Discrete Adjoint and Divergence

j.p.lewis

(Assuming regular sampling)

Adjoint

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

In discrete terms

$$f'(Dg) = (f'D)g$$
$$= (D'f) \cdot g$$

adjoint = transpose (in real case)

Case of derivative

Bishop appendix: "adjoint derivative is negative derivative"

$$D = \begin{bmatrix} 1 \\ -1 & 1 \\ & -1 & 1 \\ & & \dots \end{bmatrix}$$

D' = -D:

$$D' = \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & & 1 & -1 \\ & & \dots & \end{bmatrix}$$

Relationship to integration by parts

$$uv|_a^b = \int_a^b u dv + \int_a^b v du$$

Discrete version of this is

$$f'Dg = X - g'Df$$

where X is the boundary condition part, often zero.

When X is zero this can be rewritten as

$$f'Dg = -f'D'g$$

Adjoint as cheap inverse

The inverse can be written as

$$(A'A)^{-1}A'$$

Then in some cases the A'A part is nearly identity, or is something simple like a constant scale. Then the inverse is approximately the Adjoint.

Continuous Poisson equation derivation

Seek a function s that minimizes the squared gradient,

$$\min_{s} I = \int_{\Omega} \nabla s \cdot \nabla s d\mathbf{x}$$

Boundary condition is gradient vanishes on the boundary, (note my notation, does not follow paper on this point)

$$\frac{\partial s}{\partial \nu} = 0 \quad \text{for } s \in \partial \Omega$$

where ν is a vector perpendicular to the boundary.

Adding a perterbation ϵp ,

$$I = \int_{\Omega} \nabla(s + \epsilon p) \cdot \nabla(s + \epsilon p) d\mathbf{x}$$

M: Expanding the square

$$I = \int_{\Omega} \|\nabla s\|^2 + 2\nabla s \cdot \nabla(\epsilon p) + \|\nabla(\epsilon p)\|^2 d\mathbf{x}$$

The necessary first order criterion for s to be optimium is

$$\frac{dI}{d\epsilon}|_{\epsilon=0} = 0 = 2 \int_{\Omega} \nabla s \cdot \nabla p d\mathbf{x}$$

Or

$$\int_{\Omega} \nabla \cdot (p\nabla s) d\mathbf{x} - \int_{\Omega} [p\nabla^2 s] d\mathbf{x} = 0$$

Using the divergence theorem on the first term,

$$\int_{\Omega} \nabla \cdot (p\nabla s) d\mathbf{x} = \int_{\Omega} p\nabla s \cdot \nu dS$$

and this vanished because of the boundary condition, leaving

$$\int_{\Omega} [p\nabla^2 s] d\mathbf{x} = 0$$

Discrete Poisson equation derivation

$$\min_{f} \|Gf\|^2 = \min_{f} f'G'Gf \quad \Rightarrow \quad G'Gf = 0$$