Discrete Adjoint and Divergence

j-p-lewis

(Assuming regular sampling)

Adjoint

<A$, y> = <J"7 A*y>

In discrete terms

adjoint = transpose (in real case)

Case of derivative

Bishop appendix: “adjoint derivative is negative derivative”

D' =—-D:
1 —1
1 —1

’_
D= 1 -1



Relationship to integration by parts

b b
uv|2=/ udv+/ vdu

f'Dg=X —g¢'Df

Discrete version of this is

where X is the boundary condition part, often zero.

When X is zero this can be rewritten as

f'Dg=—f'D'g

Adjoint as cheap inverse

The inverse can be written as

(A'A) A

Then in some cases the A’ A part is nearly identity, or is something simple like a con-
stant scale. Then the inverse is approximately the Adjoint.



Continuous Poisson equation derivation

Seek a function s that minimizes the squared gradient,
minl = / Vs - Vsdx
S 0

Boundary condition is gradient vanishes on the boundary, (note my notation, does not

follow paper on this point)

@:O for s € 90
ov

where v is a vector perpendicular to the boundary.

Adding a perterbation ep,
I= / V(s +ep) - V(s + ep)dx
Q
M: Expanding the square

I:/ |Vs||? + 2Vs - V(ep) + |V (ep)|?dx
Q

The necessary first order criterion for s to be optimium is

dl
df\gzo :()22/ Vs - Vpdx
€ Q

/QV-(pVS)dX - /Q[pVQS]dX:O

Using the divergence theorem on the first term,

/ V- (pVs)dx = / pVs - vdS
Q Q

and this vanished because of the boundary condition, leaving

/Q [PV2s]dx = 0

Discrete Poisson equation derivation

Ir?n\\Gf||2:1r?nf’G’Gf = G'Gf=0



