Relaxation Notes

jplewis

General strategy: elliptic eq 'static' form (my term) such as $\nabla^{2} f=0$ also has a corresponding formulation which minimizes an energy, $\int(\nabla f)^{2} d x y$. This can be shown by starting with the energy minimization form and adding a variational calculus 'variation', integrate by parts, get the 'static' form.

Easier, see below, is to discretize, then minimize wrt f_{k}, you get the static form as a result.

$$
\begin{aligned}
\min _{f} \int(\nabla f)^{2} d x y & =\min _{f} \sum(\nabla f)^{2} \\
\nabla f=\left(\frac{d f}{d x}, \frac{d f}{d y}\right)^{\prime} & \approx \frac{1}{h}\left(f_{10}-f_{00}\right), \frac{1}{h}\left(f_{01}-f_{00}\right) \text { using forward first diff } \\
(\nabla f)^{2} & =\frac{1}{h^{2}}\left(\left(f_{10}-f_{00}\right)^{2}+\left(f_{01}-f_{00}\right)^{2}\right) \\
E=\sum(\nabla f)^{2} & =\frac{1}{h^{2}} \sum \cdots+\left(f_{k, j}-f_{k-1, j}\right)^{2}+\left(f_{k, j}-f_{k, j-1}\right)^{2}+\left(f_{k+1, j}-f_{k, j}\right)^{2}+\left(f_{k, j+1}-f_{k, j},\right. \\
\frac{d E}{d f_{k, j}} & =\frac{1}{h^{2}}\left[\left(f_{k, j}-f_{k-1, j}\right)+\left(f_{k, j}-f_{k, j-1}\right)-\left(f_{k+1, j}-f_{k, j}\right)-\left(f_{k, j+1}-f_{k, j}\right)\right] \\
& =\frac{1}{h^{2}}\left(4 f_{k, j}-f_{k+1, j}-f_{k-1, j}-f_{k, j+1}-f_{k, j-1}\right)
\end{aligned}
$$

now iterate, reduce the error by changing f : α needs to be $1 / 4$ or less for stability, see NR

$$
f_{k, j} \leftarrow f_{k, j}-\alpha \frac{d E}{d f_{k, j}}
$$

$$
\begin{aligned}
& f_{k, j} \leftarrow f_{k, j}-1 / 4\left(4 f_{k, j}-f_{k+1, j}-f_{k-1, j}-f_{k, j+1}-f_{k, j-1}\right) \\
& f_{k, j} \leftarrow 1 / 4\left(f_{k+1, j}+f_{k-1, j}+f_{k, j+1}+f_{k, j-1}\right)
\end{aligned}
$$

Now compare this to the solution starting from the static form:

$$
\text { forward first difference } \quad \frac{1}{h}\left(f_{+}-f_{0}\right)
$$

2nd difference $=$ difference of first diff

$$
\frac{1}{h}\left(\frac{1}{h}\left(f_{+}-f_{0}\right)-\frac{1}{h}\left(f_{0}-f_{-}\right)\right)
$$

$$
=\frac{1}{h^{2}}\left(f_{+}-2 f_{0}+f_{-}\right)
$$

so

$$
\begin{aligned}
& \nabla^{2} f=0=\frac{d^{2} f}{d x^{2}}+\frac{d^{2} f}{d y^{2}}=\frac{1}{h^{2}}\left[f_{+0}-2 f_{00}+f_{-0}\right]+\frac{1}{h^{2}}\left[f_{0+}-2 f_{00}+f_{0-}\right] \\
& =\frac{1}{h^{2}}\left(f_{+0}+f_{-0}+f_{0+}+f_{0-}-4 f_{00}\right)=0
\end{aligned}
$$

since this equals zero, can mult by $h^{2}=f_{+0}+f_{-0}+f_{0+}+f_{0-}-4 f_{00}=0$

Now write this as a linear system and show its solution with Jacobi iteration. It can be written as $A f=0$ with f unrolled into a vector and A a len(f) ${ }^{2}$ matrix. Rows of this matrix look like

$$
\ldots 1, \ldots * \ldots, 1,-4,1, \ldots * \ldots, 1, \ldots
$$

where $*$ is the offset from one row to the previous or next, and -4 is on the diagonal.
Jacobi iteration sets each f_{k} to the solution of its row of the matrix equation, independent of all other rows:

$$
\begin{array}{ll}
& \sum A_{r c} f_{c}=b_{r} \\
\rightarrow \quad & A_{r k} f_{k}=b_{k}-\sum_{j \neq k} A_{r j} f_{j}
\end{array}
$$

$$
f_{k} \leftarrow \frac{b_{k}}{A_{k k}}-\sum_{j \neq k} A_{k j} / A_{k k} f_{j}
$$

Apply this here:
eqn of row k : $\quad-4 f_{k}+$ surrounding points $=0$

$$
f_{k} \leftarrow 1 / 4 \text { surrounding points }
$$

converting back to 2 d , gives same result as energy min

$$
f_{k, j} \leftarrow 1 / 4\left(f_{k+1, j}+f_{k-1, j}+f_{k, j+1}+f_{k, j-1}\right)
$$

The Jacobi iteration converges if the matrix is 'diagonally dominant', meaning that the diagonal elements are much larger than the off diagonal elements. Strict row-diagonal dominance requires that the abs of the diagonal be greater than the sum-abs of the off-diagonal elements.

For interpolation some $f_{r, c}$ are specified rather than free. In setting up the linear system, subtract these from both sides of the eq, so the known quantities move to the rhs. CHECK:

$$
\begin{aligned}
& \frac{1}{h^{2}}\left(f_{+0}+f_{-0}+f_{0+}+f_{0-}-4 f_{00}\right)=0 \quad \text { say } f_{+0} \text { is known/fixed, then } \\
& \frac{1}{h^{2}}\left(f_{-0}+f_{0+}+f_{0-}-4 f_{00}\right)=-\frac{1}{h^{2}} f_{+0}
\end{aligned}
$$

TODO: show interp derivative

can square of gradient be expressed as a matrix?

$$
|\nabla u|^{2}=\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}
$$

say K_{x} is the matrix that produces $d u / d x$, then $\quad u^{\prime} K_{x}^{\prime} K_{x} u=(d u / d x)^{2}$

$$
\begin{aligned}
\text { so } u^{\prime}\left(K_{x}^{\prime} K_{x}+K_{y}^{\prime} K_{y}\right) u & =\left(u^{\prime} K_{x}^{\prime} K_{x}+u^{\prime} K_{y}^{\prime} K_{y}\right) u \\
=u^{\prime} K_{x}^{\prime} K_{x} u+u^{\prime} K_{y}^{\prime} K_{y} u & =\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2} \text { try this in maple }
\end{aligned}
$$

minimizing gradient squared same as laplace

Dan Ruderman derives this, requires several integration by parts. A simpler approach is (in 1d):

$$
\begin{aligned}
\text { roughness } & R=\int|\nabla u|^{2} d u \approx \sum\left(u_{k+1}-u_{k}\right)^{2} \\
\text { for a particular k: } & \frac{d R}{d u_{k}}=\frac{d}{d u_{k}}\left[\left(u_{k}-u_{k-1}\right)^{2}+\left(u_{k+1}-u_{k}\right)^{2}\right] \\
& =2\left(u_{k}-u_{k-1}\right)-2\left(u_{k+1}-u_{k}\right)=0 \\
& u_{k+1}-2 u_{k}+u_{k-1}=0 \rightarrow \nabla^{2} u=0
\end{aligned}
$$

