
Variational Calculus and Discrete Alternatives
jplewis

CGIT/USC

The basic idea: instead of considering the change in a function wrt its arg, consider the variation in a functional wrt a variation in the function, this should be zero at the minimum of the functional.

The trick: if
∫

f(x)q(x)dx = 0 regardless of what q is, then f must be zero.

y = f(x) definitions:

F (y, y′ , x) function of the function, eval at a particular point, scalar

q(x) test function added to f, zero at ends

δf = (f + εq) − f = εq variation of function at a particular point, scalar

E(F (f(x), f′(x), x)) e.g. E =

∫

f′(x)2dx functional maps function to scalar

E[f] =

∫

F (y, y′, x)dx general form of functional, maps function to scalar

note E is function of f, not F

δE
δf

= 0 = dE
dε

condition for minimum functional does not change with small variation

δ

∫

f(x)dx =

∫

δfdx properties: variation commutes with integration, differentiation

δF (y, y′, x) = F (y + εq, y′ + εq′ , x) − F (y, y′ , x) represent variation of function (not functional) by taylor exp

= ∂F
∂y

dy
dε

δε + ∂F
∂y′

dy′

dε
δε + ∂F

∂x
dx
dε

δε recognize 1. dx/dε is zero, 2. ε is small, so say ε instead of dε

= ε

(

∂F
∂y

q + ∂F
∂y′

q′
)

now look at variation of functional

δE = δ

∫

F dx =

∫

δF dx = ε

∫ (

∂F
∂y

q + ∂F
∂y′

q′
)

dx divide by ε to get rate of change

dE
ε

=

∫ (

∂F
∂y

q + ∂F
∂y′

q′
)

dx now do integration by parts on second term
∫

∂F
∂y′

q′dx = ∂F
∂y′

q −

∫

d
dx

(

∂F
∂y′

)

qdx :

∫

ab′ = ab −

∫

a′b

∂F
∂y′

q

∣

∣

∣

a

b

= 0 because q is zero at both ends

dE
dε

=

∫ (

∂F
∂y

−

∫

d
dx

∂F
∂y′

)

qdx and because q is arbitrary

∂F
∂y

− d
dx

∂F
∂y′

= 0 euler-lagrange eqn

Worked Example: Laplace eqn in 1D

minimize
∫

(f′(x))2dx should come out like d2f

dx2
= ∇2 = 0

F (y, y′, x) = y′2

δF = ∂F
dy′

dy′

dε
δε

= ∂F
dy′

q′δε ∂F
dy′

= 2y′ = 2
df
dx

dE
dε

=

∫

∂F
dy′

q′dx now change q’ to q
∫

∂F
dy′

q′dx = ∂F
dy′

q −

∫

d
dx

∂F
dy′

qdx integration by parts

∂F
dy′

q

∣

∣

∣

b

a

= 0 because q is zero at both ends

dE
dε

= −

∫

d
dx

∂F
dy′

qdx = 0 variation of functional is zero at minimum

= −2 d
dx

df
dx

= −2
d2f

dx2
= −2∇2f = 0
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Dan Piponi’s Physics Style approach to Variational Calculus

Need these:

δ is variation on the left, dirac on the right
δu(z)

δu(w)
= δ(z − w)

δ d
dx

u(z)

δu(w)
=

d

dx
δ(z − w)

true if a,b are zero at boundaries of integration

∫

a
d

dx
b = −

∫

da

dx
b

(this is like finite difference aDb = −(Da)
′
b = −a

′
D
′
b which is true because if D = -1 1 ... then D’ = 1 -1 ...)

chain rule
δ

du(z)
f(u(x)) = f

′
(u(x))

δu(x)

δu(z)

( ’ = derivative )

goal

min

∫

(u
′
)
2

dx

set first variational derivative to zero 0 =
δ

δu(z)

∫

u
′
(x)

2
dx

=

∫

δ

δu(z)
u
′
(x)

2
dx

apply chain rule =

∫

2u
′
(x)

δu′(x)

δu(z)
dx

apply second relation above =

∫

2u
′
(x)

d

dx
δ(x − z)dx

apply third relation above =

∫

−2
d

dx
u
′
(x)δ(x − z)dx

integral and delta cancel each other, true at all z: = −2
d2u

dx2
= 0

Ken Anjyo’s approach

This approach starts directly with a general expression for the first variational derivative. (Setting this to zero is called “first order optimality condition” in the Chan&Wong paper).

Given a functional E that is an integral of a function F (~x, u, u′, u′′, . . .) of

• the coordinates x1, x2, . . .,

• the unknown solution u

• and its nth order derivatives u′ = u1, u′′ = u2 ,

the general expression for the first variational derivative is:
δE

δu
= Fu +

∑

(−1)
n dn

dxn
Fun = 0

(where the sum is over the order of derivative of u).

If d0

dx0
is read as identity this reduces to

δE

δu
=

∑

0

(−1)
n dn

dxn
Fun = 0

Apply this to the Laplace eqn: here n=1, F (x, u, u′, . . .) = (u′)2 , F
u′

= 2u′ ,

δE

δu
= (−1)n

d

dx
F

u′
= −2

d

dx
u′ = −2

d2

dx2
u = 0

See 2d application below
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Discrete alternative 1

By considering the function as being a point in hilbert space, the functional is simply a function of an (infinite dimensional) point, so standard function minimization can be used.

Discrete alternative 2

From Lanczos book,

y−, y, y+ notation: yk−1, yk, yk+1

z = y′ = (y+ − y)/(x+ − x) discrete derivative

E =

∑

F (y,z, x)(x+ − x)

dE
dy+

= d
dy+

[F (y, z, x)∆x] + d
dy+

[

F (y+, z+, x+)∆x

]

two terms in the sum involve y+

= d
dy+

A + d
dy+

B

dA
dy+

= ∂F
dy

dy
dy+

∆x + ∂F
dz

dz
dy+

∆x + ∂F
dx

dx
dy+

∆x dx
dy+

= 0,
dy

dy+
= 0,

dz
dy+

= 1
∆x

= ∂F
dz

1
∆x

∆x

dB
dy+

= ∂F
dy+

dy+
dy+

∆x + ∂F
dz+

dz+
dy+

∆x + ∂F
dx+

dx+
dy+

∆x
dx+
dy+

= 0,
dy+
dy+

= 1,

dz+
dy+

= − 1
∆x

= ∂F
dy+

∆x − ∂F
dz+

1
∆x

∆x

total = ∂F
dy+

∆x + ∂F
dz

− ∂F
dz+

divide by ∆x

∂F
dy+

− 1
∆x

(

∂F
dz+

− ∂F
dz

)

∂F
dy+

= ∆

(

1
∆x

∂F
dy′

)

as ∆x → 0 ∆
∆x

→ d
dx

Modified continuous

Take the Laplace eqn in 1D again, different derivation setup:

E[f] =

∫ (

df
dx

)2
dx (a) continuous

E[f + εq] =

∫ (

(
df
dx

)2 + 2
df
dx

εq′ + (εq)2
)

dx = E[f] + 2ε

∫

df
dx

q′ + Terms(q2 )

δE = E[f + εq] − E[f] = 2ε

∫

df
dx

q′dx

dE
dε

= 2

∫

df
dx

q′dx get rid of q’

∫

df
dx

q′dx =
df
dx

q

∣

∣

∣

−

∫

d
dx

df
dx

qdx integration by parts

dE
dε

= −2

∫

d
dx

df
dx

qdx for arbitrary q

d
dx

df
dx

=
d2f

dx2
= 0

Discrete alternatives 3,4

Is there a discrete equivalent to the variational calculus approach (which is: the functional is minimized then a variation of the function gives zero variation to the functional)?

Discrete 3

Now do something similar (to the modified continuous) discretely:

E[f] = f′D′Df Df?

δE = (f + εq)′D′D(f + εq) − f′D′Df discrete variation

E[f + εq] = f′D′Df + 2f′D′Dεq + terms(εq2) (b’) similar to continuous (b)

δE = 2f′D′Dεq note this is a scalar

want change in this wrt εq

∂E
∂εq

= 2D′Df note this is a vector

D =







1

−1 1

−1 1

. . .







D′ =







1 −1

1 −1

1 −1

. . .
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D’D is 2 on the diagonal, -1 on the neighbors to diagonal, zero elsewhere, so -1 2 1 — this is −∇2 . The minus sign does not matter since the rhs is zero, but it comes out the same way as the continuous, both are negative. (Bishop

appendix on variational calc talks about adjoint of derivative being the negative of the derivative).

Discrete 4

But easier to just directly minimize wrt f:

E[f] = f′D′Df discrete

dE/df = 2D′Df

TV deconvolution problem

Next apply these methods to the total variation blind deconvolution functional.

(Part of) that functional: E =

∫

|∇u| =

∫ √

u2
x + u2

y .

Apply the general solution expression (Ken Anjyo’s approach):

• δE
δu

= Fu +

∑

(−1)n d
dx

Fun = 0

• rewrite this for 2 dimensions, p==du/dx, q==du/dy, pn = dnu/dxn .

• F (x, y, u, p, q) =

√

p2 + q2 .

• δE
δu

= Fu +

∑

(−1)n dn

dxn Fpn +

∑

(−1)n dn

dyn Fqn

• for TV problem n = 1, Fu = 0, Fp =
p

√

p2+q2

, Fq =
q

√

p2+q2

• δE
δu

= −1 d
dx

p
√

p2+q2

− 1 d
dy

q
√

p2+q2

= − 1
√

p2+q2

( d
dx

p + d
dy

q)

• = −∇ · ∇u
|∇u|

Variational version of Lagrange multiplier

With a constraint such as
∑

pk = c, the variational formulation of this constraint (to be added to some equation with a Lagrange multiplier) is:
∑

δpk = 0. This is derived like so:

∑

(pk + δpk) = c

∑

pk +

∑

δpk = c

and then subtract the
∑

pk and the c from this.
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