Combining Several Estimates

j.p.lewis

October 17, 2001

Maybeck's Kalman tutorial gives a formula for combining several estimates but does not derive it. Likewise I don't see this explicitly in Papoulis, though the ingredients are all there.

Given two estimates x_{1}, x_{2} of the same quantity x, but assuming that the two estimates are not necessarily equally reliable, and thus assigning differing σ_{1}, σ_{2}, how to combine them to form a single estimate?

This can be done by applying the orthogonality principle, and by requiring that the resulting estimate be unbiased. The estimate will be a linear combination of the two observations:

$$
\hat{x}=w_{1} x_{1}+w_{2} x_{2}
$$

Starting with the no-bias requirement,

$$
E[x-\hat{x}]=0
$$

Rewrite the observations x_{1}, x_{2} as the true value x plus observation noise r_{1}, r_{2}.

$$
\begin{aligned}
& x_{1}=x+r_{1}, \\
& x_{2}=x+r_{2} \\
& E\left[x-\left(w_{1}\left(x+r_{1}\right)+w_{2}\left(x+r_{2}\right)\right)\right]= 0 \\
& x= w_{1}\left(x+E\left(r_{1}\right)\right)+w_{2}\left(x+E\left(r_{2}\right)\right) \\
& \quad \text { but if } E\left(r_{1}\right)=E\left(r_{2}\right)=0 \\
& x=w_{1} x+w_{2} x \\
& w_{1}+w_{2}=1
\end{aligned}
$$

so the weights must sum to one if the observations and the resulting estimate are unbiased. Hmm...
Next apply the orthogonality principle:

$$
\begin{aligned}
& E\left[\left(w_{1} x_{1}+w_{2} x_{2}-x\right) x_{1}\right]=0 \quad \text { "e } 1 " \\
& E\left[\left(w_{1} x_{1}+w_{2} x_{2}-x\right) x_{2}\right]=0 \quad \text { "e2" }
\end{aligned}
$$

expand e1:
$E\left[w_{1}\left(x+r_{1}\right)\left(x+r_{1}\right)+w_{2}\left(x+r_{2}\right)\left(x+r_{1}\right)-x\left(x+r_{1}\right)\right]=0$
in

$$
\left(x+r_{1}\right)\left(x+r_{1}\right)=x^{2}+x r_{1}+x r_{2}+r_{1}^{2}
$$

we assume that r_{1}, r_{2} are uncorrelated and uncorrelated with x, so
e1 after expanding and cancelling uncorrelated terms:

$$
E\left[w_{1}\left(x^{2}+r_{1}^{2}\right)+w_{2} x^{2}-x\right]=0
$$

do the same with e2:

$$
E\left[w_{1} x^{2}+w_{2}\left(x^{2}+r_{2}^{2}\right)-x\right]=0
$$

and subtract this from the similarly processed e1

$$
\begin{array}{r}
E\left[w_{1}\left(x^{2}+r_{1}^{2}-x^{2}\right)+w_{2}\left(x^{2}-x^{2}-r_{2}^{2}\right)=0\right. \\
w_{1} E\left[r_{1}^{2}\right]=w_{2} E\left[r_{2}^{2}\right] \\
\frac{w_{1}}{w_{2}}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}
\end{array}
$$

Now substitute $w_{2}=1-w_{1}$ because the weights sum to 1 ,

$$
\begin{aligned}
\frac{w_{1}}{1-w_{1}} & =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \\
w_{1} & =\left(1-w_{1}\right) \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \\
& =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}-w_{1} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \\
w_{1}\left(1+\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right) & =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \\
w_{1} & =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}\left(1+\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right)} \\
& =\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

This is similar to the formula in Maybeck.

