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A general definition of a spline is minimize the a weighted sum of squared deriva-
tives, integrated over the (unknown) spline function, subject to passing through given
points, for example a natural cubic spline minimizes the integrated second derivative.
This differential equation can be solved using the Green’s function approach, which
explains the form of RBF kernels. The cost is (cubically) proportional to the number of
known/constrained points, rather than the number of unknown points (also cubically, if
ignoring sparsity of the discretized derivative, and multigrid).

The general strategy is to use calculus of variations to setup a minimum for the energy,
then use integration by parts to remove the derivatives from the variation test function
εh(x), express as

∫
εh(x)(· · · )dx and note that the · · · part must be zero. This converts

the energy integral into a differential equation. Then we use a Green’s function method:
take the Fourier transform, solve for the function using simple algebra, take the inverse
Fourier transform.

The following “energy” defines a thin plate with “tension”:

F (f) =
∑

(f(xi)− yi)2 + α

∫
‖∇f‖2dx + γ

∫
‖∇2f‖2dx

The summation covers the available data points, and the integration is over the domain
of the spline.

An analogous one-dimensional problem is

F (f) =
∑

(f(xi)− yi)2 + α

∫
‖ df
dx
‖2dx + γ

∫
‖d

2f

dx2
‖2dx

Renotate this as

F (f) =
∑

(f(xi)− yi)2 + α

∫
‖fx‖2dx + γ

∫
‖fxx‖2dx

The minimum of F (f) can be found with variational calculus. In this approach, each
occurrence of fx in F (f) is replaced with the variation fx + εhx. At a minimum, the
variation

F (f + εh)− F (f)
ε
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will be zero. Put this in the form
∫
hg, then because h is arbitrary and the whole is zero,

it must be that g is zero. To reduce notation we will temporarily call f(xi), h(xi), yi
as f, h, y.

For the terms in the data-fit sum
∑

(f(xi)− yi)2,

(f + εh− y)2

= f2 + e2h2 + y2 + 2fεh− 2fy − 2εhy

= f2 − 2fy + y2 + 2fεh− 2εhy + ε2h2

= (f − y)2 + 2εh(f − y) + ε2h2

The first derivative term α
∫
‖fx‖2 expands to

α

∫
‖(f + εh)x‖2dx

= α

∫
(f + εh)x (f + εh)xdx

= α

∫
(fx + εhx) (fx + εhx) dx

= α

∫
‖fx‖2 + 2εfxhx + ε2‖hx‖2dx

The second derivative term γ
∫
‖fxx‖2dx similarly expands to

γ

∫
‖(f + εh)xx‖2dx

= γ

∫
(f + εh)xx (f + εh)xxdx

= γ

∫
(fxx + εhxx) (fxx + εhxx) dx

= γ

∫
‖fxx‖2 + 2εfxxhxx + ε2‖hxx‖2dx

Now take the limit of
F (f + εh)− F (f)

ε

as ε → 0. In dividing by ε, the single ε factors drop, whereas the ε2 factors become
ε. Then taking ε → 0 the ε becomes zero, effectively removing the ε2 terms. In the
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following we will simply remove these terms as they appear.

F (f + εh)− F (f) \ {ε2 terms} =∑
(f(xi)− yi)2 + 2εh(xi)(f(xi)− yi)

+ α

∫
‖fx‖2 + 2εfxhx dx

+ γ

∫
‖fxx‖2 + 2εfxxhxx dx

−
∑

(f(xi)− yi)2 − α

∫
‖fx‖2dx − γ

∫
‖fxx‖2dx

= 2ε
∑

h(xi)(f(xi)− yi) + 2εα

∫
fxhxdx + 2εγ

∫
fxxhxxdx

Pull the sum under an integral by expressing it with a Dirac:

= 2

∫
ε
∑

h(x)(f(xi)−yi)δ(x−xi)dx + 2εα

∫
fxhxdx + 2εγ

∫
fxxhxxdx

Now do two integration by parts (IBP) on the second derivative term, thereby removing
the derivative from h and increasing it on f . Likewise do one IBP on the first derivative
term. Recall the integration by parts pattern:∫

ABxdx = AB|eb −
∫
BAxdx

where Ax is the derivative of some function A(x), and b, e denote the beginning and
end of the domain of integration.

The result of applying IBP to the first derivative term is:

2εα

∫
fxhxdx = −2εα

∫
h(x)fxx(x)dx

TheAB term in the IBP is zero because the test function h(x) is zero at the boundaries.

Second derivative IBP

2

∫
εfxxhxxdx

first application of IBP: = −2εγ
∫
fxxxhxdx

second application of IBP: = 2εγ

∫
fxxxxhdx

Substituting these IBP expressions, the new F (f + εh)− F (f) is

2ε

∫ ∑
h(x)(f(xi)−yi)δ(x−xi)dx − 2εα

∫
h(x)fxx(x)dx + 2εγ

∫
fxxxxhdx
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= 2

∫
εh(x)

(∑
(f(xi)− yi)δ(x− xi)dx − αfxx(x) + γfxxxx

)
dx

and finally taking F (f+εh)−F (f)
ε eliminates the ε. This expression is zero at the mini-

mum because it is the variation. Then, because h(x) can be arbitrary, we know that the
quantity in parenthesis is zero everywhere:

γfxxxx(x) − αfxx(x) +
∑

(f(xi)− yi)δ(x− xi) = 0 (1)

(Note that the minus sign came from the IBP).

This differential equation can be solved with the Green’s function approach. For a
Green’s function setup,

γgxxxx(x)− αgxx(x) = δ(x) (2)

and the function is expressed as a weighted convolution of the Green’s function with
the data:

f(x) =
∑
k

wkg(x− xk) (3)

Substitute this definition into Eq. (1) (repeated here):

γfxxxx(x)− αfxx(x) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

=γ
d4

dx4
(
∑
k

wkg(x− xk))− α
d2

dx2
(
∑
k

wkg(x− xk)) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

=γ
∑

wk
d4

dx4
g(x− xk)− α

∑
wk

d2

dx2
g(x− xk) +

∑
i

(f(xi)− yi)δ(x− xi) = 0

(Changing notation)

=γ
∑

wkgxxxx(x− xk)− α
∑

wkgxx(x− xk) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

=
∑

wkγgxxxx(x− xk)−
∑

wkαgxx(x− xk) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

=
∑

wk (γgxxxx(x− xk)− αgxx(x− xk)) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

=
∑

wkδ(x− xk) +
∑
i

(f(xi)− yi)δ(x− xi) = 0

Where the last step comes from applying Eq. (2).

Now substitute the expression Eq. (3) for f(x) in terms of the Green’s function on the
right hand side, giving∑

wiδ(x− xi) +
∑
i

((
∑
k

wkg(xi − xk))− yi)δ(x− xi) = 0
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Note the switch from k to i in the leftmost term. This is ok – the xk on the left indexes
the same data points as xi on the right.

The δ(x− xi) are independent, that is,∑
akδ(x− xk) = 0 ⇒ ak = 0

so this means
wi + ((

∑
k

wkg(xi − xk))− yi) = 0 ∀i

or ∑
k

wkg(xi − xk) + wi − yi = 0 ∀i

which resembles is a linear system for the approximation problem... but the function g
is still unknown! What happened to α, γ? They are “baked” into the Greens function.

To solve for the Greens function g: Go back to the Greens function relation (2) and
take the Fourier transform,

γj4ω4G(ω)− αj2ω2G(ω) = 1

G(ω) =
1

γj4ω4 − αj2ω2

Since j2 = −1 and j4 = 1,

G(ω) =
1

γω4 + αω2

To simplify, we will take γ = 1. Then this is equal to

1

ω2

1

α+ ω2

The 1
α+ω2 is the transform of the Laplace kernel, so the desired kernel is (any) second

antiderivative of the Laplace kernel.

Note that since the original roughness penalty does not “see” constants, a polynomial
correction of order 0 (i.e. a constant) is necessary.
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