
Discrete Adjoint and Divergence

j.p.lewis

(Assuming regular sampling)

Adjoint

〈Ax, y〉 = 〈x,A∗y〉

In discrete terms

f ′(Dg) = (f ′D)g

= (D′f) · g

adjoint = transpose (in real case)

Case of derivative

Bishop appendix: “adjoint derivative is negative derivative”

D =
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1
−1 1
−1 1

. . .


D′ = −D:

D′ =
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
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Relationship to integration by parts

uv|ba =

∫ b

a

udv +

∫ b

a

vdu

Discrete version of this is
f ′Dg = X − g′Df

where X is the boundary condition part, often zero.

When X is zero this can be rewritten as

f ′Dg = −f ′D′g

Adjoint as cheap inverse

The inverse can be written as
(A′A)−1A′

Then in some cases the A′A part is nearly identity, or is something simple like a con-
stant scale. Then the inverse is approximately the Adjoint.
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Continuous Poisson equation derivation

Seek a function s that minimizes the squared gradient,

min
s
I =

∫
Ω

∇s · ∇sdx

Boundary condition is gradient vanishes on the boundary, (note my notation, does not
follow paper on this point)

∂s

∂ν
= 0 for s ∈ ∂Ω

where ν is a vector perpendicular to the boundary.

Adding a perterbation εp,

I =

∫
Ω

∇(s+ εp) · ∇(s+ εp)dx

M: Expanding the square

I =

∫
Ω

‖∇s‖2 + 2∇s · ∇(εp) + ‖∇(εp)‖2dx

The necessary first order criterion for s to be optimium is

dI

dε
|ε=0 = 0 = 2

∫
Ω

∇s · ∇pdx

Or ∫
Ω

∇ · (p∇s)dx −
∫

Ω

[p∇2s]dx = 0

Using the divergence theorem on the first term,∫
Ω

∇ · (p∇s)dx =

∫
Ω

p∇s · νdS

and this vanished because of the boundary condition, leaving∫
Ω

[p∇2s]dx = 0

Discrete Poisson equation derivation

min
f
‖Gf‖2 = min

f
f ′G′Gf ⇒ G′Gf = 0
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