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Fig. 1: (a) We attempt to mimic the

“Jack Nicholson” expression of par-

tially closed eyes with an arched eye-

brow. First the eyelids are partially

closed.

(b) The model has three controls over

eyebrow shape. The desired arched

eyebrow is easily obtained, but the eye-

lid is changed as a side effect.

(c) The model is capable of approx-

imating the desired expression how-

ever, by readjusting the eyelid control

(or, by using our technique).

Abstract

Blendshapes (linear shape interpolation models) are perhaps the
most commonly employed technique in facial animation practice.
A major problem in creating blendshape animation is that of blend-
shape interference: the adjustment of a single blendshape “slider”
may degrade the effects obtained with previous slider movements,
because the blendshapes have overlapping, non-orthogonal effects.
Because models used in commercial practice may have 100 or more
individual blendshapes, the interference problem is the subject of
considerable manual effort. Modelers iteratively resculpt models to
reduce interference where possible, and animators must compen-
sate for those interference effects that remain. In this short paper
we consider the blendshape interference problem from a linear al-
gebra point of view. We find that while full orthogonality is not
desirable, the goal of preserving previous adjustments to the model
can be effectively approached by allowing the user to temporarily
designate a set of points as representative of the previous (desired)
adjustments. We then simply solve for blendshape slider values that
mimic desired new movement while moving these “tagged” points
as little as possible. The resulting algorithm is easy to implement
and demonstrably reduces cases of blendshape interference found
in existing models.
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1 Introduction

Blendshapes are a standard approach to computer facial animation.
The technique was popularized in the pioneering character anima-
tion Tony de Peltrie [Bergeron and Lachapelle 1985], and it con-
tinues to be used in projects such as the Stuart Little, Star Wars,
and Lord of the Rings movies. The technique is described by other
names including morph targets and shape interpolation.

A blendshape model is simply the linear weighted sum of a number
of topologically conforming shape primitives,

f j = ∑wkbk j (1)

where f j is the jth vertex of the resulting animated model, wk are the
blending weights, and bk j is the jth vertex of the kth blendshape.
The weighted sum can be applied to the vertices of polygonal mod-
els, or to the control vertices of spline models. The weights wk are
manipulated by the animator in the form of sliders, with one slider
for each weight. Weight values (slider positions) are keyframed to
produce animation over time.

One of the major issues in constructing and using blendshape mod-
els is that of blendshape interference. The problem is seen in def-
inition (1): the individual blend shapes bk often have overlapping
(competing or reinforcing) effects. For example (see Fig. 1), the
animator may initially adjust the eyelid by moving one slider, but
by adjusting other sliders (eyebrows, forehead, etc.) the eyelid may
be raised or further lowered from its desired position. The animator
then has to go back and readjust the first slider.

In practice the interference problem is minimized by sculpting the
individual blendshapes to be as independent in effect as possible,
and by iteratively refining these shapes when interference is found.
Blendshape interference cannot be entirely eliminated, however,
because desirable blendshape targets naturally have overlapping ef-
fects. For example, the blendshapes to effect a smile, raise the cor-
ner of the mouth, and produce the vowel “A” all affect the corner of
the mouth region. Interference is thus considered by the animator
as an expected cost of using the blendshape approach.

That cost is considerable, however. Blendshape models used in en-
tertainment practice may take as long as a year or more to con-
struct and can have more than 100 individual blendshapes [Jenkins
2004], resulting in thousands of potential pairwise interference ef-
fects. An animator working with a poorly designed model may
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Fig. 2 a,b,c: Another example, using a well-known model [Landreth 1998]. a) Neutral pose
of the blendshape model. b) The effect of moving the fourth slider, Furrow, to a value of
0.4. c) Further slider moves, mostly affecting the mouth, but the middle of the brow has
continued to move downward as well, below the desired position.

spend much more time re-adjusting previously adjusted sliders than
doing “new” animation. In the “Gollum” model used on the recent
Lord of the Rings movies, the pairwise effects of many blendshapes
were explicitly corrected in the model construction. The result was
a model with a total of 946 blendshapes, the majority of which were
used to correct for the behavior of an original set of 64 shapes (the
correction shapes were automatically invoked, with only 64 slid-
ers being exposed to the animator). More than 10,000 blendshapes
were sculpted in the process of developing the final model [Raitt
2004].

Figure 2 shows another example of an interference problem in a
professionally developed model [Landreth 1998]. Fig. 2a) is the
unaltered neutral pose – all slider weights are set to zero. Fig. 2b)
shows the effect of a single slider move. Presumably, an animator
making such an adjustment has positioned the brow exactly as de-
sired. But as further moves are made (Fig. 2c), the brow continues
to furrow, requiring readjustment of the first slider. It should be
emphasized that

• although the geometric movement being discussed is some-
times subtle, the character animator’s art requires them to pro-
duce and control such subtle movement in order to distinguish
geometry similar facial expressions (such as “worried” and
“angry”).

In this paper we show that the interference problems in a given
model can be greatly reduced during animation without resculpting
the model. We present a technique that allows the animator to tem-
porarily designate portions of the model that should not be altered
during a set of subsequent editing operations.

2 Related work

Despite its popularity the blendshape technique has had relatively
little development since the 1980s, though it is often used as a repre-
sentation in research on facial animation and tracking, e.g. [Pighin
et al. 1998; Choe et al. 2001]. Prior to [Bergeron and Lachapelle
1985], Parke demonstrated cross-fading between whole-face mod-
els in his well known early work [Parke 1972]. In the ‘delta’ blend-
shape form introduced in the late 1980s (see section 3) the indi-
vidual blendshapes are all offsets from a common ‘neutral’ face.
Delta blendshapes were implemented at Pacific Data Images [Beier
2005], and the Symbolics animation system also had a sophisticated
implementation [Bergeron 1987; Elson 1990]. [Kleiser 1989] de-
scribed segmenting the face into separate regions (e.g. upper and
lower face regions) that are blended independently, thus reducing
memory usage and improving performance (though, segmenting

does not by itself improve the power of the model, because a blend-
shape that affects a local region is no different than a blendshape
with global support that is zero outside the local region).

An exception to the lack of attention to blendshapes in the research
community is the recent paper [Joshi et al. 2003]. In this paper the
segmentation of the face into regions is obtained automatically us-
ing a physically motivated approach. Segmenting prevents interfer-
ence across segments but does not eliminate the problem, because
many interference effects result from overlapping blendshapes that
effect the same local region (c.f. Fig. 4). Principal component
(PCA) face models derived from data [Blanz and Vetter 1999] can
strictly be regarded as blendshapes, though they are outside the
spirit of the term: blendshapes are understood as a representation
suitable for manual animation, with the individual blendshapes hav-
ing intuitive meanings such as raise-left-eyebrow. Typ-
ically only the first few eigenvectors of a PCA model have any
intuitive interpretations, and doing keyframe animation in a PCA
representation would be very difficult.

Blendshapes are a standard component of commercial animation
packages such as Maya and Softimage. Although the algorithms
used in these packages are unpublished, in the case of a simple
technique such as blendshapes it is easy to surmise the underlying
approach from the documentation, available controls, and the be-
havior of the controls. Maya, for example, implements the standard
delta blendshape scheme, with one extension: multiple ‘intermedi-
ate’ blendshape targets can be situated at points along a particular
slider. The system crossfades among these to produce the ultimate
blendshape for that slider, which then takes part in the blendshape
weighted sum.

Our solution to the interference problem resembles inverse kine-
matics (IK) [Yamane and Nakamura 2003; Grochow et al. 2004]
in that we constrain particular points. It differs, however, in that
IK automatically determines the pose of unconstrained parts of
the character given the constraint of a moved part, whereas in our
technique the user manually explores facial poses while the sys-
tem keeps particular points stationary. On the other hand, the IK
‘pin-and-drag’ editing presented in [Yamane and Nakamura 2003]
directly anticipates the working style needed to use our technique.
Blendshapes can be considered a form of skinning; pointers to the
general literature on this subject include the popular SSD or linear-
blend skinning technique [Magnenat-Thalmann et al. 1988] and re-
cent improvements [Mohr et al. 2003]. Recent example-based ap-
proaches [Kurihara and Miyata 2004] to skinning have produced
excellent results, but have not yet been applied in facial animation.
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Fig. 3 a,b,c: a) The user selects two vertices whose motion is
to be attenuated. The algorithm operates at the level of coordi-
nates rather than vertices, so in effect 6 coordinates are selected.
b) The results of the same slider moves shown in Fig. 3c, but
with coordinate movement attenuation (compare Fig. 3c.). c)
Repeated from Fig. 2c for comparison.

Fig. 4 a,b,c: a) The y-component of two vertices are selected.
b) Sliders SmirkLeft and SmirkRight are increased to 0.7.
We see their normal effects of stretching out the mouth and push-
ing back the cheeks, but the selected vertices maintain their ver-
tical positions. c) The same slider moves with no attenuation.
The corners of the mouth move significantly in the y-direction.

3 A Linear Algebra View of the Problem

To simplify notation, a model will be expressed as a vector of length
3n (for n vertices), by packing the individual vertices in the vec-
tor in some arbitrary but consistent order such as xyzxyzxyz... or
xxxx...yyyy...zzzz.... The vectors bk representing each blendshape
are gathered in the columns of a blendshape basis matrix B. The
blendshape sum for the complete model is

f = Bw

where f is a 3n x 1 vector containing the resulting model, B is a 3n
x m matrix containing m blendshapes, and w is the m x 1 vector of
weights.

Two variants of the blendshape idea are the “whole-face” formula-
tion and “delta” blendshapes. In the former, the vectors bk represent
the complete face in some pose such as a smile, or with the mouth
posed to produce a particular vowel. In the delta form, the individ-
ual blendshapes are added to a “neutral” face model f0,

f = f0 +Dw

where columns of the delta blendshape basis D are simply the cor-
responding columns of the original basis B with the neutral shape
subtracted: dk = bk − f0, and D has m−1 rather than m columns.

The whole-face formulation is preferable for the modeler because
sculpting delta shapes is difficult, and it has been used to guarantee
that particularly important expressions appear (by sculpting that ex-
act expression and adding it to the blendshape basis) [Zhao 2001].
The delta form is often preferred by animators because (with appro-
priately sculpted blendshapes) it can allow localized control, such
as blendshapes that affect only one eyebrow, raise one corner of the
mouth, etc., or roughly mimic the effect of individual facial muscles
[Choe et al. 2001].

Although they present different advantages to the user, the whole-
face and delta formulations are identical in power because any
posed blendshape model in one formulation can be represented ex-
actly in the other form. For example to convert a delta model to the
whole face form, set b1 = f0, and set bk to f0 +dk−1 for k = 2 . . .m
(dk is the kth column of D). A particular pose in the delta model
represented by the weight vector w1...m−1 is then represented in
the whole-face model by the weights (1−∑wk,w1,w2, · · ·). In the
whole-face formulation the weights should sum to one, a constraint
that prevents scaling of the model. With one fewer weight, the delta
form does not have this ‘barycentric’ constraint. Because the algo-
rithm we present below transforms the weight vector such that its
sum may change, we assume the use of the delta form throughout

this paper. This does not limit the results, because the two forms
are equivalent in power and are easily exchanged.

An obvious approach to reducing the interference of new slider
movements on a recently obtained facial pose might be to find all
rows in the blendshape matrix D that correspond to vertices that
have recently been moved and set those rows to zero. With this
change, further adjustments made to the sliders are guaranteed to
not move those vertices. Such a brute force approach will gener-
ally produce poor results, however. There are cases where a sin-
gle blendshape affects most of the vertices in the model, at least
slightly. If we freeze the position of all those vertices, the model
cannot be animated. More importantly, an underlying assumption
of blendshapes is that the columns of D span the desired and allow-
able movement of the model. Zeroing rows of D allows facial poses
that depart from the designed subspace in undesirable ways. For ex-
ample, suppose slider 1 affects vertex 1, while slider 2 affects both
vertex 1 and its neighbor vertex 2. If vertex 1 is frozen, the adjust-
ment of slider 2 will move vertex 2 away from its neighbor vertex
1, disrupting the smoothness of the surface.

A more subtle approach is to enforce vector orthogonality between
some of the blendshape vectors. This would allow an animator
to select a set of one or more blendshapes to be “locked.” Then,
the effect of the remaining blendshape vectors would be altered
by projecting them onto a space orthogonal to the locked vectors.
This ensures orthogonality between previous changes and any fu-
ture changes.

Although this avoids problems introduced by the first approach, in
our experience the results are still not as desired. The main problem
arises from the fact that orthogonality between high-dimensional
vectors representing the entire face does not sufficiently constrain
the movement of particular vertices. Further, even at a local level
orthogonality is not always what is desired. Imagine a blendshape
that moves a particular vertex up and to the right and another blend-
shape that move the same vertex up and to the left. Those two move-
ments might be orthogonal, but arguably they disrupt each other.

4 Coordinate Motion Attenuation

The technique we present overcomes these problems by allowing
the user to select a subset of coordinates to remain as stationary as
possible. Those coordinates may ultimately move as the sliders are
adjusted, but their movements will be relatively attenuated.

We treat this as a minimization problem. For any weight vector
w1, we want to find a new weight vector w2 such that the resulting
coordinate changes, Dw2, are as close as possible, in Euclidean
distance, to 0 for the selected coordinates and as close as possible

3
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Fig. 5, a-e: a) Six vertices (18 coordinates) are selected below the eye. b) Slider moves without attenuation: Wince, SneerLeft,
and SneerRight are all set to 0.7. The selected vertices move significantly as the face is deformed c) The same slider moves with
attenuation applied. Mouth movement is similar to Fig. 5b, but the movement of the selected vertices is attenuated. α is left at its default
initialization value here, α = 335. d) The user adjusts α to 25. Now the mouth moves exactly as in Fig. 5b, but so do the selected vertices.
e) α = 3000. The algorithm favors keeping the selected vertices stationary, but at the cost of not moving unselected vertices either. The
animator should reduce α .

to Dw1 for the unselected coordinates. In other words, we want to
minimize

‖Sw2‖
2 +‖S̄(w2 −w1)‖

2

= wT
2 ST Sw2 +(w2 −w1)

T S̄T S̄(w2 −w1)

where S is a matrix made up of the rows of D corresponding to the
selected coordinates, and S̄ is a matrix made up of every other row
of D.

We can simplify this expression by defining

P = S̄T S̄

Q = ST S

so the expression to be minimized becomes

wT
2 Qw2 +(w2 −w1)

T P(w2 −w1)

Minimizing this expression strikes a balance between keeping the
selected coordinates motionless and letting the other coordinates
move freely. A user should be able to control the relative weight of
each of these goals, so we multiply Q by a user controlled scaling
factor, α ,

wT
2 (αQ)w2 +(w2 −w1)

T P(w2 −w1) (2)

(α will be discussed further below).

Taking the gradient of (2) and setting to 0, we get the desired weight
vector w2:

∇

[

wT
2 (αQ)w2 +(w2 −w1)

T P(w2 −w1)
]

= 0

2αQw2 +2Pw2 −2Pw1 = 0

w2 = (P+αQ)−1Pw1 (3)

5 Results

We implemented the weight correction (3) in Matlab, making use
of a commercial animation package to perform coordinate selection
interaction and render the results. Figure 3 illustrates the effect of
applying the correction algorithm to the case shown in Fig. 2. Note
that the mouth is sculpted as desired, but the position of the brow is
undisturbed.

The algorithm operates on coordinates, allowing the animator to in-
dependently select the x, y, and/or z components of a particular ver-
tex, thus attenuating its movement along particular axes. Figure 4a
shows a pose with only two coordinates selected: the y-components
of the corners of the mouth. After further slider moves, Figure 4b
shows a new pose where the corners of the mouth have moved along
the x-axis, but not along the y-axis. Figure 4c shows the effect of
the same slider moves without coordinate attenuation.

The computations required are simple and fast enough to be per-
formed at interactive speeds on a modern desktop machine. As
such, selected motion attenuation would be relatively easy to add to
an existing blendshape animation package. In addition to the usual
slider interface, there would be controls to invoke motion attenua-
tion, select vertices, and adjust the value of α . Until motion atten-
uation is turned off, weights would be automatically transformed
as the sliders move. Using motion attenuation in conjunction with
a one-level undo is a particularly simple strategy: if any slider has
undesired side-effects, the animator simply undoes the slider move,
applies motion attenuation to the area(s) exhibiting the interference,
and releases the attenuation after adjusting the slider as desired.

The scaling factor α

The factor α controls the balance between attenuating the move-
ment of selected coordinates and allowing the unselected coordi-
nates to move freely. If α is very small,

αQ ≈ 0

w2 ≈ (P+0)−1Pw1 = w1

so w2 will be close to the original values w1, which is to say the al-
gorithm favors allowing the unselected vertices to move. As α takes
on increasingly large values, (2) will be dominated by wT

2 Qw2,
which is minimized when w2 is in the nullspace of Q, and there-
fore is in the nullspace of S:

Sw2 = 0

In this case the selected vertices will not move at all. It is possible to
move coordinates in S̄ without significantly displacing coordinates
in S to the extent that S has small (even if not strictly zero) singular
values. We see this in practice in Figs. 3 and 4.

The two terms in (2) have unequal contributions, with typically
fewer selected than unselected coordinates. We compensate for this
by initializing α to the ratio of the number of unselected and se-
lected vertices.

4



ACM SIGGRAPH Symposium on Interactive 3D Graphcis and Games (I3D 2005), to appear.

Figure 5 shows an example of poses created using the same slider
weights but different values of α . At very high values, the re-
sults are almost indistinguishable from the attenuated pose. At very
low values, none of the vertices, selected or unselected, move very
much.

6 Limitations and Future Work

This paper has demonstrated an interactive technique that provides
animators improved control over blendshape interference. There
does exists some risk that the addition of new controls would com-
plicate the animation process rather than simplify it. In order to take
advantage of this technique, an animator needs to be aware of the
new controls, understand them, and make ongoing decisions about
when to use them. While a similar ‘pin-and-drag’ style of inter-
action has also been proposed for inverse kinematics [Yamane and
Nakamura 2003], the usefulness of our technique will ultimately
need to be judged by an animator who has the opportunity to use a
full implementation and test it on a real-world animation project.

The need for judgment on the animator’s part is ultimately not a
disadvantage; animators rely on human judgment and necessarily
become intimately familiar with the models they use. In fact, the
use of our technique reduces the need for animators to learn and re-
member the interactions between blendshapes. Reducing the need
for repeated correction of blendshape interference has the potential
to save valuable modeling and animation effort. The video accom-
panying this paper, viewable at [Video 2005], gives an impression
of this potential and the interaction technique required to achieve it.

It is also worth investigating the possibility of incorporating these
techniques into the modeling process. A modeler would apply
constraints to the blendshape system, dictating that a given vertex
should only be moved by certain sliders or that it should remain
within specific bounds. How these controls might be defined and
presented to a modeler is the subject of future work.
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