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Figure 1: Test data set (left), rendered after clustering into three strokes (right). The
contour is split at somewhat salient points rather than at curvature maxima, or into
roughly equally sized strokes in the absence of distinguished features (left slope).

Abstract

Sketching is a drawing style where approximations and successive
refinement in the drawing process are evident. The approximation
of contours in sketching involves multiple overlapping strokes that
are relatively long in regions of low curvature and shorter in high-
curvature areas, yet unimportant high-curvature details are omitted
in the initial stages of a sketch. Rendering contours with a single
long stroke does not capture the feel of a sketch, and a simple strat-
egy of breaking strokes at curvature maxima is easily confused by
unimportant details and noise. We address the contour breaking
problem for sketching by clustering samples of the contour based
on proximity and orientation, making use of a global clustering al-
gorithm (normalized cuts). The strokes generated by this approach
qualitatively resemble those produced by real artists, and the suc-
cessive approximation effect seen in sketching can be simulated by
employing our approach at a succession of scales (increasing the
number of clusters).

1 Introduction

“Sketching” describes a drawing that is not a final, perfect result. In
a sketch the drawing process is somewhat evident, with approxima-
tion of contours and successive approximation in stroke placement
often being visible. Although this approximation might be consid-
ered in abstract to be a sort of “rendering error”, in fact the stroke
character in a sketch can be quite beautiful, and may be a greater
component of the art than the actual subject depiction.

In this short paper we seek to partially emulate the character of
sketching strokes. Typically these strokes are made lightly and at
relatively high speed, and a single contour is successively approxi-
mated with multiple strokes. Because rapid hand movements can-
not curve sharply, strokes are often broken at points of curvature.
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Fig. 2 shows examples of characteristic sketching stroke effects.

These effects can be approximated with simple and local tech-
niques, such as breaking the contour at curvature maxima, and per-
turbing strokes with noise. Although the resulting drawing is likely
to be adequate for many purposes, it is unlikely to be an ideal exam-
ple of a sketch: simply breaking the contour at curvature maxima is
suspect, since not all maxima are equally important (Fig. 1). This is
doubly true in common cases where the original contour has some
artifactual curvature resulting from the discrete raster (e.g. vector-
ization algorithms that locally are limited to stepping in horizontal,
vertical, and diagonal directions, as in Fig. 5), or from tracing the
silhouette of a polygonal rather than spline model. While the algo-
rithmic artifacts alone can be addressed by fitting an approximating
spline to the contour, the spline may also smooth points of high
curvature, obscuring the question of where to split the contour.

Our contribution is to note that the stroke segmentation problem
can be considered as exactly that – an instance of a segmentation
or clustering problem. The proximity and orientation of silhouette
curve samples can be compared, with sufficiently similar samples
being naturally grouped into strokes. This approach opens the prob-
lem to a variety of clustering and segmentation algorithms that have
been developed in recent years. We employ the normalized cuts al-
gorithm (section three), although this is not necessarily the only or
best choice.

One may question whether a global approach striving for optimality
(normalized cuts have an indirect connection to optimality) is really
needed. Skilled artists are certainly not using only local informa-
tion in drawing strokes: they can observe and remember the whole
scene, and extensive prior practice provides knowledge of how the
whole should be decomposed into pieces. In fact many practiced
forms of human movement appear to optimize physical quantities
(see [Bobrow et al. 2001] and references therein) and require train-
ing to do so (e.g. learning to walk, or to ice skate).

2 Related Work

The literature on NPR drawing algorithms is large and in-
cludes issues of stroke placement and orientation (e.g., [Salisbury
et al. 1997; Hertzmann 1998]), silhouette tracing [Northrup and
Markosian 2000; Isenberg et al. 2002], and simulations of particular
media ([Winkenbach and Salesin 1994] and especially the detailed
simulation in [Sousa and Buchannan 2000]). [Hertzmann 2003]
provides a survey focusing on stroke placement issues (also see
[Gooch and Gooch 2001; Strothotte and Schlechtweg 2002]). Ex-
amples of recent developments include [Sousa and Prusinkiewicz
2003], which selects a small number of salient contours that are
then carefully rendered in an ink style, and [Li and Huang 2003],
which uses image statistics and regional texture to tune pencil-like
shading (hatching) to suit different regions.

Most silhouette rendering efforts have sought to link segments into
as long a contour as possible. The full contour can then be rendered
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Figure 2: Examples of real sketches, and details (right).

in the style of a careful ink drawing or painting, but long contours
are inappropriate for sketching (on the other hand linked contours
are a convenient input to our process). [Mignotte 2003] describes a
stochastic optimization process for sketching in which a truncated
Fourier basis provides a prior of admissible deformations on stroke
shape, and edge gradients provide the data. Less probable strokes
are rendered with less pressure and width. While [Mignotte 2003]
chooses only one stroke per non-overlapping window on the image,
a minor modification of their process to repeatedly sample strokes
at a single location could generate sketching effects similar to ours.
On the other hand, their process is somewhat expensive, requiring
on the order of tens of minutes even without repeated sampling.

Silhouette tracing of 3D models is peripheral to our main concern;
our stroke sketching can work with both 3D silhouettes and con-
tours obtained from other (perhaps 2D) sources. Silhouette algo-
rithms differ in whether they produce an explicit silhouette curve
representation or produce the sihouette by independently coloring
appropriate pixels (vector or raster representations), and in whether
they make direct use of the 3D model or begin with a rendered im-
age (object or image-based algorithms). Silhouette algorithms are
surveyed in [Isenberg et al. 2003].

Image segmentation is often approached by clustering based on lo-
cation, pixel color, and other attributes. In recent years several new
families of clustering algorithms have been introduced: normalized
cuts [Shi and Malik 2000] and related approaches [Ng et al. 2001],
min-cut/max-flow based graph cuts [Kolmogorov and Zabih 2002],
mean shift [Cheng 1995], and others [Gdalyahu et al. 2001]. In
many cases these approaches offer clearly improved performance
relative to the classic k-means (Lloyd’s) algorithm and Expectation
Maximization based clustering, but there is not yet a widespread
understanding of how the methods compare to each other.

3 Method

Our general approach to producing an NPR sketch consists of the
following steps: 1) silhouette tracing, 2) segmentation, 3) spline
approximation, and 4) rendering. The contribution of this paper is
in step two (segmentation), so the remaining areas will be described
only briefly.

Silhouette Tracing. Our silhouette estimation is based on [Raskar
and Cohen 1999], with an additional post process that links adja-
cent silhouette samples into chains. In general linking can be done
before or after clustering for segmentation. By doing it before clus-
tering, the approximate orientation of samples (used in the clus-
tering) is available as the direction from each sample to one of its
neighbors.

Figure 3: Shape of the pairwise affinity, decaying from a horizontally oriented sillhou-
ette segment at center (black indicates stronger). The affinity falls off with distance,
but also allows more orientation discrepancy with increasing distance.

Figure 4: (Figure best viewed in color): (left) Segmentation resulting from affinity de-
fined as a weighted sum of distance and orientation discrepancies. Parallel but separate
contours on the handle and spout are grouped together. (right) Segmentation resulting
from affinity as shown in Fig. 3. (A few distinct clusters are colored similarly due to
reuse of the color labels).

Segmentation. Normalized cuts and other graph cut segmentations
require a pairwise affinity Ai,j giving the strength of the estimated
similarity between any two contour samples i, j. The choice of
affinity is important – using a simple weighted sum of proximity
and orientation results in a segmentation that incorrectly groups
samples on similarly oriented but separate silhouettes (Fig. 4). We
use an affinity inspired by the voting field in tensor voting [Medioni
et al. 2002] and perceptual grouping methods. This characteristic
“figure-8” shape (Fig. 3) generally falls off with distance and ori-
entation discrepancy, but it also allows relatively more orientation
discrepancy at increasing distance, to allow for smooth curvature of
the contour. This function is computed by projecting the location
of sample j onto the line defined by the orientation of sample i, and
then forming the following measure involving the distance along
the orientation line do for sample i, the projection distance dp from
sample j to that line, and the dot product of the two orientations
oi · oj :

oi · oj exp

(
− (do + α dp/do)

2

σ2

)
where α, σ are constants that tune the orientation selectivity and

2



Proc. Graphite 2005, to appear

Figure 5: Approximating spline fit with intentional overshoot.

overall scale. The dp/do term causes the orientation selectivity to
reduce with increasing distance.

Given the affinity matrix A, segmentation proceeds by consider-
ing a graph with Ai,j being the weight between nodes i and j. The
overall goal is to cut the graph such that the weights of the cut edges
are small while the interior weights of the resulting subgraphs are
simultaneously large. This general formulation describes a vari-
ety of clustering algorithms. The intuition behind spectral methods
is as follows [Forsyth and Ponce 2003]: A good cluster will have
strong weights in the affinity matrix, and elements of the cluster
will be strongly associated with the cluster, so the objective wT Aw
(with w a vector of weights giving the association of each element
with a proposed cluster) will be large for a good cluster. Maximiz-
ing this subject to ‖w‖ remaining constant gives

wT Aw + λ(wT w − 1)

with the result that w is the leading eigenvector of A. Values of w
larger than a threshold indicate membership in the strongest cluster.
This procedure can be iterated on the remaining (unchosen) samples
to find additional clusters.

It is known that the basic spectral clustering scheme just described
has a tendency to produce overly small clusters, since the sum of
weights to a small group of nodes will also tend to be small. The
normalized cuts algorithm [Shi and Malik 2000] addresses this by
normalizing the cost of the cut weights by the total weight mass
from that cluster, thereby taking cluster size into account.1 This dis-
crete problem is then approximated by allowing continuous values,
leading to an eigenvector system only slightly more complicated
than the one described above. Rather than recursively compute a
series of segmentations we use the n-way variant of normalized
cuts [Yu and Shi 2003].

Approximating Spline. Silhouette samples often contain artifacts
of polygonal models or of raster grid tracing (Fig. 5). We there-
fore fit strokes with an approximating spline before rendering. The
spline y is formulated as

min
y

‖S(y − x)‖2 + λ yT CT Cy

where S is a “selection matrix” selecting only the elements of y
corresponding to the locations of the data x, and C is a matrix con-
taining the finite-difference approximation to the second derivative.
This can be solved for y as a linear system. This formulation also
allows a natural formulation of the characteristic stroke “overshoot”

1As a result, when there is no evidence guiding it towards other choices,
normalized cuts will cluster a straight line into roughly equally sized strokes
(Fig. 1).

Figure 6: Test pattern (top) and a similar shape produced by an artist (bottom), with
enlargements (right). Please enlarge to see further line details.

often seen in sketching, by having the fit spline extend beyond the
data. In the past the overshoot effect has been obtained simply by
extending the line using the slope of the last segment. This sud-
den transition to an extended straight segment may look unnatural,
however, if the the rest of the stroke is significantly curving. In
our formulation the curvature in the overshoot region decays more
smoothly (Fig. 5).

Continuing the curvature into the overshoot region can be accom-
modated easily, by using ‖Cy − c‖2 in place of ‖Cy‖2, with c
being a desired curvature vector (extrapolated from an average of
Cx). We believe however that the overshoots in real sketches tend
to approach straight lines and so curvature continuation was not
employed here.

Stroke Rendering. Although we have experimented with more tex-
tural stroke rendering styles, the figures in the paper all use simple
antialiased lines from the Java language graphics library with a con-
stant but adjustable opacity. Design parameters consist of the opac-
ity, the maximum overshoot (overshoot on each stroke is chosen at
random up to the maximum), and the usual NPR small random pert-
erbation of stroke vertices (as in [Northrup and Markosian 2000] for
example), added to increase the hand-drawn look.

4 Results and Discussion

Figs. 6-7 show examples of our stroking approach. Note that the
stroking effect is rather subtle but can be seen clearly when the
figures are enlarged.

In sketching artists often lightly outline major structures first and
then overlay additional structures and details. This successive re-
finement strategy can be quite effectively simulated with our ap-
proach, by varying the number of clusters and overlaying the re-
sults. The result figures make use of this technique, for example,
Fig. 7 (left) overlays the segmentations obtained with 60, 70, 80,
and 90 clusters.

The method we have outlined has several potential limitations. Per-
formance is a possible concern. In our implementation the eigen-
vector solve takes from a few seconds to a few tens of seconds
for the drawings shown here (several thousand silhouette samples).
There is opportunity for acceleration, however, by using the Nys-
trom approximation, or by simply subsampling the silhouette. A
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Figure 7: Teapot and knot each rendered with four different segmentation levels, and increased overshoot in the knot figure. Enlarge to see line quality. Several slight direction
changes in the overshoots at T-junctions are visible in the knot figure; these are due to a few samples in the vicinity of the junction being incorrectly clustered. This could be avoided
by tuning the clustering affinity, or by processing each sillhouette edge individually (if the silhouette tracing provides this information).

more serious concern is that the number of clusters and affinity dis-
tance require tuning. In our experience these parameters have some
range of values over which the results are reasonable and vary intu-
itively with the parameters, however, outside this range the results
(with few clusters in particular) sometimes surprised us. Some of
the variety of recently proposed spectral and graph-based clustering
methods (for example [Ng et al. 2001]) may address this problem
in the future.
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