

Fast Subsurface Scattering (even real time)

J.P. Lewis and George Borshukov

Subsurface Scattering

- Prehistory:
 - Hanrahan and Krueger, Siggraph 1993
 - Pharr and Hanrahan, Siggraph 2000
- Jensen, Marshner, Levoy, and Hanrahan,
 A Practical Model for Subsurface Light Transport,
 Siggraph 2001
- Jensen and Buhler, A Rapid Hierarchical Rendering Technique for Translucent Materials, Siggraph 2002

Jensen 2001

Diffuse reflectance:

$$\frac{\alpha'}{4\pi} \left[\left(\sigma_{tr} d_r + 1 \right) \frac{e^{-\sigma_{tr} d_r}}{\sigma_t' d_r^3} + z_v \left(\sigma_{tr} d_v + 1 \right) \frac{e^{-\sigma_{tr} d_v}}{\sigma_t' d_v^3} \right]$$

In essence:

convolve the illumination with a profile that simulates diffusion/scattering (rapid_falloff)

Borshukov and Lewis, "Realistic Human Face Rendering for *The Matrix Reloaded*", Siggraph 2003 sketch

- Process:
 - Render
 - Save illuminated surface to texture (diffuse only!)
 - Filter the illuminated texture with rapid_falloff
 - Cheap re-render

Light map

What is rapid_falloff()?

Intuitive explanation

- Rapid_falloff ~ spike + broad area
 - Spike keeps the result from looking blurred
 - Broad area does the scattering

 (Or, physics analogy: Green's function: a kernel that is convolved with the given data (r.h.s.) to produce the solution. Green's function for diffusion...)

What is rapid_falloff()?

- Various approximations:
 - is the skin like a sheet, a slab, or more like an volume? We simulate the result of 3D process in 2D
 - BRDF may/may not include homogeneous subsurface scattering (e.g. Hanrahan and Krueger)
 - make up for finite kernel size
- Our choice: 1/(c+radius)^{power}
 - c: avoid division by zero
 - adjust power for desired appearance. Start with ~2

Making it look good

- Use for diffuse only
- Use a spike+base / rapid falloff kernel, not a regular blur (some people haven't)
- Falloff slower in the red channel
- Make sure there is pore-like detail in the texture / normals

Results

Real vs. CG

Results

Look for color bleeding into the shadows (macro, micro)

Results

 (See Borshukov presentation this afternoon for movies and additional images, details)

GPU Implementation

- Sander, Gosselin, Mitchell, "Real-Time Skin Rendering on Graphics Hardware", Siggraph 2004 Sketch
- Real-Time Skin Rendering, ATI presentation at Game Developer Conference 2004 (also demo at ATI booth)

Real time on the PS3

- See George Borshukov's presentation at 3PM
- (The images are amazing...)

- Advantages:
 - Fast (real-time demonstrated)
 - Looks great
- Disadvantages:
 - Not as accurate, no physically-interpretable parameters
 - Cannot do thick translucent skin region (ears)