to the texture map notation in
section 5.2.1. PSD is computed by equation 4 using Td , Tx,
after calculating rk(pa) by equation 6. In the case of WPSD,
the weighted distance is computed by equation 8 using Tw1,
Tw2, and Tx.

In the first pass, the result of the deformation is rendered
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Figure 3: Overview of WPSD on GPU: Each Ti is the texture

map storing the required data for the calculation (refer to

section 5.2.1 for their values) , Ti′s are the texture maps to

store the output of the 1st and 2nd passes, P0 is the geometry

in the rest pose, and Pa is a deformed model in an arbitrary

pose.

into a texture map Tv′ , using the FBO, and passed to the
third pass. In the second pass we calculate and store normal
deformation with a similar method as in the first pass, and
the results are stored in the texture map Tn′ .

In the third pass, using a vertex program, each vertex of
the rest pose is transformed to the final deformed position us-
ing the information from the texture maps computed in the
previous two passes. In order to access related texture infor-
mation in each vertex, we created texture coordinates of each
texel in pre-processing and used them in the vertex program.
Specifically, the two texture maps, Tv′ and Tn′ that are gener-
ated in the first and second passes are accessed in the vertex
program using the texture coordinate of the current vertex.

Alternatively, multiple render targets (MRTs) can com-
bine the first and second pass, and vertex buffer objects
(VBOs) could be used to render the deformed results back
to the vertex array [OPE, GPG, LHK∗04].

6. Results

We tested our methods using upper arm models consisting
of four joints (collar, shoulder, elbow, and wrist). Each has
three DOF and the wrist is the end joint having no DOF.
Three different resolution meshes are used to test the per-
formance of GPU parallel computation: the high-resolution
model has 91460 triangles with 46036 vertices, the mid-
resolution model has 22836 triangles with 11574 vertices,
and the low-resolution model has 5762 triangles with 2972

vertices [Figure 4]. Note that these models are considerably
more detailed than those used in current games, so the re-
ported frame rates would be much higher if typical game-
resolution models were used. On the other hand, with the
expected growth of GPU processing power, models such as
these will be in wide use in a few years, and algorithms such
as WPSD will be required to produce realistic deformations
at this level of resolution.

Figure 4: Mesh of test data: the top row is a low-resolution

mesh, the second row is a mid-resolution mesh, and the bot-

tom row is a high-resolution mesh

Eight sample poses were created by Poser [Cur] and the
joints weights and displacements of each sample were de-
rived from these models [Figure 5].

Our parallel algorithm is based on three pass GPU com-
putation. The fragment program for the 1st and 2nd pass,
and the vertex program for the 3rd pass are implemented in
the Cg language [FK03]. For accuracy the GPU computation
is performed by 32bit floating point operations with 32bit
floating point texture maps. Table 2 shows the total memory
space to store texture maps required by the fragment pro-
gram. Note that the maximum required memory space for
the highest resolution model is just 6.8 Mbytes; the size of
the output texture Tv′ and Tn′ is the same as the size of Tv

and Tn.

The results of GPU-based deformation for SSD, PSD, and
WPSD are shown in Figure 1 and 6, and the experiment is
performed in a GeForce 6800 Ultra GPU and a 3.4Ghz Pen-
tium 4 CPU. The timing results of each algorithm on the
CPU and GPU are summarized in table 1.

c© The Eurographics Association and Blackwell Publishing 2006.
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On average, our GPU-based deformation shows around
20 times speed-up compared with CPU-based deformation.
GPU-based WPSD has roughly the same speed as CPU-
based SSD. Therefore, real-time applications using SSD can
substitute WPSD running on the GPU without loosing their
real-time performance. Since our algorithm shows speed-up
for SSD and PSD as well as WPSD, applications can choose
the most appropriate skinning method according to the re-
quired deformation and detail.

Method Mesh CPU(FPS) GPU(FPS)

SSD low 150 1425

middle 39 630

high 5 164

PSD low 98 1230

middle 23 530

high 4.5 140

WPSD low 5 85

middle 1.2 25

high 0.29 7

Table 1: Timing results (in FPS) of each algorithm: the low-

resolution mesh has 5762 triangles with 2972 vertices, the

mid-resolution mesh has 22836 triangles with 11574 ver-

tices, and the high-resolution mesh has 91460 triangles with

46036 vertices.

Vertices Tv&Tn Tw1&Tw2 Td Tx Tot

2972 (low) 35×2 46×2 278 1 441

11574 (mid) 135×2 180×2 1080 1 1711

46036 (high) 539×2 719×2 4315 1 6832

Table 2: Texture memory to store data required in fragment

program (in Kbytes); refer to section 5.2.1 for texture nota-

tion .

7. Conclusions

In this paper, we present a parallel skinning algorithm suit-
able for SIMD architectures such as GPUs. The joint weights
of each vertex are automatically computed by NNLS and
used in the skinning computation for SSD and WPSD.

Independent per-vertex deformation is parallelized on the
GPU using three rendering passes. In the first and second
passes, per-vertex deformation is calculated by the fragment
processors and the results are stored in texture maps using
FBO. In the third pass, using vertex processors, each vertex
of the rest pose is changed by the deformed vertex stored in
the textures generated by the first and second passes.

Figure 6: Arbitrary poses deformed by WPSD on GPU

Articulated body skinning using SSD, PSD, and WPSD
are efficiently parallelized by our GPU-based method, and
on a detailed model, we obtain around 20 times speed-up
compared with CPU-based computation.

Principal component compression of the examples and
careful analysis of joint distributions can reduce the domain
of computation [KJP02] and other algorithms based on the
SSD, PSD, and shape interpolation may be parallelized on
GPU using our approach.
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