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Scattered two-dimensional data can be smoothly interpolated using the thin-plate spline, which minimizes the squared second-
derivative (approximate curvature) over the surface. The computation can be done by directly solving the PDE Lu = r with
relaxation or multigrid. It can also be done (if there are not too many points to interpolate) by a weighted sum of radial basis
functions centered at each data point:

f(x, y) =
∑

wkf(
√

x2 + y2)

Radial basis functions r, r3, r2 log r, etc. have all been used. Where do these functions come from? The answer requires
variational calculus, differential equations, Green’s functions, and preferably Fourier transforms. I’ll outline this below, but
also give a nearly parallel discrete formulation that needs only linear algebra and (unfortunately) Fourier transforms – this
second formulation should be more comfortable for computer graphics people.

’ = transpose, wrt = with respect to, rhs = right hand side

Continuous Discrete

Fit an unknown function f to the data yk, regularized
by minimizing a smoothness term.

E[f ] =
∑

(fk − yk)2 + λ

∫
||Pf ||2

e.g. ||Pf ||2 =
∫ (

d2f

dx2

)2

dx

A similar discrete version.

E[f ] = (f − y)′S′S(f − y) + λf ′P ′Pf

• To simplify things, here the data points to inter-
polate are required to be at discrete sample loca-
tions in the vector y, so the length of this vector
defines a “sample rate” (reasonable).

• S is a “selection matrix” with 1s and 0s on the di-
agonal (zeros elsewhere). It has 1s correspond-
ing to the locations of data in y. y can be zero
(or any other value) where there is no data.

• P is a diagonal-constant matrix that encodes the
discrete form of the regularization operator. E.g.
to minimize the integrated curvature, rows of P
will contain:  −2, 1, 0, 0, . . .

1,−2, 1, 0, . . .
0, 1,−2, 1, . . .


The variational derivative of E wrt f leads to a differ-
ential equation

P ′Pf(x) =
1
λ

∑
(f(x)− yk)δ(x− xk)

Here P’ is the “adjoint” of P . If P is symmetric (true
for the second derivative operator) then the adjoint is
the same, otherwise it is time-reversed.

Take the derivative of E with respect to the vector f ,
obtaining

2S(f − y) + λ2P ′Pf = 0
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The differential equation can be solved by finding the
Green’s function of the differential operator and convolving
with the right hand side (r.h.s) (works only for a linear oper-
ator).
Schematically,

Lf = rhs L is the operator P’P,

rhs is the data fidelity

f = g ? rhs f obtained by convolving g ? rhs

Lg = δ choosing rhs = δ gives this eqn

g is the “convolutional inverse” of L. This is easy to solve
in the Fourier domain, where convolution becomes multpli-
cation. The transform of δ is a constant, so in the Fourier
domain g is the reciprocal of L = P ′P .
In summary, the kernel g is the inverse Fourier transform
of the reciprocal of the Fourier transform of the “adjoint-
squared” smoothing operator P .
The Fourier transform of the derivative of a function is

F [
d

dx
f(x)] = |ω|F [f(x)]

i.e. it has linearly more energy at higher frequencies; the
Fourier transform of the second derivative should go up with
the square of the distance from the frequency origin, etc., in
particular the operator P ′P boosts the transform proportion-
ally to ω4. And the inverse Fourier transform of 1/ω4 is |x|3
ignoring scale. This is the 1-D kernel corresponding to the
cubic spline.
(In more detail, the integrals of ω4 and |x|3 diverge, so in-
stead find the transform of them windowed by exp(−a|x|)
and then take the limit as a → 0:∫

e−a|x||x|3e−i2πωxdx transform of e−a|x||x|3

=

∫ ∞

0

e−axx3e−i2πωxdx

+

∫ 0

−∞
eax(−x)3e−i2πωxdx

=
6

(a + 2iπω)4
+

6

(a + 2iπω)4

lim
a−>0

12

(a + 2iπω)4
now take limit as a → 0

=
3

4π4ω4
i.e. ∼ 1/ω4

)

P ′Pf =
1
λ

S(f − y)

Multiply by G, being the inverse of P ′P :

f = GP ′Pf =
1
λ

GS(f − y)

So the RBF kernel related to G = (P ′P )−1.
As usual, taking the svd helps.

P = UDV ′ ⇒ P ′P = V D2V ′

The inverse of V D2V ′ is V D−2V ′.
Next, the eigenvectors of a circulant matrix are sinu-
soids, and P is diagonal-constant (toeplitz?), or nearly
circulant. So V D−2V ′ is approximately the same
as taking the Fourier transform and then the recipro-
cal, remembering that D are the singular values of P ,
which have to be squared to get the eigenvalues of P ′P
(≈ Fourier coefficients).

2


