
Algorithms for Solid Noise Synthesis

J. P. Lewis

Computer Graphics Laboratory
New York Institute of Technology

Abstract

A solid noise is a function that defines a random value at each point
in space. Solid noises have immediate and powerful applications in
surface texturing, stochastic modeling, and the animation of natural
phenomena.

Existing solid noise synthesis algorithms are surveyed and two
new algorithms are presented. The first uses Wiener interpolation
to interpolate random values on a discrete lattice. The second is
an efficient sparse convolution algorithm. Both algorithms are de-
veloped for model-directed synthesis, in which sampling and con-
struction of the noise occur only at points where the noise value is
required, rather than over a regularly sampled region of space. The
paper attempts to present the rationale for the selection of these par-
ticular algorithms.

The new algorithms have advantages of efficiency, improved
control over the noise power spectrum, and the absence of arti-
facts. The convolution algorithm additionally allows quality to
be traded for efficiency without introducing obvious deterministic
effects. The algorithms are particularly suitable for applications
where high-quality solid noises are required. Several sample appli-
cations in stochastic modeling and solid texturing are shown.
CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism – color, shading,
shadowing, and texture.
General Terms: Algorithms, Graphics.
Additional Key Words and Phrases: Solid noise, texture, stochas-
tic modeling, simulation of natural phenomena, texture synthesis,
fractals.

1 INTRODUCTION

A solid noise is a random-valued function f : R3 → R. “Noise”
is used to denote a random function with some known statistical
properties. Solid noises are a subset of the concept of solid tex-
tures introduced in computer graphics by Perlin [17,18] and Peachy
[16]).

Solid noises have been used for texturing three-dimensional ob-
jects by assigning the color at a visible point on the surface as a
function of the noise value at that point in space. In this role, solid

textures have several advantages over conventional texture map-
ping:

- Surfaces with Gaussian curvature can be textured homoge-
neously, without distortions such as poles that occur in texture
mapping.

- The spatial nature of the noise correlation makes possible certain
effects which would be difficult with texture mapping, for ex-
ample, the “carved out of” effect [18] which uses the fact that
noise features (e.g. veins in simulated rock) can cross over-
hangs in the object (Fig. 7).

Solid noises also have many potential applications in describ-
ing complex/irregular forms or movement; a few possibilities are
shown in Section 5 of this paper.

2 SOLID NOISE ALGORITHMS

In all applications, it is desirable that a solid noise algorithm be
controllable and free of artifacts. Consistent with recent work
[18,9,11], the noise power spectrum is considered as a reasonably
powerful and intuitive framework for developing control over the
noise.

When the noise is used for surface texturing, efficiency is a major
consideration, since the three-dimensional variants of even simple
computations such as linear interpolation are fairly expensive when
the computation is required at each pixel. It is desirable that the
noise synthesis algorithm allow quality to be traded for efficiency
where appropriate, e.g. for previewing or for background objects
which do not need a high-quality noise. For most applications it is
probably preferable to trade some control for efficiency rather than
adopting an efficient method that has intrinsic artifacts.

For animation applications the solid noise should also be ban-
dlimited. Although the aliasing of an improperly sampled noise
function will often not be objectionable in a still picture (due to the
same principle evident in stochastic sampling [5] - objectionable
Moire patterns result from the structured sampling of a structured
signal), the same aliased noise used in an animation will typically
produce characteristic “shimmering” or “bubbling” aliasing effects.

While a large variety of particular three-dimensional random-
valued functions are conceivable, most can be decomposed into a
basic noise source and some functional or procedural transforma-
tion of this noise. As argued by Perlin [18], the noise source should
be a controllable “primitive” that allows the user to define various
ad hoc solid noise functions in terms of this noise primitive.

This paper presents two algorithms for the synthesis of high-
quality solid noises with control of the noise power spectrum and
(optionally) distribution functions. Considerations that lead to the
selection of these particular algorithms are also described.

2.1 MODEL-DIRECTED SYNTHESIS

Although the linear filtering algorithms for obtaining noises having
desired power spectra are well understood [13], these algorithms

Proceedings Siggraph 89

#define RANTABLEN /* something prime */
float Rantab[RANTABLEN];
int Indx[ILEN],Indy[ILEN],Indz[ILEN];

float hash3(float x,y,z)
{

int i = HASH(Indx[LOWBITS(x)], Indy[LOWBITS(y)], Indz[LOWBITS(z)]);
return(Rantab[i % RANTABLEN]);

}

Fig. 1: Pseudocode for the lattice white noise function.

are not ideally suited to the requirements of computer graphic mod-
eling and rendering. In particular, in place of the regular and
ordered sampling that is fundamental to digital signal processing
we require a model-directed synthesis, in which the noise function
is constructed only at particular points determined by the object
model, and in an order that may depend on the model or the view-
point. In a texturing application, these points are the points on the
object’s surface that project without occlusion to pixels in a per-
spective projection of the object. Similarly, in a modeling applica-
tion the noise may be constructed at a limited and irregular set of
points, e.g., the vertices of a polygonal model.

Digital filters assume regular sampling and spatial or temporal
ordering (causality) of the input signal and consequently cannot
meaningfully operate at isolated points in space. The direct appli-
cation of a digital filtering approach for solid noise synthesis would
thus result in a solid region of filtered noise enclosing the points of
interest. This is very costly in terms of storage, since the storage
size of a solid noise varies with the cube of the resolution. The di-
rect FFT or digital filter synthesis of a medium- or high-resolution
solid noise is usually impractical in this respect. Also it would seem
inefficient to construct the noise over a solid region when it is only
needed at isolated points, though this may depend on the number of
points required and on the respective algorithms. A third drawback
of digital filtering approaches is that since the noise is sampled it
needs to be interpolated from the sampling lattice to the locations
of interest.

Model-directed synthesis can be achieved by constructing the in-
put noise signal as needed at synthesis time, and by employing an
acausal and metaphorically continuous rather than sampled filtering
approach. Since the spatial ordering of the synthesis is unknown,
particular regions may be visited multiple times. The input noise
construction must be internally consistent (in the terminology of
[8]): independent constructions of a particular point must produce
the same value. While model-directed synthesis approaches are
suited for many computer graphics problems, it is evident that they
cannot easily use the coherence provided by regular sampling and
consequently will be more costly than standard filtering approaches
for constructing regularly sampled noises.

2.2 LATTICE WHITE NOISE

A consistent uncorrelated (“white”) noise can be generated using
a hash-like pseudo-random function of the mantissa bits of the lo-
cation coordinates x, y, z. One such function was described in [4].
A variation of this function uses the low-order bits of each coordi-
nate (scaled suitably) to index a corresponding randomly permuted
‘indirection table’ of indices into a second table of uncorrelated ran-
dom values with the desired probability density. The three resulting
indexes are hashed to form an index into the prime-length random
value table (Fig. 1).

The HASH3 function generates an uncorrelated periodic noise,
with the period determined by the number of coordinate bits which
are retained. The function takes on new values only on the lattice
defined by the low bits of the coordinate mantissas, thus “lattice

noise”. For most purposes it will be necessary to interpolate or filter
the noise values on the lattice to obtain a continuous and correlated
solid noise.

2.3 PERLIN ALGORITHM

Perlin [17,18] outlined a model-directed solid noise algorithm
based on interpolating a location hashing function such as HASH3.
The resulting noise is employed as a spectral basis function, with
a desired noise η̂ being approximated by a weighted sum of basis
noises ηk at different scales:

η̂(�) =
∑

akηk(k �) (1)

The characteristics of the resulting noise are determined by the se-
lected interpolation approach. The cubic polynomial interpolation
suggested in [18] has certain disadvantages. Interpolation in several
dimensions using the separable tensor product of a one-dimensional
interpolation scheme results in preferred directions along the coor-
dinate system axes; this artifact can only be avoided by using an
intrinsically multi-dimensional interpolation approach. Cubic poly-
nomial interpolation in three dimensions is also quite expensive.
The direct tensor product scheme for cubic spline interpolation re-
quires a support of 43 = 64 points as well as 16(x)+4(y)+1(z) =
21 spline evaluations [2]. The interpolation must be repeated for
each basis function in the spectral summation (1).

One popular implementation of Perlin’s approach employs Her-
mite interpolation, using the lattice noise to define gradients at the
(eight) nearest-neighbor points on the lattice [10]. These values are
separably interpolated using a cosine-like function. While this ap-
proach is considerably more efficient than a cubic spline interpola-
tion, it has stronger directional artifacts (Fig. 2). Another drawback
is that the noise value and second-derivative are both zero at the
lattice points. The directional trends and regularly spaced zeros are
visible (e.g. see Fig. 3), though it may be possible to disguise them
through application of the summation (1).

In order to be approximately orthogonal, candidate spectral ba-
sis functions should be zero beyond a particular range of fre-
quencies (“bandpass”). Approaches which use standard (meaning
non-oscillatory, energy minimizing, spline-like) interpolation meth-
ods to interpolate an uncorrelated noise lattice produce a low-pass
rather than a band-pass random function, however, since they do
not remove or attenuate the low frequency portion of the original
noise power spectrum (which has equal expected power at all fre-
quencies) (Fig. 4.) This can be seen in part by considering the zero
frequency: interpolation will not remove the mean. From a signal-
processing viewpoint, standard interpolation methods have the ef-
fect of attenuating high frequencies [19] (also see problem 26 in
[3]).

One misinterpretation of the summation (1) is that, by anal-
ogy with Fourier summation, a bandpass noise might be produced
using a lowpass noise primitive by subtracting a more bandlim-
ited noise from a given noise, in the hope of removing the low-
frequency portion of the spectrum. Power spectra of mutually

2

Proceedings Siggraph 89

Fig. 4: Computed amplitude spectrum (zero frequency at left) of a
long one-dimensional section of the noise shown in Fig. 2. The

spectrum is not bandpass.

uncorrelated noises cannot be meaningfully subtracted however:
S(η1−η2) = S(η1)−2C(η1, η2)+S(η2)where C(η1, η2) = 0 is
the covariance between the noises. Eq. (1) is a spectral summation
but not a Fourier summation.

The high-frequency (amplitude) spectrum of the Perlin basis
noise using cubic interpolation falls off as λ−4 since the amplitude
spectral envelope of a Cn function is λ−n−2 [3]. This also is not
ideally bandlimited. We conclude that polynomially interpolated
noise does not provide an ideal spectral basis.

The various disadvantages of polynomial interpolation for a
spectral synthesis approach are avoided in the Wiener interpolation
algorithm presented in section 3 below.

2.4 GARDNER AND PEACHY ALGORITHMS

Gardner [9] developed a naturalistic texturing function based on a
modified Fourier series. This approach is unusual in its use of a
conceptually deterministic function to simulate irregular texture.1

The function appears as a product of two one-dimensional series in
x and y (as described it is two-dimensional but an equivalent three-
dimensional function can be formulated). A separable function
f(u, v) = fu(u)fv(v) has strong directional artifacts that make
it unsuitable for simulating a naturalistic texture even if the com-
ponent functions fu, fv are characteristic sections of the desired
texture. Gardner overcame this ‘checkerboard effect’ by coupling
the phases of each term in the u-series to v, and conversely. The
resulting texture is not separable and is sufficiently complex that it
mimics a random texture when applied carefully.

The spectrum of the Gardner function has not been analyzed but
is not (as might be supposed) directly defined by the Fourier series
coefficients. This can be seen by considering the kth term of the
u-series evaluated along a diagonal profile with u and v varying:

fk(u) = ak sin(ωku + I sin(ωk−1v))

This is a form of frequency modulation. From [1]

sin(θ + I sin β) =

J0(I) sin θ +

∞
∑

k=1

Jk(I)
{

sin(θ + kβ) + (−1)k sin(θ − kβ)
}

so although the Gardner texturing function has a line spectrum, it
is more complex than suggested by its Fourier series resemblance
(also it is evident that it is not strictly bandlimited).

Peachy [16] proposed solid function generation by the compo-
sition (e.g. sum or product) of several lower-dimensional func-
tions. If the functions are random the result is a solid noise. As in
the Gardner algorithm, the composition function can be designed
to eliminate separability but the absence of an intrinsically three-
dimensional correlation structure may be visually evident.

1While the computer implementation of any random process is necessar-
ily deterministic, there is a practical as well as a conceptual difference, in
that the period of an n-term Fourier series is 2n samples whereas the period
of a simulated random process is usually considerably larger, as determined
by the period of the pseudo-random number function.

3 WIENER INTERPOLATION ALGO-
RITHM

Wiener interpolation differs from other interpolation approaches in
that it is based on the expected correlation of the interpolated func-
tion. Since the autocorrelation or autocovariance function is equiv-
alent information to the power spectrum, Wiener interpolation is
particularly suited for noise synthesis where control of the noise
correlation and spectrum is required. Control of the noise spectrum
is intrinsic to Wiener interpolation, so problems with band-limiting
and the expensive spectral summation (1) are avoided.

Wiener interpolation has many other potential applications in
computer graphics (e.g., as the basis for an improved stochastic
subdivision method [11], or possibly as an approach to resampling
stochastically sampled images for display). Some additional char-
acteristics and advantages of Wiener interpolation are:

- The data can be arbitrarily spaced.

- The algorithm applies without modification to multi-dimensional
data.

- Wiener interpolation of discrete data is simple, requiring only the
solution of a linear equation.

- In an estimation application the algorithm provides an error or
confidence level associated with each point on the interpolated
surface.

- The algorithm is optimal by a particular criterion (see below)
which may or may not be relevant.

- The interpolation can be made local or global to the extent de-
sired. This is achieved by adjusting the covariance function
so that points beyond a desired distance have a negligible cor-
relation.

- The interpolation can be as smooth as desired, for example, an
analytic covariance function will result in an analytic interpo-
lated curve or surface.

- The interpolation need not be “smooth”, for example, the corre-
lation can be negative at certain distances, oscillatory, or (in
several dimensions) have directional preferences.

(The last three properties result from the direct spectral control pro-
vided by Wiener interpolation.)

There are a number of formulations and variations of Wiener
interpolation [20,7]. A simple probabilistic formulation suitable for
solid noise interpolation will be used here. The description requires
two concepts from probability:

- The correlation of two random variables is the expectation of
their product, E[xy]. The autocorrelation or autocovariance
function of a random process (noise) is the correlation of pairs
of points from the process:

C(t1, t2) = E [η(t1)η(t2)]

For homogeneous noise, this expectation is a function only of
the distance between the two points: C(t, t + τ) = C(τ) =
E[η(t)η(t + τ)]. The variance is the value of the autocovari-
ance function at zero. (Auto)covariance refers to the correla-
tion of a process whose mean is removed and (usually) whose
variance is normalized to be one.

3

Proceedings Siggraph 89

- Expectation behaves as a linear operator, so any factor or term
which is known can be moved “outside” the expectation. For
example, assuming a and b are known,

E {aη + b} = aE[η] + b

Also, the order of differentiation and expectation can be inter-
changed, etc.

Wiener interpolation estimates the value η̂ of the process η at a
particular location as a weighted sum of the values ηj observed at
some number of other locations:

η̂ =
∑

ajηj (2)

The weights aj are chosen to minimize the expected squared dif-
ference or error between the estimate and the value of the “real”
process at the same location:

E
{

(η − η̂)2
}

(3)

The reference to the “real” process in (3) seems troublesome be-
cause the real process may be unknowable at the particular location,
but since it is the expected error which is minimized, this reference
disappears in the solution.

Wiener interpolation is optimal among linear interpolation
schemes in that it minimizes the expected squared error (3). When
the data have jointly Gaussian probability distributions (and thus
are indistinguishable from a realization of a Gaussian stochastic
process), Wiener interpolation is also optimal among nonlinear in-
terpolation schemes.

3.1 DERIVATION

By the orthogonality principle [21,14], the squared error of a linear
estimator is minimum when the error is orthogonal in expectation
to all of the known data, with “orthogonal” meaning that the expec-
tation of the product of the data and the error is zero:

E {(η − η̂)ηk} = 0 for all k

Substituting η̂ from (2),

E

{

(η −
∑

ajηj)ηk

}

= 0 (4)

E

{

ηηk −
∑

ajηjηk

}

= 0

The expectation of ηηk is the correlation C(t − tk), and likewise
for ηjηk, so:

C(t − tk) =
∑

ajC(tj − tk)

or
Ca = c (5)

This equation can be solved for the coefficients aj . The coeffi-
cients depend on the positions of the data ηj through the covari-
ance function, but not on the actual data values; the values ap-
pear in the interpolation (2) though. Also, (5) does not directly
involve the dimensionality of the data. The only difference for
multi-dimensional data is that the covariance is a function of several
arguments: E[pq] = C(xp − xq, yp − yq, zp − zq, . . .).

3.2 COST

From (5) and (2), the coefficients aj are a = C
−1

c, and the esti-
mate is η̂ = ηt

C
−1

c. The vector c changes from point to point,
but ηt

C
−1 is constant for given data, so the interpolation cost is a

dot product
η̂ =< ηt

C
−1, c > (6)

of two vectors whose size is the number of data points.

3.3 EVALUATION

The spectral definition possible in Wiener interpolation is propor-
tional to the number of data points considered in the interpolation.
For simple spectra requiring a small neighborhood of points (e.g.
33 or 43 points), the computation (6) appears to be considerably
more efficient than polynomial spline interpolation. A fair degree
of spectral control can be achieved if larger neighborhoods are used,
for example, oscillatory (bandpass) noises are possible. The expen-
sive spectral summation (1) is also avoided

The disadvantage of this algorithm is intrinsic to the approach of
interpolating an uncorrelated noise lattice: the three-dimensional
covariance function, centered at a noise lattice point, should strictly
be zero when sampled at any other lattice point, since these points
are not correlated. For an isotropic covariance, this requires that
C1(τ) = 0 at distances τ = δ

√

i2 + j2 + k2 for all lattice offsets
i + j + k >= 1 (δ is the lattice spacing). The covariance struc-
ture is thus artificially constrained. If the specified covariance does
not satisfy this constraint, the interpolation error (confidence mea-
sure) will be non-zero and the realized covariance will be somewhat
different than that specified.

4 SPARSE CONVOLUTION ALGORITHM

A second algorithm avoids the covariance function constraints of
the noise lattice interpolation approach but retains the direct spec-
tral control of the Wiener interpolation approach. In addition, it has
the advantage of conceptual simplicity.

In this algorithm a three-dimensional noise is synthesized by
the convolution of a three-dimensional kernel h(�) with a Poisson
noise process γ

η(�) =

∫

R3

γ(�)h(� − �)d � (7)

The Poisson process consists of impulses of uncorrelated intensity
distributed at uncorrelated locations in space:

γ(�) =
∑

akδ(� − �
k)

(�
k is the location of the kth impulse). This is a ‘sparse’ form of

white noise, hence “sparse convolution”.
The power spectrum Sy at the output of a linear time-invariant

filter (expressible as a convolution) is related to the input spectrum
Sx by [21]

Sy(ω) = Sx(ω) |H(jω)|2

where H is the Fourier transform of the filter impulse response or
kernel h. Since γ is uncorrelated its transform is a constant, so the
spectrum of a noise synthesized by sparse convolution is simply the
(deterministic) spectrum of the kernel, scaled by a constant.

4.1 EFFICIENCY

Sparse convolution has several advantages for digital computation.
Because of the impulsive nature of the noise, the convolution inte-
gral (7) reduces to a summation over the impulses:

η(�) =
∑

akh(� − �
k) (8)

Thus, the synthesis is reduced naturally to a computationally real-
izable form without requiring sampling (and subsequent interpola-
tion) of the noise.

The quality of the noise can be varied as required for the appli-
cation by varying the density of the Poisson noise. This is an im-
portant property, since e.g. background objects or interactive pre-
viewing applications may not require full quality noise. A density

4

Proceedings Siggraph 89

of less than one impulse per kernel volume produces a “lumpy”
noise with little spectral definition. Typical applications require a
density of several impulses per kernel volume, and noises produced
with a density of 10 or more points per kernel are usually not dis-
tinguishable from those produced by convolving with a uniformly
sampled (non-sparse) white noise, though the sparse convolution is
considerably more efficient.

For an isotropic noise the kernel h is also isotropic and (assuming
it is non-zero over a finite radius) can be approximately evaluated
by a one-dimensional table lookup. In this case the summation (8)
can be restricted to only those impulses γk within the kernel radius
of the location � . The problem then is to identify these points ef-
ficiently, in particular, without requiring examination of all points
and an expensive distance computation requiring a square-root.

This can be accomplished with an appropriate construction of
the Poisson process γ. A simple construction is to define a large
but finite sampling lattice over the noise domain and approximate
the Poisson process by choosing N Poisson-distributed impulses in
each voxel. The voxels can then be numbered, and the voxel num-
ber serves as a random number generator seed for generating the
impulses within that voxel. The lattice spacing and kernel radius
are conveniently set to one (with space scaled accordingly). Then
the impulses lying within a unit radius of a particular location �

are those in the voxel containing � and in the adjacent voxels. The
summation (8) is modified accordingly. Square roots are entirely
removed by using the squared distance | � − �

k|2 to index a pre-
warped kernel table ĥ(τ) = h(

√
τ).

The author’s implementation of sparse convolution uses standard
tricks such as fixed-point computation. In addition, the noise im-
pulses �

k are stored in a cache array as they are computed, and are
reused if the next location falls within the same voxel. With these
optimizations, the algorithm using one impulse per voxel is slightly
slower than the previously described Hermite implementation of
Perlin’s algorithm, but does not have visible artifacts and provides
some control over the spectrum.

The upper-left panel in Fig. 5 shows a planar section of a sam-
ple texture generated with the sparse convolution algorithm using a
smooth cosine kernel 1/2+1/2 cos(πτ), |τ | < 1.The texture does
not reveal the synthesis coordinate system or display other artifacts.

5 APPLICATIONS

A solid noise algorithm is most useful as a primitive in a language
that allows one to easily define functional or procedural transfor-
mations of the noise. An important characteristic of this language
is that it should allow functions to be dynamically defined at model-
ing/rendering/animation time – the “user” should have the freedom
to define an ad hoc function in the model, rather than requiring the
original programmer of the graphics system to anticipate and im-
plement libraries of special-purpose functions. This requires either
an interpreted language or user-compiled functions that are dynam-
ically linked with the graphics system. An interpreted language was
described in [18], while the shade-trees approach [6] appears to use
compiled functions that are dynamically linked to an interpreted
expression evaluator.

In the language approach adopted by the author, a small and
portable public-domain Lisp language interpreter was adapted to
allow compiled C language functions to be dynamically linked and
called from Lisp. This approach avoids the definition and imple-
mentation of a new special-purpose language, and permits func-
tions to be implemented in either Lisp or C or some combination
of these. Typically a function is developed in Lisp, and if needed
the inner loops are reimplemented in C and dynamically “glued”
together with Lisp.

Stepping back from the full power of procedural manipulation

Fig. 8: Porous object model defined by the iso-density surface of a
solid noise.

of the noise, we note that the special case of a functional trans-
formation is useful from an analysis-resynthesis viewpoint, since a
desired probability density (a commonly measured random texture
characteristic) can be obtained by functional transformation [12].

5.1 SOLID TEXTURE

Although spectral synthesis adequately simulates most homoge-
neous random textures, many textures have some structural features
that cannot be simulated using this approach. Such textures can of-
ten be simulated using a procedural transform of a homogeneous
texture. An example is the marble texture described in [18]. An-
other example of a procedural transform is the solid wood texture
shown in (Figs. 6, 7). The structure of concentric rings parallel to
the tree trunk is produced using a periodic or (preferably) quasi-
periodic function xtab of the radial distance from the z axis. This
function describes the color variation across a radial section of a
typical ring. Natural irregularity is introduced by perturbing the
radial distance by a solid noise:

wood(�) = xtab[
√

� .x2 + � .y2 + η(�)]

(where � .x denotes the x-component of �). Various refinements
are possible, for example, the radial distance can be replaced by
a random monotonic function of this distance, thereby creating ra-
dial regions of densely or sparsely separated rings to simulate peri-
ods of slow or fast growth. Fig. 6 shows planar sections of several
solid wood simulations, where the perturbation noise η and the ring
cross section function xtab are altered to simulate different woods.
Fig. 7 shows a figure model with a solid wood texture. This sur-
face/texture combination would be difficult to achieve using texture
mapping.

5.2 STOCHASTIC MODELING

An interesting stochastic modeling approach utilizing solid noise
is to define objects as the equal-density surface of a solid noise.
The overall shape of the object can be controlled by multiplying
the noise by an analytic density function that tapers to zero outside
of the desired object shape. This approach can produce porous and
highly irregular shapes such as the coral-like form in Fig. 8.

5.3 STOCHASTIC DEFORMATION

This is a powerful stochastic modeling technique which uses a
vector-valued solid noise (vector field) v : R3 → R3 to perturb

5

Proceedings Siggraph 89

Fig. 12: Trajectories of a number of particles forced by a vector
solid noise.

an existing object model. Three independent scalar solid noises
form the components of the vector field. Stochastic deformation is
particularly efficient for polygonal boundary-represented models,
since only the vertices are perturbed.

Stochastic deformation can be used to simulate the individuality
of natural objects by slightly deforming a prototype object model
(Figs. 9, 11). The noise can be varied to produce either realistic or
caricatural individuality.

Large-amplitude or iterated deformation can produce self-
intersecting or twisted forms which do not resemble the original
object (Fig. 10). A deformation can be animated by offsetting the
object location by a continuously changing vector before perturb-
ing, effectively moving the object through the noise.

5.4 CORRELATED FLOW

Solid noises may be employed as a correlated random environmen-
tal factor for many physically motivated simulations. For example,
a solid noise can be used as a force field to produce turbulent trajec-
tories or flow. Fig. 12 shows the trajectories of a number of particles
obeying a simple dynamics equation ¨� = η(�). The resulting col-
lection of trajectories displays bifurcations and resembles animal
fur and other natural structures. Fig. 13 is a frame from a brief
animation in which the trajectories are animated by the previously
mentioned technique of moving the model through the noise. The
trajectories are rendered to produce the effect of an “organic fire-
ball”.

6 CONCLUSION

In addition to their demonstrated use in solid texturing, solid noises
have direct applications in stochastic modeling. In both modeling
and texturing it is desirable that the solid noise synthesis be control-
lable, efficient, and free of artifacts. Spectral synthesis provides a
framework for assessing the control and quality of various synthe-
sis approaches. Existing solid noise algorithms were surveyed from
this viewpoint.

Two new algorithms were described and evaluated. Both algo-
rithms provide improved spectral control and efficiency. The sparse
convolution algorithm is attractive in that it allows a tradeoff be-
tween quality and efficiency as required by the application, with-
out introducing gross artifacts. Several solid texturing and stochas-
tic modeling examples visually illustrate the control and quality
achievable with this algorithm.

Symbols

S(λ) power spectrum
C(τ) autocovariance function
h filter kernel
γ uncorrelated noise
η correlated synthesized noise

� , � locations in space
λ, ω frequency, angular frequency

Acknowledgements

The figure model in Fig. 7 was developed by Dick Lundin and
Susan VanBaerle. The head model used in Fig. 9 was developed
by Fred Parke [15] with additions by Rebecca Allen, Steve Di-
Paola and Robert McDermott. Thanks to Paul Heckbert and Lance
Williams for discussions.

References

[1] Abramowitz, M. and Stegun, I., Handbook of Mathematical
Functions. Dover, New York, 1965.

[2] Bohm, W., Farin, G. and Kahmann, J., A Survey of Curve
and Surface Methods in CAGD. Computer Aided Geometric
Design 1, 1 (1984), 1-60.

[3] Bracewell, R., The Fourier Transform and Its Applications.
McGraw-Hill, New York, 1965.

[4] Carpenter, L., Computer Rendering of Fractal Curves and Sur-
faces. Supplement to Proceedings of SIGGRAPH ’80 (Seattle,
July 1980). In Computer Graphics 14, 3 (July 1980), 180.

[5] Cook, R., Stochastic Sampling in Computer Graphics. ACM
Transactions on Graphics 5, 1 (January 1986), 51-72.

[6] Cook, R., Shade Trees. Proceedings of SIGGRAPH ’84 (Min-
neapolis, July 23-27 1984). In Computer Graphics 18, 3 (July
1984), 223-231.

[7] Deutsch, R., Estimation Theory. Prentice-Hall, New Jersey,
1965.

[8] Fournier, A., Fussell, D., and Carpenter, L., Computer Ren-
dering of Stochastic Models. Communications ACM 25, 6
(June 1982), 371-384.

[9] Gardner, G., Simulation of Natural Scenes Using Textured
Quadric Surfaces. Proceedings of SIGGRAPH ’84 (Min-
neapolis, July 23-27 1984). In Computer Graphics 18, 3 (July
1984), 11-20.

[10] Heckbert, P., Personal communication.

[11] Lewis, J.P., Generalized Stochastic Subdivision. ACM Trans-
actions on Graphics 6, 3 (July 1987), 167-190.

6

Proceedings Siggraph 89

Fig. 2: Planar section of a solid noise synthesized by Hermite
interpolation of a lattice of uncorrelated values. The noise shows

directional artifacts and is zero at the lattice points.

[12] Lewis, J.P., Methods for Stochastic Spectral Synthesis. In
Proceedings of Graphics Interface 86 (Vancouver, May
1986), 173-179.

[13] Oppenheim, A. and Schafer, R., Digital Signal Processing.
Prentice Hall, Englewood Cliffs, N.J., 1975.

[14] Papoulis, A., Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, New York, 1965.

[15] Parke, F., Parameterized Models for Facial Animation. IEEE
Computer Graphics and Applications 2, 9 (Nov. 1982), 61-68.

[16] Peachy, D., Solid Texturing of Complex Surfaces. Proceed-
ings of SIGGRAPH ’85 (San Francisco, July 22-26 1985). In
Computer Graphics 19, 3 (July 1985), 279-286.

[17] Perlin, K., A Unified Texture/Reflectance Model. In SIG-
GRAPH ’84 Advanced Image Synthesis course notes (Min-
neapolis, July 1984).

[18] Perlin, K., An Image Synthesizer. Proceedings of SIGGRAPH
’85 (San Francisco, July 22-26 1985). In Computer Graphics
19, 3 (July 1985), 287-296.

[19] Schafer, R. and Rabiner, L., A Digital Signal Processing Ap-
proach to Interpolation. Proc. IEEE 61, 6 (June 1973), 692-
702.

[20] Wiener, N., Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. Wiley, New York, 1949.

[21] Yaglom, A., An Introduction to the Theory of Stationary Ran-
dom Functions. Dover, New York, 1973.

Fig. 3: Three-dimensional figure textured with a procedural solid
wood texture which uses the solid noise shown in Fig. 2 as a

primitive. Noise artifacts resulting from the regularly spaced zeros
of this noise primitive are visible (compare with Fig. 7).

Fig. 5: Planar sections of solid noises synthesized using the sparse
convolution algorithm.

Fig. 6: Sections of solid wood textures synthesized by procedural
transformation of suitable homogeneous textures.

Fig. 7: Solid wood texture applied to a figure model.

7

Proceedings Siggraph 89

Fig. 9: Individual head models generated by displacing the vertices of a prototype polygonal head model with a vector solid noise.

8

Proceedings Siggraph 89

Fig. 10: A shape created by distorting a polygonal sphere by a vector solid noise.

Fig. 11: Shrubbery created by stochastic deformation.

9

Proceedings Siggraph 89

Fig. 13: An object rendered from trajectories as in Fig. 12.

Fig. 14: Cloud studies using solid noises in a rendering algorithm similar to that in [9].

10

