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Abstract. The goal of scattered data interpolation techniques is to construct
a (typically smooth) function from a set of unorganized samples. These tech-
niques have a wide range of applications in computer graphics and computer
vision. For instance they can be used to model a surface from a set of sparse
samples, to reconstruct a BRDF from a set of measurements, or to interpolate
motion capture data. This course will survey and compare scattered interpola-
tion algorithms and describe their applications in computer graphics. Although
the course is focused on applying these techniques, we will introduce some of the
underlying mathematical theory and briefly mention numerical considerations.
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1 Introduction

Many computer graphics and vision problems involve interpolation. In some
cases the sample locations are on a regular grid. For instance this is usually the
case for image data since the image samples are aligned according to a CCD
array. Similarly, the data for a B-spline surface are organized on a regular grid
in parameter space. The well known spline interpolation methods in computer
graphics address these cases.

In other cases the data locations are unstructured or scattered. Methods for
scattered data interpolation (or approximation) are less well known in computer
graphics, for example, these methods are not yet covered in most graphics text-
books. These approaches have become widely known and used in graphics
research over the last decade however. This course will attempt to survey most
of the known approaches to interpolation and approximation of scattered data.

1.1 Applications

To indicate the versatility of scattered data interpolation techniques, we list a
few applications:

• Surface reconstruction [13, 40]. Reconstructing a surface from a point
cloud often requires an implicit representation of the surface from point
data. Scattered data interpolation lends itself well to this representation.

• Image restoration and inpainting [62, 43, 35]. Scattered data inter-
polation can be used to fill missing data. A particular case of this is
inpainting, where missing data from an image needs to be reconstructed
from available data.

• Surface deformation [44, 39, 29, 34, 59, 30, 8, 54]. Motion capture
systems allow the recording of sparse motions from deformable objects
such as human faces and bodies. Once the data is recorded, it needs to
be mapped to a 3-dimensional representation of the tracked object so that
the object can be deformed accordingly. One way to deform the object
is to treat the problem as a scattered data interpolation problem: the
captured data represents a spatially sparse and scattered sampling of the
surface that needs to be interpolated to all vertices in a (e.g. facial) mesh.

• Motion interpolation and inverse kinematics [47, 25]. Methods such
as radial basis functions and extensions to Gaussian processes have used to
interpolate motion to compute inverse kinematics based on actual motion
data.

• Meshless/Lagrangian methods for fluid dynamics [17]. “Meshfree”
methods for solving partial differential equations make use of radial basis
function interpolation.
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• Appearance representation [68, 63, 57]. Interpolation of measured
reflectance data or user-specified intensity data is a scattered interpolation
problem.

Any mathematical document of this size will contain typos.
Please obtain a corrected version of these notes at:
http://scribblethink.org/Courses/ScatteredInterpolation

1.2 The Interpolation Problem

Interpolation is a fundamental problem that has been studied in several different
fields. Some of the concepts and issues are:

• Interpolation could be considered as an inverse problem, since the solution
potentially involves many more degrees of freedom (for example every
point on a curve) than the given data (the known points).

• The type of interpolation (linear, cubic, covariance-preserving, etc.) can
be considered as a prior, thereby making the inverse problem solvable.

• In scattered data interpolation (SDI), the function is required to to per-
fectly fit the data. For scattered data approximation (SDA), we ask that
the function merely passes close to the data. The approximation prob-
lem allows handling of noisy data. Although SDI and SDA are different
problems, some of the same algorithms can be applied to both problems
(e.g. section 3.3 and Figure 15).

• When there is noise in the data, the bias-variance issue arises. Fitting a
high-order polynomial to the data will exactly interpolate the data, but
this is not justified in the presence of noise – sampling the same object
again (with different noise) could generate wildly different results, so the
interpolation may be portraying the noise more than the data. Fitting
a line to the data will average out more of the noise (low variance) but
introduces an unavoidable bias if the underlying noise-free data are not
on a line.

• Another perspective on these issues is in terms of model complexity, which
considers the number of model parameters that are justified by the data.
Concepts include the minimum description length principle and model
complexity measures such as the Bayes information criterion (BIC) [26].

• High dimensional interpolation suffers from a collection of phenomena
nicknamed the curse of dimensionality [26]. For example, the amount of



Scattered Data Interpolation for Computer Graphics 7

data needed to fit a model rises exponentially with dimension. Alternately,
in high dimensions, “everything is far away”, so the diameter of a kernel
must grow to cover an increasing fraction of the diameter of the whole
data set.

1.3 Dimensionality

In the remainder of these notes individual techniques will usually be described
for the case of mapping from a multidimensional domain to a single field, Rp to
R

1, rather than the general multidimensional input to vector output (Rp to R
q)

case.

Producing a q-dimensional output can be done by running q separate copies
of Rp-to-R1 interpolators. In most techniques some information can be shared
across these output dimensions – for example, in radial basis interpolation the
system matrix (section 3) can be inverted once and reused with each dimension.

Throughout the notes we attempt to use the following typesetting conventions:

• Scalar values in lower-case: e.g. the particular weight wk.

• Vector values in bold lower-case: e.g. the weight vectorw or the particular
point xk.

• Matrices in upper-case: e.g. the interpolation matrix A.

2 Scattered Interpolation Algorithms

2.1 Shepard’s interpolation

Shepard’s Method [56] is probably the simplest scattered interpolation method,
and it is frequently re-invented. The interpolated function is

f̃(x) =

N
∑

k

wk(x)
∑

j wj(x)
f(xk),

where wi is the weight function at site i:

wj(x) = ‖x− xi‖−p,

the power p is a positive real number, and ‖x−xi‖ denotes the distance between
the query point x and data point xi. Since p is positive, the weight functions
decrease as the distance to the sample sites increase. p can be used to control the
shape of the approximation. Greater values of p assign greater influence to values
closest to the interpolated point. Because of the form of the weight function
this technique is sometime referred as inverse distance weighting. Notice that:
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• For 0 < p ≤ 1, f̃ has sharp peaks.

• For p > 1, f̃ is smooth at the interpolated points, however its derivative
is zero at the data points (Fig. 2), resulting in evident “flat spots”.
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Figure 1: Shepard’s interpolation with p = 1.

Shepard’s method is not an ideal interpolator however, as can be clearly seen
from Figs. 1,2.

The Modified Shepard’s Method [40, 21] aims at reducing the impact of far away
samples. This might be a good thing to do for a couple of reasons. First,
we might want to determine the local shape of the approximation only using
nearby samples. Second, using all the samples to evaluate the approximation
does not scale well with the number of samples. The modified Shepard’s method
computes interpolated values only using samples within a sphere of radius r. It
uses the weight function:

wj(x) =

[

r − d(x,xi)

rd(x,xi)

]2

.

where d() notates the distance between points. Combined with a spatial data
structure such as a k-d tree or a Voronoi diagram [42] this technique can be
used on large data sets.
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Figure 2: Shepard’s interpolation with p = 2. Note the the derivative of the
function is zero at the data points, resulting in smooth but uneven interpolation.
Note that this same set of points will be tested with other interpolation methods;
compare Figs. 8, 9, 13, etc.

2.2 Kernel regression

A straightforward generalization of Shepard’s interpolation is kernel regression
(also called Nadaraya-Watson regression) [10], which generalizes the weight
function to an arbitrary “kernel function” K(x,xi):

f̃(x) =

∑n
k K(x,xk)f(xk)
∑n

i K(x,xi)

In kernel regression K typically does not go to infinity at the origin, and thus
the regression approximates rather than interpolating.

2.3 Moving least-squares

Moving least-squares builds an approximation by using a local polynomial func-
tion. The approximation is set to locally belong in Πp

m the set of polynomials
with total degree m in p dimensions. At each point, x, we would like the poly-
nomial approximation to best fit the data in a weighted least-squares fashion,
i.e.:

f̃(x) = argmin
g∈Πp

m

N
∑

i

wi(‖x− xi‖)(g(xi)− fi)
2,
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Local reconstruction:

Global reconstruction: : Sample point (unused locally)

: Sample point (used locally)

xxi

f̃(x)

fi

g(xi)

Figure 3: Moving least-squares in 1-D. The function is locally reconstructed
using a polynomial of degree 2. The local approximating polynomial is refitted
for each evaluation of the reconstructed function.

where wi is a weighting function used to emphasize the contribution of nearby

samples, for instance wi(d) = e− d2

σ2 . Note that this choice of weights will only
approximate the data. To interpolate it is necessary to use weights that go to
infinity as the distance to a data point goes to zero (as is the case with Shepard
interpolation), e.g. wi(d) = 1/d.

Figure 3 illustrates the technique with a 1-dimensional data set reconstructed
with a moving second order polynomial.

Using a basis of Πp
m, b(x) = {b1(x), . . . , bl(x)} we can express the polynomial

g as a linear combination in that basis: g(x) = b
t(x)c, where c is a vector of

coefficients. If we then call, a, the expansion of f̃ in the basis b, we can then
write:

f̃(x) = b
t(x)a(x)

with

a(x) = argmin
c∈Rl

N
∑

i

wi(‖x− xi‖)(bt(xi)c− fi)
2.

Computing, a(x), is a linear least-squares problem that depends on x. We can
extract the system by differentiating the expression above with respect to c and
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Figure 4: Comparison of Moving Least Squares interpolation using zero-order
(constant) and first-order (linear) polynomials. With weights set to a power of
the inverse distance, the former reduces to Shepard’s interpolation (c.f. Fig. 2).

setting it to 0:

∂

∂c

(

N
∑

i

wi(‖x− xi‖)(bt(xi)c− fi)
2

)

∣

∣

∣

∣

a

= 0

⇔
N
∑

i

wi(‖x− xi‖)b(xi)(b
t(xi)a− fi) = 0

⇔
(

N
∑

i

wi(‖x− xi‖)b(xi)b
t(xi)

)

a =

N
∑

i

fiwi(‖x− xi‖)b(xi).

This last equation can be written in matrix form Aa = d with:

A =

N
∑

i

wi(‖x− xi‖)b(xi)b
t(xi)

and

d =
N
∑

i

fiwi(‖x− xi‖)b(xi).

Note that the matrix A is square and symmetric. In the usual case, where w is
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Figure 5: One-dimensional MLS interpolation with second-order polynomials.
The interpolation is not entirely satisfactory.

non-negative A is also symmetric and positive semi-definite.

xt
Ax = xt

(

N
∑

i

wi(‖x− xi‖)b(xi)b
t(xi)

)

x

=

N
∑

i

wi(‖x− xi‖)xt
b(xi)b

t(xi)x)

=

N
∑

i

wi(‖x− xi‖)(xt
b(xi))

2 ≥ 0.

If the matrix A has full rank the system can be solved using the Cholesky
decomposition.

It would seem that the computational cost of moving least-squares is excessive
since it requires solving a linear system for each evaluation of the reconstructed
function. If the weight functions fall quickly to zero, however, then the size of
the system can involve only a few data points. In this case MLS is solving many
small linear systems rather than a single large one (versus the case with Radial
Basis Functions (section 3), where the system size is usually the number of data
points). On the other hand, the resulting interpolation is not ideal (Fig. 5).

Note that if the weight functions are an inverse power of the distance, as with
the weights in Shepard’s interpolation, and a piecewise constant (zero order
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polynomial) is chosen for b(x) then MLS reduces to Shepard’s interpolation:

min
a

n
∑

k

w
(x)
k (a · 1− fk)

2

d

da

[

n
∑

k

w
(x)
k (a2 − 2afk + f2

k )

]

= 0

d

da

[

n
∑

k

wka
2 − 2wkafk + wkf

2
k

]

=

n
∑

k

2wka− 2wkfk = 0

a =

∑n
k wkfk
∑n

k wk

and
f̂(x) = a · 1

2.3.1 Applications

Surface reconstruction Cheng et al. [14] give an overview of moving least-
squares for surface reconstruction.

Fleishman et al. [20] uses moving least-squares to reconstruct piecewise smooth
surfaces from noisy point clouds. They introduce robustness in their algorithm
in multiple ways. One of them is an interesting variant on the moving least
squares estimation procedure. They estimate the parameters, β, of their model,
fβ, using a robust fitting function:

β = argmin
β

median
i

‖fβ(xi)− yi‖.

The sum in the original formulation has been replaced by a more robust median
operator.

Image warping Schaefer et al. [50] introduces a novel image deformation
technique using moving least-squares. Their approach is to solve for the best
transformation, lv(x), at each point, v, in the image by minimizing:

∑

i

wi‖lv(pi)− qi‖

where {pi} is a set of control points and {qi} an associated set of displacements.
By choosing different transform types for lv (affine, rigid, ..), they create differ-
ent effects.
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Surface deformation [67] produce an as-rigid-as-possible surface transfor-
mation by choosing the local function as a similarity transformation (rotation
and uniform scaling) rather than a polynomial.

Supports

Local reconstruction:

Global reconstruction:

Sample point:

Partition of unity

Figure 6: Partition of unity in 1-D. The partition of unity are a set of weigh-
ing functions that sum to 1 over a domain. These are used to blend a set
of (e.g. quadratic) functions fit to local subsets of the data to create a global
reconstruction.

2.4 Partition of unity

The Shephard’s and MLS methods are specific examples of a general partition
of unity framework for interpolation. The underlying principal of a partition of
unity method is that it is usually easier to approximate the data locally than to
find a global approximation that fits it all. With partition of unity, the construc-
tion of the global approximation is done by blending the local approximations
using a set of weight functions {φk} compactly supported over a domain Ω such
that:

∑

k

φk = 1 on Ω.

We say that the functions {φk} form a partition of unity. Now we consider a set
of approximations of f , {qk}, where qk is defined over the support of φk, then
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we can compute a global approximation as:

f̃(x) =
N
∑

k

φk(x)qk(x).

In this description the functions, φk, only need to be non-negative.

To interpret Shepard’s method as a partition of unity approach, define

φk(x) =
‖x− xk‖p

∑

j ‖x− xj‖p

and qk as the constant function defined by the k-th data point.

2.5 Natural neighbor interpolation

Natural Neighbor Interpolation was developed by Robin Sibson [58]. It is similar
to Shepard’s interpolation in the sense that the approximation is written as a
weighted average of the sampled values. It differs in that the weights are volume-
based as opposed to the distance-based weights of Shepard’s method.

Natural neighbor techniques uses a Voronoi diagram of the sampled sites to for-
malize the notion of “neighbor”: two sites are neighbors if they share a common
boundary in the Voronoi diagram. Using duality, this is equivalent to writing
that the sites form an edge in the Delaunay triangulation. By introducing the
evaluation point x in the Delaunay triangulation, the natural neighbors of x are
the nodes that are connected to it. The approximation is then written as:

f̃(x) =
∑

k∈N

αk(x)f(xk),

where N is the set of indices associated with the natural neighbors of x and
αk(x) are weight functions.

αk(x) =
uk

∑

j∈N uj

where uj is the volume of the intersection of the node associated with the
evaluation point and the node associated with the j-th neighbor in the original
Voronoi diagram.

2.5.1 Applications

Surface reconstruction In [11] Boisonnat and Cazals represent surfaces im-
plicitly as the zero-crossings of a signed pseudo-distance function. The function
is set to zero at the sampled points and is interpolated to the whole 3D space.
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Figure 7: Non-fractal landscapes invented with Wiener interpolation [33]

2.6 Linear interpolation on simplices

A particularly simple approach to scattered interpolation is to form the De-
launay triangulation or its n-dimensional generalization and then interpolate
independently and linearly within each simplex (each triangle in the 2D case).
Because high-dimensional functions are difficult to visualize and control, [6] in-
troduced a variant of pose space deformation that uses this approach. ([31]
may have also used this idea, though it is difficult to say from the one-page de-
scription). This approach sacrifices smoothness but prevents overshoot; it was
the recommended choice in the evaluation [31]. Further details on interpolation
over simplices is given in [15], albeit in a non-graphics context.

2.7 Wiener interpolation and Gaussian Processes

“Wiener interpolation” is a very old technique, evidently invented independently
by Wiener and Kolmogorov during the 1940s. It was rediscovered in the 1960s
in the geostatistics community where it is known as Kriging, and came to atten-
tion again in machine learning in the late 1990s, where the technique is called
Gaussian processes. Wiener interpolation differs from polynomial interpolation
approaches in that it is based on the expected correlation of the data. Wiener
interpolation of discrete data is simple, requiring only the solution of a matrix
equation. This section describes two derivations for discrete Wiener interpola-
tion.

Some advantages of Wiener interpolation are:

• The data can be arbitrarily spaced.

• The algorithm applies without modification to multi-dimensional data.

• The interpolation can be made local or global to the extent desired. This
is achieved by adjusting the correlation function so that points beyond a
desired distance have a negligible correlation.
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Figure 8: One-dimensional Wiener interpolation, using a Gaussian covariance
matrix.

• The interpolation can be as smooth as desired, for example an analytic
correlation function will result in an analytic interpolated curve or surface.

• The interpolation can be shaped and need not be “smooth”, for example,
the correlation can be negative at certain distances, oscillatory, or (in
several dimensions) have directional preferences.

• The algorithm provides an error or confidence level associated with each
point on the interpolated surface.

• The algorithm is optimal by a particular criterion (below) which may or
may not be relevant.

Some disadvantages of Wiener interpolation:

• It requires knowing or inventing the correlation function. While this may
arise naturally from the problem in some cases, in other cases it would
require interactive access to the parameters of some predefined correlation
models to be “natural”.

• It requires inverting a matrix whose size is the number of significantly
correlated data points. This can be a practical problem if a large neigh-
borhood is used. A further difficulty arises if the chosen covariance is
broad, causing the resulting covariance matrix (see below) to have similar
rows and hence be nearly singular. Sophistication with numerical linear
algebra will be required in this case.
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Figure 9: Similar to Fig. 8, but the variance of the Gaussian is too narrow for
this data set.

Terminology

Symbols used below:

f value of a stochastic process at time x

f̂ estimate of f

fj observed values of the process at times or locations xj

The derivations require two concepts from probability:

• The correlation of two values is the expectation of their product, E[xy].
The autocorrelation or autocovariance function is the correlation of pairs
of points from a process:

C(x1, x2) = E {f(x1)f(x2)}

For a stationary process this expectation is a function only of the distance
between the two points: C(τ) = E[f(x)f(x+τ)]. The variance is the value
of the autocorrelation function at zero: var(x) = C(0). (Auto)covariance
usually refers to the correlation of a process whose mean is removed and
(usually) whose variance is normalized to be one. There are differences in
the terminology, so “Correlation function” will mean the autocovariance
function of a normalized process here.
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• Expectation behaves as a linear operator, so any factor or term which is
known can be moved “outside” the expectation. For example, assuming a
and b are known,

E {af + b} = aEf + b

Also, the order of differentiation and expectation can be interchanged, etc.

Definition

Wiener interpolation estimates the value of the process at a particular location
as a weighted sum of the observed values at some number of other locations:

f̂ =
∑

wjfj (1)

The weights wj are chosen to minimize the expected squared difference or error
between the estimate and the value of the “real” process at the same location:

E
{

(f − f̂)2
}

(2)

The reference to the “real” process in (2) seems troublesome because the real
process may be unknowable at the particular location, but since it is the expected
error which is minimized, this reference disappears in the solution.

Wiener interpolation is optimal among linear interpolation schemes in that it
minimizes the expected squared error (2). When the data have jointly Gaus-
sian probability distributions (and thus are indistinguishable from a realization
of a Gaussian stochastic process), Wiener interpolation is also optimal among
nonlinear interpolation schemes.

Derivation 1

The first derivation uses the “orthogonality principle”: the squared error of a
linear estimator is minimum when the error is ‘orthogonal’ in expectation to
all of the known data, with ‘orthogonal’ meaning that the expectation of the
product of the data and the error is zero:

E
{

(f − f̂)fk

}

= 0 for all j

Substituting f̂ from (1),

E
{

(f −
∑

wjfj)fk

}

= 0 (3)

E
{

ffk −
∑

wjfjfk

}

= 0
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The expectation of ffk is the correlation C(x − xk), and likewise for fjfk:

C(x− xk) =
∑

wjC(xj − xk)

or
Cw = c (4)

This is a matrix equation which can be solved for the coefficients wj . The coef-
ficients depend on the positions of the data fj though the correlation function,
but not on the actual data values; the values appear in the interpolation (1)
though. Also, (4) does not directly involve the dimensionality of the data. The
only difference for multi-dimensional data is that the correlation is a function
of several arguments: E[PQ] = C(xp − xq, yp − yq, zp − zq, . . .).

Derivation 2

The second derivation minimizes (2) by differentiating with respect to each wk.
Since (2) is a quadratic form (having no maxima), the identified extreme will
be a minimum (intuitively, a squared difference (2) will not have maxima).

d

dwk

[

E
{

(f −
∑

wjfj)
2
}]

= E

[

d

dwk
(f −

∑

wjfj)
2

]

= 0

2E

{

(f −
∑

wjfj)
d

dwk
(f −

∑

wjfj)

}

= 0

E
{

(f −
∑

wjfj)fk

}

= 0

which is (3).

A third approach to deriving the Wiener interpolation proceeds by expressing
the variance of the estimator (see below) and finding the weights that produce
the minimum variance estimator.

Cost

From (4) and (1), the coefficients wj are w = C−1c, and the estimate is f̂ =
xTC−1c. The vector c changes from point to point, but xTC−1 is constant
for given data, so the per point estimation cost is a dot product of two vectors
whose size is the number of data points.

Confidence

The interpolation coefficients wj were found by minimizing the expected squared
error (2). The resulting squared error itself can be used as a confidence mea-
sure for the interpolated points. For example, presumably the error variance
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would be high away from the data points if the data are very uncharacteristic
of the chosen correlation function. The error at a particular point is found by
expanding (2) and substituting a = C−1c:

E
{

(f − f̂)2
}

= E
{

(f −
∑

wjfj)
2
}

= E
{

f2 − 2f
∑

wjfj +
∑

wjfj
∑

wkfk

}

= var(x) − 2
∑

wjC(x, xj) +
∑

wjwkC(xj , xk)

(switching to matrix notation)

= C(0)− 2wT c+wTCw

= C(0)− 2(C−1c)T c+ (C−1c)TCC−1c

= C(0)− cTC−1c

= C(0) −
∑

wjC(x, xj)

Applications: terrain synthesis, Kriging, Gaussian processes [33] used
Wiener interpolation in a hierarchical subdivision scheme to synthesize random
terrains at run time (Fig. 7). The covariance was specified, allowing the syn-
thesized landscapes to have arbitrary power spectra (beyond the fractal 1/fp

family of power spectra).

3 Radial basis functions

Radial basis functions (“RBFs”) are the most versatile and commonly used
scattered data interpolation techniques, and the majority of the remainder of
the course will focus on them. They are conceptually easy to understand and
simple to implement. From a high level point of view, a radial basis functions
interpolation works by summing a set of replicates of a single basis function.
Each replicate is centered at a data point and scaled to respect the interpolation
conditions. This can be written as:

f̃(x) =
N
∑

k

wkφ(‖x− xk‖),

where φ is a function from [0,∞[ to R and {wk} is a set of weights. It should be
clear from this formula why this technique is called “radial”: The influence of
a single data point is constant on a sphere centered at that point. Without any
further information on the structure of the input space, this seems a reasonable
assumption. Note also that it is remarkable that the function, φ, be univariate:
Regardless of the number of dimensions of the input space, we are interested in
distances between points.
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Figure 10: Radial basis interpolation with a Gaussian kernel

The conditions of interpolating the avaliable data can be written as

f̃(xi) =

N
∑

k

wkφ(‖xi − xk‖) = fi, for 1 ≤ i ≤ n.

This is a linear system of equations where the unknowns are the vector of weights
{wk}. To see this, let us call φi,k = φ(‖xi − xk‖). We can then write the
equivalent matrix representation of the interpolation conditions:











φ1,1 φ1,2 φ1,3 · · ·
φ2,1 φ2,2 · · ·
φ3,1 · · ·
...





















w1

w2

w3

...











=











f1
f2
f3
...











This is a square system with as many equations as unknowns. Thus we can
form the radial basis function interpolation by solving this system of equations.

3.1 Radial basis function with polynomial term

In the polyharmonic and thin-plate cases a linear polynomial term is added
to the radial basis function expression. Reproducing a polynomial is useful in
some applications. For example, thin-plate splines are commonly used for image
registration (e.g. [32]), and in that application it would be troubling if an affine
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Figure 11: Radial basis interpolation with a Gaussian kernel, varying the kernel
width relative to Fig. 10

transformation could not be produced. Also, by regularizing the upper rows of
the system matrix, the image warp is forced to become more affine [16].

The addition of a polynomial can be motivated in several ways:

• “Polynomial reproducibility”: it may be useful to have an interpolation
that exactly produces some polynomial (e.g. affine) functon if it is known
that the data may lie exactly on that function.

• “Filling the null space”: in fact, adding a polynomial is required in cases
where the RBF kernel comes from minimizing a roughness, where the
roughness is defined as a derivative, squared, integrated over the interpo-
lated function (see section 5.1). The biharmonic and thin-plate kernels
are of this form (see section 7.7.2, especially equations (41) and (43)).

To understand this intuitively, consider the first derivative of a function:
the derivative is not changed if a constant is added to the function. Said
differently, constant functions are in the null space of the derivative opera-
tor. Similarly, for a second derivative, affine functions (linear + constant)
are in the null space. Thus, finding a smooth function by minimizing
the integrated squared derivative is ambiguous, because one of these func-
tions from the null space can be added without changing the smoothness.
The solution is to simultaneously fit the RBF kernels and the polynomial
function to the data.
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Figure 12: Radial basis interpolation with a Gaussian kernel, varying the kernel
width relative to Fig. 10,11. In this figure the kernel width is too narrow to
adequately interpolate the data.

As an example, consider RBF estimation in two dimensions with an additional
polynomial. A polynomial in one dimension is a + bx + cx2 + · · · . Truncating
after the linear term gives a+ bx. A similar polynomial in two dimensions is of
the form a+ bx+ cy. Adding this to the RBF synthesis equation gives

f̂(p) =

n
∑

k=1

ckφ(‖p− pk‖) + cn+1 · 1 + cn+2 · x + cn+3 · y

Here p = (x, y) is an arbitrary 2D point and pk are the training points.

The additional polynomial coefficients have to be determined somehow. Since
the degrees of freedom in the n points are already used in estimating the RBF
coefficients ck, an additional relation must be found. This takes the form of
requiring that the interpolation should exactly reproduce polynomials: If the
data f(x) to be interpolated is exactly a polynomial, the polynomial contribu-
tion cn+1 · 1 + cn+2 · x + cn+3 · y should be exactly that polynomial, and the
weights on the RBF kernel ck, k <= n should be zero.

Doing so results in the additional condition that the weights ck are in the null
space of the polynomial basis. In showing this we use the following notation:
R is the standard RBF system matrix with the RBF kernel evaluated at the
distance between pairs of training points, c are the RBF weights (coefficients),
and f are the desired values to interpolate, so Rc = f would be the system to
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Figure 13: The one-dimensional equivalent of thin-plate spline interpolation is
the natural cubic spline, with radial kernel |r|3 in one dimension. This spline
minimizes the integrated square of the second derivative (an approximate cur-
vature) and so extrapolates to infinity away from the data.

solve if the extra polynomial is not used. Also let P be the polynomial basis,
and d be the weights on the polynomial basis. In the 2D case with a linear
polynomial P is a n by 3 matrix with a column of ones, a column of xk, and a
column of yk, where (xk, yk) = pk are the training locations. Then,

Rc+Pd = f the interpolation statement

Rc+Pd = Pm fit a polynomial Pm, for some unknown coefs m

cTRc+ cTPd = cTPm premultiply by cT

cTRc = cTPm− cTPd

cTP(m − d) = cTRc

Then if we require that cTP = 0, then the left hand side is zero, and so c must
itself be zero since the right hand side is positive. So now going back to the
orginal Rc + Pd = Pm, we know that if cTP = 0, then c = 0, so Rc = 0, so
Pd = Pm.

Restating, this means that if the signal is polynomial and we have required
cTP = 0, the coefficients c are zero, and then Pd = Pm, so d = m, so the
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polynomial is exactly reproduced.

Another way of viewing these side conditions is that by imposing an additional
relation on c, they reduce the total number of degrees of freedom from n + p
(for a p-order polynomial basis) back to n

The additional relation cTP = 0 is enough to solve for the RBF and polynomial
coefficients as a block matrix system:

[

R P
PT 0

] [

c
d

]

=

[

f
0

]

Note that the matrix in this system is symmetric but indefinite, meaning that
it has both positive and negative eigenvalues. This prevents the use of some
algorithms (such as conjugate gradient).

We showed using linear algebra that the relation cTP = 0 is sufficient to repro-
duce polynomials. In fact, this is called the vanishing moment condition, and it
is a necessary condition as well. These issues are discussed in more generality
and depth in section 7.7 and Theorem 5.

3.2 The choice of RBF kernel

Figure 14: Comparison of the 3D biharmonic clamped plate spline (black line)
with Gaussian RBF interpolation (red). Figure reproduced from [46].

A variety of functions can be used as the radial basis kernel φ(r). Some
of the most mentioned choices in the literature are (c.f. [19, Appendix D]):
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Gaussian φ(r) = exp(−(r/c)2)

Hardy multiquadric φ(r) =
√
r2 + c2

Inverse multiquadric φ(r) = 1/
√
r2 + c2

Thin plate spline φ(r) = r2 log r (in two dimensions)

Laplacian (or Polyharmonic) splines φ(r) ∝
{

r2s−n log r if 2s− n is an even integer,

r2s−n otherwise

In fact there is not yet a general characterization of what functions are suitable
as RBF kernels [19]. Positive definite functions are among those that will gener-
ate a non-singular Φ matrix for any choice of data locations. There are several
alternate characterizations of positive definiteness:

• A function is positive definite if

∑∑

wiwkφ(‖xi − xj‖) > 0

for any choice of unique data locations xi.

• A positive definite function is a Fourier transform of a non-negative func-
tion [33]. (Note that “positive definite” does not mean that the function
itself is necessarily positive. The sinc function is a counter example, since
it is the transform of a box function.)

• The matrix Φ generated from a positive-definite kernel function has all
eigenvalues positive.

The third characterization indicates that for a positive definite function, the
matrix Φ will be invertable for any choice of data points. On the other hand,
there are useful kernels (such as the polyharmonic family) that are not positive
definite.

Several aspects of radial basis kernels are not intuitive at first exposure. The
polyharmonic and thin-plate kernels are zero at the data points and increase in
magnitude away from the origin. Also, kernels that are not themselves smooth
can combine to give smooth interpolation. An example is the second-order
polyharmonic spline in 3 dimensions, with kernel φ(r) = |r|.
Several of the common RBF kernels have an explicit width parameter (e.g. the
Gaussian σ), and the domain can be simply scaled to achieve similar effect with
other kernels. The use of a broad kernel can cause surprising effects. This is
due to the near-singularity of the Φ matrix resulting from rows that are similar.
The problem (and a solution) is discussed in section 3.3.

When thinking about the appropriate kernel choice for an application, it is also
worth keeping in mind that there is more than one concept of smoothness. One
criterion is that a function has a number of continuous derivatives. By this
criterion the Gaussian function is a very smooth function, having an infinite
number of derivatives. A second criterion is that the total curvature should be
small. This can be approxmimated in practice by requiring that the solution
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should have a small integral of squared second deriviatives – the criterion used
in the thin-plate and biharmonic splines.

This second criterion may correspond better to our visual sense of smoothness,
see Figures 13, 14. Figure 13 shows a natural cubic spline on scattered data
points. The curve extrapolates beyond the data, rather than falling back to
zero, which may be an advantage or disadvantage depending on the application.
Figure 14 compares two approaches that both fall to zero: Gaussian RBF in-
terpolation (red) and the 3D biharmonic clamped plate spline (black line). The
plot is the density of a linear section through an interpolated volume. Note that
the control points are distributed through the volume and cannot meaningfully
be visualized on this plot. Although the Gaussian function has an infinite num-
ber of derivatives, Gaussian RBF interpolation is visually less smooth than the
biharmonic spline. The visual smoothness of the Gaussian can be increased by
using a broader kernel, but this also increases the overshoots.

For many applications the most important considerations will be the smoothness
of the interpolated function, whether it overshoots, and whether the function
decays to zero away from the data. For example, artists tend to pick examples
at the extrema of the desired function, so overshoot is not desirable. As another
example, in the case where a pose space deformation algorithm is layered on
top of an underlying skinning algorithm, it is important that the interpolated
function fall back to zero where there is no data.

Of course it is not possible to simultaneously obtain smoothness and lack of
overshoot, nor smoothness and decay to zero away from the data. It is possible,
however, to combine these criteria with desired strengths. The approach is to
find the Green’s function (see section 5.2) for an objective such as

F (f) =
∑

(f(xi)−yi)2 + α

∫

‖∇2f‖2dx + β

∫

‖∇f‖2dx + γ

∫

‖f‖2dx

i.e. a weighted sum of the data fidelity and the integral of the squared sec-
ond derivative, the squared first derivative (i.e. “spline with tension”), and the
squared function itself (causing the function to decay to zero).

The kernel choice leads to numerical considerations. The Gaussian kernel can
be approximated with a function that falls exactly to zero resulting in a sparser
and numerically better conditioned matrix matrix [65], while the polyharmonic
kernels are both dense and ill-conditioned. Further numerical considerations
will be discussed in section 3.4.

3.3 Regularization

In creating training poses for example-based skinning, the artist may acciden-
tally save several sculpted shapes at the same pose. This results in a singular Φ
matrix. This situation can be detected and resolved by searching for identical
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Figure 15: Adding regularization to the plot in Fig. 13 causes the curve to
approximate rather than interpolate the data.

poses in the training data. A more difficult case arises when there are several
(hopefully similar) shapes at nearby locations in the pose space.

In this case the Φ matrix is not singular, but is poorly conditioned. The RBF
result will probably pass through the given datapoints, but it may do wild things
elsewhere (Figure 16). Intuitively speaking, the matrix is dividing by “nearly
zero” in some directions, resulting in large overshoots.

In this case an easy fix is to apply weight-decay regularization. Rather than
requiring Φw = d exactly, weight-decay regularization solves

argmin
w

‖Φw − d‖2 + λ‖w‖2 (5)

This adds a second term that tries to keep the sum-square of the weight vector
small. However, λ is chosen as a very small adjustable number such as 0.00001.
In “directions” where the fit is unambiguous, this small number will have little
effect. In directions where the result is nearly ambigous however, the λ‖w‖2
will choose a solution where the particular weights are small.

To visualise this, consider a two-dimensional case where one basis vector is
pointing nearly opposite to the other (say, at 179 degrees away). A particular
point that is one unit along the first vector can be described almost as accurately
as being two units along that vector, less one unit along the (nearly) opposite
vector. Considering matrix inversion in terms of the eigen decomposition Φ =
UΛUT . of the matrix is also helpful. The linear system is then UΛUTw = d,
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Figure 16: Illustration of ill-conditioning and regularization. From left to right,
the regularization parameter is 0, .01, and .1 respectively. Note the vertical
scale on the plots is changing. Bottom: The geometry of this 3D interpolation
problem. The data are zero at the corners of a square, with a single non-zero
value in the center.

and the solution is
w = UΛ−1UTd

Geometrically, this is analogous to rotating d by U−1, stretching by the inverse
of the eigenvalues, and rotating back. The problematic directions are those
corresponding to small eigenvalues.

Soving (5) for w,

‖Φw− d‖2 + λ‖w‖2

= tr(Φw − d)T (Φw− d) + λwTw

d

dw
= 0 = 2ΦT (Φw − d) + 2λw

ΦTΦw + λw = ΦTd

giving the solution
w = (ΦTΦ+ λI )−1ΦTd

In other words, weight decay regularization requires just adding a small constant
to the diagonal of the matrix before inverting.

Fig. 16 shows a section through simple a two-dimensional interpolation problem
using a Gaussian RBF kernel. The data are zero at the corners of a square,
with a single non-zero value in the center. Noting the vertical scale on the
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plots, the subfigures on the left show wild oscillation that is not justified by
the simple data. In the figures we used weight-decay regularization to achieve
a more sensible solution. This also has the effect of causing the reconstructed
curve to approximate rather than interpolate the data (Fig. 15).

Weight-decay regularization is not the only type of regularization. Regular-
ization is an important and well studied topic in all areas involving fitting a
model to data. On a deeper level it is related to model complexity and the
bias-variance tradeoff in model fitting. The subject comes up in a number of
forms in statistical learning texts such as [26].

3.4 Computational considerations

Algorithms for solving linear systems typically have O(N3) time complexity.
This means that if the number of training points is increased by a factor of 10,
the solution time will grow by 103 = 1000. Several more efficient approaches
have been developed.

The fast multipole expansion [66] speeds up the computations of
∑N

k wkφ(‖x−
xk‖) by splitting the kernel into sums of separable functions, some of which
depend only on the training points and thus can be precomuted.

Beatson et al. [5] describe converting a thin-plate problem to an equivalent one
with a localized (and thus numerically better behaved) basis. They solve for the
localized basis as a cardinal interpolation of (some of) the data points during a
preprocessing step.

In the domain decomposition method [4] the data set is subdivided into several
smaller data sets and the interpolations equations are solved iteratively. This
technique has the advantage of allowing parallel computations.

A different approach is to use only a subset of the available data, leaving the
rest for refining or validating the approximation [28]. Unfortunately there is no
known means of optimally choosing the subset (it is likely to be “NP”). Some
heuristic approach must be used, such as greedily choosing training points that
give the greatest reduction to a fitting error. Hatanaka et al. [27] uses a genetic
algorithm to select the RBF centers.

Most of these techniques will introduce errors in the computation of the solution
but since the reconstruction is itself an approximation of the true function, these
errors might be acceptable.

In the case of the thin-plate and polyharmonic RBF kernels the system matrix
is not sparse and will be increasingly ill conditioned as more points are added.

From a numerical point of view, solving an RBF system is known two depend
on two quantities:
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• The fill distance [64]. The fill distance expresses how well the data, D,
fills a region of interest Ω:

hD,Ω = sup
x∈Ω

min
xj∈D

‖x− xj‖2.

It is the radius of the largest “data-site free ball” in Ω. The fill distance
can be used to bound the approximation error.

• The separation distance [64]. The separation distance, qD, measures how
close the samples are together. If two data sites are very close then the
interpolation matrix will be near-singular.

qD =
1

2
min
j 6=k

‖xj − xk‖2.

It can be shown [64] that the minimum eigenvalue of A, hence its condition
number, is related to the separation distance:

λmin(A) ≥ Cq2τ−d
D

3.5 Applications

Mesh deformation. One application of scattered data interpolation is in
image-based modeling. The work by Pighin et al. [44] describes a system for
modeling 3-dimensional faces from facial images. The technique works as follow:
after calibrating the cameras, the user selects a sparse set of correspondences
across the multiple images. After triangulation, these correspondences yield a
set of 3-dimensional constraints. These constraints are used to create a defor-
mation field from a set of radial basis functions. Following their notation, the
deformation field f can be written:

f(x) =
∑

i

ciφ(x− xi) +Mx+ t, ,

where φ is an exponential kernel. M is a 3×3 matrix and t a vector that jointly
represent an affine deformation. The vanishing moment conditions can then be
written as:

∑

i

ci = 0 and
∑

i

cix
T
i = 0

This can be simplified to just
∑

i cix
T
i = 0 by using the notation that x ≡

{1, x, y, z}.

Learning doodles by example. Baxter and Anjyo [3] proposed the concept
of a latent doodle space, a low-dimensional space derived from a set of input
doodles, or simple line drawings. The latent space provides a foundation for
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(a) cartoon face

(b) jellyfish drawing

Figure 17: Examples of doodles by [3]. The left images were drawn by an artist;
the right images were synthesized using the proposed technique.

generating new drawings that are similar, but not identical to, the input ex-
amples, as shown in Figure 17. This approach gives a heuristic algorithm for
finding stroke correspondences between the drawings, and then proposes a few
latent variable methods to automatically extract a low-dimensional latent doo-
dle space from the inputs. Let us suppose that several similar line drawings are
resampled by (1), so that each of the line drawings is represented as a feature
vector by combining all the x and y coordinates of each point on each stroke
into one vector. One of the latent variable methods in (2) then employs PCA
and thin plate spline RBF as follows. We first perform PCA on these feature
vectors, and form the latent doodle space from the first two principal compo-
nents. With the thin plate spline RBF, we synthesize new drawings from the
latent doodle space. The drawings are then generated at interactive rates with
the prototype system in [3].

Locally controllable stylized shading. Todo et al. [61] proposes a set
of simple stylized shading algorithms that allow the user to freely add local-
ized light and shade to a model in a manner that is consistent and seamlessly
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Figure 18: The interpolation problem in [61]. (a) is the original cartoon-shaded
face; (b-1) is the close-up view of (a) and (b-2) is the corresponding intensity
distribution (continuous gradation); (c-1) is the painted dark area and (c-2) is
the corresponding intensity distribution that we wish to obtain.

integrated with conventional lighting techniques. The algorithms provide an in-
tuitive, direct manipulation method based on a paint-brush metaphor to control
and edit the light and shade locally as desired. For simplicity we just consider
the cases where the thresholded Lambertian model is used for shading surfaces.
This means that, for a given threshold c, we define the dark area A on surface
S as being {p ∈ S|d(p) ≡ 〈L(p), N(p)〉 < c}, where L(p) is a unit light vector,
and N(p) is the unit surface normal at p ∈ S. Consider the cartoon-shaded area
as shown in Figure 18, for example. Then let us enlarge the dark area in Figure
18 (a) using the paint-brush metaphor, as illustrated in (c-1) from the original
area (b-1). Suppose that the dark area A′ enlarged by the paint operation is
given in the form: A′ = {p ∈ S|f(p) < c}. Since we define the shaded area by
the thersholded Lambertian, we’d like to find such a continuous function f as
described above. Instead of finding f , let us try to get a continuous function
o(x) := d(x)− f(x), which we may call an offset function. The offset function
may take 0 outside a neighborhood of the painted area. More precisely, let U be
an open neighborhood of the painted area C. The desired function o(x) should
then be a continuous function satisfying:

o(x) =

{

0 , if x ∈ ∂U ∪ (∂A− C)

c− d(x) , if x ∈ U − ∂(A ∪ C).
(6)

To get o(x), we discretize the above condition (6), as shown in Figure 19. Sup-
pose that S consists of small triangle meshes. Using a simple linear interpolation
method, we get the points {xi} on the triangle mesh edges (or as the nodes)
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Figure 19: The constraint points for the interpolation problem in Figure 18.
The triangle meshes cover the shaded face in Figure 18 (c-1). A is the initial
dark area, whereas C and U denote the painted area and its neighborhood,
respectively. U is the area surrounded by the closed yellow curve. The blue or
red dots mean the boundary points {xi} of these areas.

Figure 20: Toon-shaded 3D face in animation. left : with a conventional shader;
right : result by [61].
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Figure 21: Scattered interpolation of a creature’s skin as a function of skeletal
pose.

which represent the constraint condition (6) to find an RBF f in the form:

f(x) =

l
∑

i=1

wiφ(x− xi) + p(x), (7)

where φ(x) = ‖x‖. This means that we find f in (7) under the condition (6)
for {xi}li=1 as a function defined on R3, rather than on S. We consequently set
o(x) := f(x). Figure 20 demonstrates the painted result. Just drawing a single
image, of course, would not need the continuous function f . The reason why
we need such an RBF technique as described above is that we wish to make
the light and shade animated. This can be performed using a simple linear
interpolation of the offset functions at adjacent keyframes.

Example-based skinning. Kurihara andMiyata [30] introduced the weighted
pose-space deformation algorithm. This general approach interpolates the skin
of character as a function of the degrees of freedom of the pose of its skele-
ton (Fig. 21). Particular sculpted or captured example shapes are located at
particular poses and then interpolated with a scattered intepolation technique.
This non-parametric approach allows arbitrary additional detail to be added by
increasing the number of examples. For instance a bulging biceps shape might
be interpolated as a function of the elbow angle.
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Figure 22: Hand poses synthesized using weighted pose space deformation (from
[30]).

In the case of [30], the shapes were captured using a medical scan of one of the
authors’ hands, resulting in very plausible and detailed shapes (Fig. 22). The
video accompanying the paper shows that the interpolation of these shapes as
the fingers move is also very realistic.

Kurihara and Miyata used the cardinal interpolation scheme from [59], in com-
bination with normalized radial basis functions. In this scheme, for n sample
shapes there are n separate radial basis interpolators, with the kth interpolator
using data that is 1 at the k training pose and 0 at all the other poses. The
RBF matrix is based on the distance between the poses (in pose space) and so
has to be formed and inverted only once.

Another important development in this paper is the way it uses skinning weights
to effectively determine a separate pose space for each vertex. That is, the
distance between two poses is defined as

dj(xa,xb) =

√

√

√

√

n
∑

k

wj,k(xa,k − xb,k)2

where wj,k are the skinning weights for the kth degree of freedom for the jth
vertex, and xa,k denotes the kth component of location xa in the pose space.

Facial animation “Blendshapes” are simple facial models that are composed
of weighted linear combinations of a number of individual target shapes, each
representing a particular expression. Blendshapes are a popular approach among
animators because the targets provide direct control over the space of facial ex-
pressions [36]. On the other hand, the simple linear interpolation leaves much
to be desired, particularly when several shapes are combined.

One solution involves adding a number of correction shapes [41, 53]. Each such
shape is a correction to a pair (or triple, quadruple) of primary shapes. While
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Figure 23: Smoothly propagating an expression change to nearby expressions
using Weighted Pose Space Editing [55].

this improves the interpolation, it is a labor intensive solution due to the number
of possible combination shapes. Finding the correct shapes also involves a labor-
intensive trial and error process. Typically a bad shape combination may be
visible at some arbitrary set of weights such as (w10 = 0.3, w47 = 0.65). The
blendshape correction scheme does not allow a correction to be associated with
this location, however, so the artist must find corrections at other locations such
as (w10 = 1, w47 = .1), (w10 = 1, w47 = 0), (w10 = 0, w47 = .1) that together
add to produced the desired shape. This requires iterative resculpting of the
relevant shapes.

To solve this problem, Seol et al. [55] combine ideas from blendshapes and
weighted pose space deformation [30]. Specifically, they use an elementary
blendshape model (without corrections) as both a base model and a pose space
for interpolation. Then, the weighted PSD idea is used to interpolate addi-
tional sculpted shapes. These shapes can be situated at any location in the
weight space, and they smoothly appear and fade away as the location is ap-
proached (Figure 23). Because of the unconstrained location of these targets
and the improved interpolation, both the number of shapes and the number of
trial-and-error sculpting iterations are reduced.

Articulated animation for medical imaging MRI medical scans are rela-
tively low resolution, and variants that capture multiple scans over time further
compromise this resolution. To address the need to obtain higher quality volume
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Figure 24: Example-based volumetric interpolation of medical scans.

visualizations of articulated regions such as the hand, Rhee et al. [46] developed
an example-based volumetric interpolation system. A generic template hand
model is first registered to available scans in a bootstrap step by using a volu-
metric analogue of linear blend skinning. The system then learns the additional
deformations that are not captured by the animated template. This involves
a hierarchical volumetric registration using clamped-plate splines. Finally, the
detailed deformations at each example pose are interpolated as a function of
pose as the underlying skeleton is moved (Figure 24).

4 Scattered interpolation on meshes: Laplace,

Thin-plate

The previous subsection on radial basis methods mentioned choices of kernels
for using RBFs to produce thin-plate interpolation. There is an equivalent
formulation that does not use RBFs. This formulation minimizes a roughness,
expressed as squared derivatives, subject to constraints (boundary conditions).
In practice, this results in a single linear system solve for the unknowns via
discretization of the Laplacian operator on a mesh. In this mesh-based approach
the problem domain is often on a regular grid, so initially this may not seem like
scattered interpolation. However, the unknowns can be scattered at arbitrary
sites in this grid, so it is effectively a form of scattered interpolation in which
the locations are simply quantized to a fine grid. In addition, forms of the
Laplacian (Laplace Beltrami) operator have been devised for irregular meshes
[24], allowing scattered interpolation on irregular geometry.

The Laplace equation is obtained by minimizing the integral of the squared first
derivative over the domain, with the solution (via the calculus of variations )
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Figure 25: Laplace interpolation in one dimension is piecewise linear interpola-
tion. Note that this figure was obtained by solving the appropriate linear system
(rather than by simply plotting the expected result).

that the second derivative is zero:

min
f

∫

‖∇f‖2dΩ ⇒ ∇2f = 0

Similarly, the biharmonic equation is obtained by minimizing the integral of the
squared second derivative over the domain, with the solution that the fourth
derivative is zero:

min
f

∫

(

∣

∣

∣

∣

∂2f

∂x2

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∂2f

∂x ∂y

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂2f

∂y2

∣

∣

∣

∣

2
)

dx dy ⇒ ∆2f = 0

The Laplace equation can be solved with a constrained linear system. Some
intuition can be gained by considering the Laplace equation in one dimension
with regularly spaced samples. A finite-difference approximation for the second
derivative is:

d2f

dx2
≈ 1

h2
(1 · f(x+ 1)− 2 · f(x) + 1 · f(x− 1))

The weight stencil (1,−2, 1) is important. If f(x) is digitized into a vector
f = [f [1], f [2], · · · , f [m]] then the second derivative can be approximated with
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a matrix expression

Lf ∝













−1 1
1 −2 1

1 −2 1
1 −2 1 · · ·
. . .























f [1]
f [2]
f [3]
...











In two dimensions the corresponding finite difference is the familiar Laplacian
stencil





1
1 −4 1

1



 (8)

These weights are applied to the pixel sample f(x, y) and its four neighbors
f(x, y− 1), f(x− 1, y), f(x+1, y), f(x, y+1). A two-dimensional array of pixels
is in fact regarded as being “vectorized” into a single column vector f(x, y) ≡ fk
with k = y × xres + x.

Regardless of dimension the result is a linear system of the form Lf = 0, with
some additional constraints that specify the value of f(xk) at specific positions.
When the constraints are applied this becomes an Lx = b system rather than a
Lx = 0 nullspace problem.

A Poisson problem is similar, differing only in that the right hand side of the
equation is non-zero. The problem arises by requiring that the gradients of the
solution are similar to those of a guide function, where similar is defined as
mininimizing the sum (or integrated) squared error. The Laplace equation is
just a special case in which the “guide function” is 0, meaning that the desired
gradients should be as small as possible, resulting in a function that is smooth
in this sense.

In matrix terms, the corresponding thin-plate problem is of the form

L2f = b

where (again) some entries of f are known (i.e. constrained) and are pulled to
the right hand side.

In both cases the linear system can be huge, with a matrix size equal to the
number of vertices (in the case of manipulating a 3D model) or pixels (in a
tone mapping or image inpainting application). On the other hand, the matrix
is sparse, so a sparse solver can (and must) be used. The Laplace/Poisson
equations are also suitable for solution via multigrid techniques, which have
time linear in the number of variables.

4.1 Applications

Laplacian or Poisson interpolation on regular grids was introduced for image
editing in [35, 43], and is now available in commercial tools. [8] used Laplacian



Scattered Data Interpolation for Computer Graphics 42

and biharmonic interpolation on a mesh to drive a face mask with moving
motion capture markers. [54] bring the editing power of [43] to facial motion
capture retargeting by formulating a type of Poisson equation in terms of the
blendshape facial representation.

5 Where do RBFs come from?

In the previous section we saw that Radial Basis Functions are a simple and
versatile method for interpolating scattered data, generally involving only a
standard linear system solve to find the interpolation weights, followed by in-
terpolation of the form

f(x) =
∑

k

wkφ(||x − xk||)

where (x) is the resulting interpolation at point x, and φ is a radially symmetric
“kernel” function.

Several choices for the kernel were mentioned, such as exp(−r2/σ2) and some
more exotic choices such as r2 log r.

Where do these kernels come from and how should you choose one? This section
provides an intuitive discussion of this question.

5.1 Green’s functions: motivation

Although Laplace and thin-plate interpolation is usually done by either sparse
linear solves or relaxation/multigrid, it can also be done by radial basis inter-
polation, and this is faster if there are relatively few points to interpolate.

In these cases the kernel φ is the “Green’s function of the corresponding squared
differential operator”. This section will explain what this means, and give an
informal derivation for a simplified case. Specifically we’re choosing a a discrete
one-dimensional setting with uniform sampling, so the problem can be expressed
in linear algebra terms rather than with calculus.

The goal is find a function f that interpolates some scattered data points dk
while simultaneously minimizing the roughness of the curve. The roughness is
measured in concept as

∫

|Df(x)|2dx

where D is a “differential operator” (D = d2

dx2 ) for example.

Whereas a function takes a single number and returns another number, an
operator is something that takes a whole function and returns another whole
function. The derivative is a prototypical operator, since the derivative of a
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function is another function. A differential operator is simply an operator that
involves some combination of derivatives.

We are working in a discrete setting, so D is a matrix that contains a finite-
difference version the operator. For example, for the second derivative, the
(second order centered) finite difference is

d2

dx2
≈ 1

h2
(ft+1 − 2ft + ft−1)

This finite difference has the weight pattern 1,−2, 1, and for our purposes we
can ignore the data spacing h by considering it to be 1, or alternately by folding
it into the solved weights.

The finite difference version of the whole operator can be expressed as a matrix
as

D =
1

h2













−2 1
1 −2 1

1 −2 1
1 −2 1 · · ·
. . .













(and again the 1
h2 can be ignored for some purposes). The discrete equivalent

of the integral (5.1) is then ‖Df‖2 = fTDTDf .

Then our goal (of interpolating some scattered data while minimizing the rough-
ness of the resulting function) can be expressed as

min
f

‖Df‖2 + λTS(f − d).

= min
f
fTDTDf + λTS(f − d). (9)

S is a “selection matrix”, a wider-than-tall permutation matrix that selects
elements of f that correspond to the known values in d. So for example, if f is
a vector of length 100 representing a curve to be computed that passes through
5 known values, S will be 5×100 in size, with all zeros in each row except a 1 in
the element corresponding to the location of the known value. The known value
itself is in d, a vector of length 100 with 5 non-zero elements. λ is a Lagrange
multiplier that enforces the constraint.

Now take the matrix/vector derivative of eq. (9) with respect to f ,

d

df
= 2DTDf + STλ

and we can ignore the 2 by folding it into λ.

If we know λ, the solution is then

f = (DTD)−1STλ (10)
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• Although continuously speaking the differential operator is an “instanta-
neous thing”, in discrete terms it is a convolution of the finite difference
mask with the signal. Its inverse also has interpretation as a convolution.

• If D is the discrete version of d
dx then DTD is the discrete Laplacian,

or the “square” of the original differential operator. Likewise if D is the
discrete Laplacian then DTD will be the discrete biharmonic, etc.

(DTD)−1 is the Green’s function of the squared differential operator.

In more detail, DT is the discrete analogue of the adjoint of the derivative,
and the latter is − d

dx in the one-dimensional case [10]. The sign flip is
evident in the matrix version of the operator: The rows of the original
first derivative (forward or backward finite difference) matrix have -1,1
near the diagonal (ignoring the 1

h ). The transposed matrix thus has rows
containing 1,-1, or the negative of the derivative.

• STλ is a vector of discrete deltas of various strengths. In the example
STλ has 5 non-zero values out of 100.

5.2 Green’s functions

Earlier we said that the kernel is the “Green’s function of the corresponding
squared differential operator”. A Green’s function is a term from differential
equations. A linear differential equation can be abstractly expressed as

Df = b

whereD is a differential operator as before, f is the function we want to find (the
solution), and b is some “forcing function”. In the Greens function approach
to solving a differential equation, the solution is assumed to take the form of a
convolution of the Green’s function with the right hand side of the equation (the
forcing function). (We are skipping a detail involving boundary conditions). For
linear differential equations the solution can be expressed in this form.

The Green’s function G is the “convolutional inverse” of the squared differential
operator. It is the function such that the operator applied to it gives the delta
function,

DG = δ (11)

While the theory of Green’s functions is normally expressed with calculus, we’ll
continue to rely on linear algebra instead. In fact, the appropriate theory has
already been worked out in the previous subsection and merely needs to be
interpreted.

Specifically, in Eq. (10), (DTD)−1 is the Green’s function of the squared differ-
ential operator. In discrete terms Eq. 11 is

DTD(DTD)−1 = I
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with the identity matrix rather than the δ function on the right hand side.
And STλ is a sparse set of weighted impulses that is “convolved” (via matrix
multiplication) with the Green’s function. Thus we see that Eq. 10 is a discrete
analogue to a Green’s function solution to the original “roughness penalty”
goal.

6 Additional Topics

6.1 Interpolating physical properties

Incompressible fluids (water) have divergence-free velocity fields. Using a stan-
dard scattered interpolation method on fluid data would violate this divergence-
free property. In fact, there is a divergence-free variant of RBF interpolation
[38]. There are also techniques for interpolating curl-free phenomena. One way
of doing this is to perform a Helmholtz-Hodge decomposition on the kernel to
obtain a divergence-free and a curl-free component [23]. E.J. Fuselier [22] also
proposes curl-free matrix-valued RBFs.

6.2 Scattered data interpolation in mesh-free methods

Mesh-free approaches are an alternative to finite-element and related integration
methods. In these approaches the computation volume is not defined by a static
grid but rather the medium is represented by a set of moving particles. Scattered
data interpolation is required to interpolate simulated values from the particles
to the entire computation volume.

6.3 Scattered data interpolation on a manifold

One nice aspect of RBF interpolation is that it works in any dimension, with the
only change being how the distance between points is measured. In skinning,
for example, the dimensionality of the “pose space” may be 10 or higher.

In some cases however the data lie on a curved surface, and interpolating in a n-
dimensional “flat” Euclidean space is not ideal regardless of the dimensionality.
For example, if the data are intrinsically on a sphere, it is possible to formulate
the problem as 3D interpolation and then evaluate the results only on the sphere,
but this will not give ideal results.

To explain the problem, consider the example of driving a facial mesh with
motion capture data. The data takes the form of a number of markers moving in
3D over time. A 3D scattered interpolation will deform the mesh. However, the
motion of the upper-lip markers will incorrectly influence the lower-lip geometry,
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especially if the lips are close. This is because the RBF is based on 3D distance,
and the upper lip is adjacent to the lower lip.

Section 4 described methods for interpolating based on generalizations of Laplace’s
equation, and Section 5 described how the RBF approach is in a sense “dual”
to these approaches. The well known “mesh Laplacian” from discrete differen-
tial geometry [24] allows the interpolation to occur directly on the mesh surface
[8]. In this way, the motion “bleeding” across a hole such as the mouth will
be much less of a problem because the influence of the sample gets propagated
on the mesh (and around the mouth) rather than cutting across the mouth.
Rhee et al. [45] solved this issue using RBFs by introducing a geodesic form of
RBF, i.e. the distance between points passed to the RBF kernel is the geodesic
distance on the face surface.

The idea of a two-dimensional surface mesh embedded in three-dimensional
space generalizes to higher dimensions, where the “surface” is instead (infor-
mally) termed a manifold, embedded in a higher dimensional ambient space.
The “manifold assumption” in machine learning asserts that most of the data
in high-dimensional datasets exists on or close to some (possibly curved) mani-
fold, and a body ofmanifold learning algorithms [60, 48] seek a parameterization
of this subspace given only scattered data in the high dimensional space.

Interpolation on the sphere is a special case that is considered separately due
to its importance (for describing orientations for example). For a survey of
interpolation on the sphere see [18].

7 Guide to the deeper theory

This chapter does not aim at developing a rigorous mathematics behind the
techniques described in this course, but at giving intuitive meanings to the
mathematical concepts that support those techniques. We do hope that this
chapter will give a good introduction to learn the mathematics behind the scene
more deeply.

Those mathematical concepts come mainly from functional analysis, the math-
ematical field of modern calculus. The modern calculus introduces a variety
of function spaces, such as Hilbert space or Sobolev space, while generalizing
concepts in classical calculus. As described below, this gives us a theoretical
basis for solving the optimization problems or regularization problems of our
practical situations.

7.1 Elements of functional analysis

A function classically means a mapping that gives a real value, denoted by f(x),
for a given real number x. One of the motivations for generalizing the concept
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of function was to give a mathematical validation of Dirac delta function, δ,
which has following properties:

f(0) =

∫

f(x)δ(x)dx (12)

or

f(t) =

∫

f(x)δ(t− x)dx

for any ordinary function f(x).

Alternatively the Dirac delta function could be expressed as

δ(t) =

{

+∞ (t = 0)

0 (otherwise).

But this suggests that δ function is not an ordinary function. The Heaviside
function H(t) is also well-known (mainly in signal processing) with its derivative
being δ function:

H(t) =

{

1 (t ≥ 0)

0 (otherwise).

However, H(t) is not differentiable nor continuous at t = 0 in a classical sense.
How can we explain these things in a mathematically correct way? What we
need is therefore to give alternative definitions of functions, derivative, and many
more technical terms in classical calculus.

7.2 Brief Introduction to the theory of generalized func-

tions

To achieve a new concept of “derivative”, we first take a look at the formula,
known as integration by parts. For simplicity, we consider a one-dimensional
case. Then we have:

∫ b

a

f ′(x)g(x)dx = −
∫ b

a

f(x)g′(x)dx + [f(t)g(t)]t=b
t=a. (13)

We derive this formula, supposing that both f and g are smooth (differentiable).
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Next let us suppose that g vanishes at the boundary (i.e., g(a) = g(b) = 0 in
(13)). We then have:

∫ b

a

f ′(x)g(x)dx = −
∫ b

a

f(x)g′(x)dx. (14)

Further, what if the above f is not differentiable (for example, f = δ)? The left
hand in (14) is therefore meaningless, but the right hand is still valid. Equation
(14) might therefore tell us that, instead of taking the derivative of f , we can
think of doing so for g. This could be understood if we consider f as a functional,
rather than a function, as described later.

Function space and functional Keeping the above things in mind, we next
introduce a concept of function space. A function space ℑ is a collection of
functions defined on a certain domain (typically, region Ω in Rn). Here are the
examples of function spaces:

Function Space Examples :

1. Pm := {P (x)|P (x) is a polynomial of at most m-th order1 }.
2. Cm(Ω) is the totality of m-th order smoothly differentiable functions on

Ω, where m = 0 (the totality of continuous functions), 1, 2, · · · , or ∞.

3. C∞
0 (Ω) is the totality of infinitely many times differentiable functions on

Ω with compact support (i.e., each function of this function space vanishes
outside a large ball in Rn).

4. Lp(Ω) := {f : Ω → R ∪ {±∞}|
∫

|f(x)|pdx < ∞}2, where p is a positive
number.

A function space ℑ is usually treated as a linear topological space. This means
that ℑ is a vector space, where convergence of a function sequence is defined
(see the section on Hilbert space for details). Next recall a function f : Ω → R.
f is then defined on Ω, and gives a real number f(x) when x is specified. Now
we consider mapping F from a function space ℑ to R. We call the mapping
F : ℑ → R a functional. A functional F is defined on a function space, and
gives a real number F (ϕ) when an element ϕ of the function space is specified.

Functional Examples :

1. (Thin plate spline) Let Ω be a domain in R2. Let B2
2(Ω) be the function

space defined as:

B2
2(Ω) := {ϕ(x) : Ω → R ∪ {±∞}| ∂

2ϕ

∂x21
,

∂2ϕ

∂x1∂x2
,
∂2ϕ

∂x22
∈ L2(Ω)}. (15)

1This space was denoted Πm+1 in subsection 3.1
2Rigorously, dx should be denoted by dµ(x) with Lebesgue measure µ. But we don’t have

to consider such mathematical details in these course notes.
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To get a thin plate spline curve, we then consider the functional F on B2
2

as:

F (ϕ) :=

∫∫

Ω

(
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∣

∣

∣

∂2ϕ

∂x21

∣

∣

∣
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+ 2

∣

∣
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∣

∂2ϕ

∂x1∂x2
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∣

∣
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+

∣

∣

∣

∣

∂2ϕ

∂x22

∣

∣

∣

∣

2
)

dx1dx2. (16)

2. An ordinary function f can also be identified with a functional. The
functional, denoted by Tf , is defined as

Tf (ϕ) :=

∫

Ω

f(x)ϕ(x)dx, (17)

for any ϕ in a certain function space ℑ3.

3. (Dirac delta function) Consider the function space C∞
0 (Ω), where 0 ∈ Ω.

For any element ϕ ∈ C∞
0 (Ω), Dirac delta function is defined as:

Tδ(ϕ) := ϕ(0). (18)

We then note that the functionals in (17) and (18) are linear. This means, for
instance, that we have:

Tf (αϕ+ βψ) = αTf (ϕ) + βTf (ψ),

for any ϕ, ψ and any α, β ∈ R.

We will show that, a (continuous) linear functional is the generalized function
which gives the theoretical basis on discussions in this course notes. Before
doing this, we need to investigate more about the relation between f and Tf .

Functions as functionals Now go back to Tf , for an ordinary function f .
Then we want to identify the function f with the functional Tf . To make it, we
should investigate whether the following property holds:

Tf = Tg ⇔ f = g (19)

For example, it is easy to see that this property holds, if f is a continuous
function on Ω, and if the linear functional Tf is defined on C∞

0 (Ω). Moreover we
can get this identification (19) for a wider class of functions. Let’s skip, however,
the mathematical proof of (19) and mathematical details in the background.
Rather, what we should recognize now is that an ordinary function fcan be
identified with a functional Tf on a certain function space through (19).

3We of course assume Tf (ϕ) in (17) takes a finite value for any ϕ in ℑ.
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Generalized function and its derivative We thus define a generalized func-
tion in the following way.

Definition: Let ℑ be a function space4. Let T be a functional: ℑ → R. T
is called a generalized function (or distribution), if it satisfies the following con-
ditions:

1. T is linear:

T (αϕ+ βψ) = αT (ϕ) + βT (ψ), for ϕ, ψ ∈ ℑ, α, β ∈ R. (20)

2. T is continuous:

lim
n→∞

ϕn = ϕ in ℑ ⇒ lim
n→∞

T (ϕn) = T (ϕ) in R. (21)

Next we define derivative of a generalized function. The hint of making it again
lies in the formula of integration by parts in (14). For simplicity we consider one-
dimensional case, taking ℑ = C∞

0 (Ω). Suppose that f is smooth (differentiable).
We then note that equation (14) suggests

T df
dx
(ϕ) =

∫

df

dx
ϕdx = −

∫

f
dϕ

dx
dx = −Tf

(

dϕ

dx

)

. (22)

It therefore seems natural to define the derivative of the generalized function T ,
as follows:

Definition: Let T be a generalized function: ℑ → R.The derivative of T , de-
noted by T ′, is defined by

T ′(ϕ) = −T (dϕ
dx

). (23)

We note that T ′ itself is also a generalized function. The above definition by
(23) is reasonable, because, if we consider the case where T is induced by a
smooth function (i.e., T = Tf), it follows from (22) that T ′(ϕ) = T df

dx
(ϕ). In

the following T ′ is sometimes denoted by dT
dx .

As an exercise, let us calculate the derivative of Heaviside function H(x) ( = 1
if x ≥ 0, and = 0, otherwise) in the sense of distribution. Instead of H itself,
we therefore consider TH . Then we can differentiate it as a linear functional.

dTH
dx

(ϕ) = −TH
(

dϕ

dx

)

= −
∫ +∞

−∞

h(x)
dϕ

dx
dx = −

∫ ∞

0

dϕ(x)

dx
dx

= −[ϕ(t)]t=∞
t=0 = ϕ(0) ≡ Tδ(ϕ)

4ℑ could be C∞
0

(Ω), C∞(Ω), and other function spaces, which would bring us various
generalized functions [52]. However, in our course notes, we mostly set ℑ as C∞

0
(Ω).
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Similarly we can inductively define the n-th order derivative of T .

Definition: The n-order derivative of a generalized derivative of T , denoted by
dnT
dxn (or by T (n)), is defined by

dnT

dxn
(ϕ) := (−1)nT (

dnϕ

dxn
). (24)

Again dnT
dxn is a generalized function. We could therefore say that any generalized

function (on ℑ) is infinitely many times differentiable. Let ℑ′ be the totality
of the generalized functions on ℑ. We call ℑ′ the dual space of ℑ, which again
constitutes a vector space.

The dual space ℑ′ includes δ function, Heaviside function, and regular functions
(such as continuous or smooth functions). In practice we can consider most
generalized function as being in the form Tf with an ordinary function f . More
precisely, if a function f is locally integrable5, Tf is then a generalized function.
The regular functions and Heaviside function are locally integrable, while δ
function is not. On the other hand, though the definition of Dirac δ in (18) looks
a bit artifical, if we symbolically use the integral representation like

∫

ϕ(x)δ(x)dx
instead of Tδ(ϕ), we still have equation (12) valid in the sense of distribution,
which simply means

∫

ϕ(x)δ(x)dx ≡ Tδ(ϕ) = ϕ(0).

Once we get such a mathematical concept of generalized function as described
above6, we can reformulate the problems in classical calculus. For instance
the problems of solving ordinary/partial differential equations (ODE/PDE) is
described in the following way. Let P (ξ) be an m-th order polynomial with
constant coefficients. For a one-dimensional case, P (ξ) =

∑m
n=0 anξ

n. We

then define the differential operator P ( d
dx) as being P ( d

dx)u =
∑m

n=0 an
dnu
dxn .

Similarly, in a multi-dimensional case, we consider P (ξ) ≡ P (ξ1, ξ2, · · · , ξn) =

P (ξ) ≡
m
∑

|α|=α1+α2+···+αn≥0

Cα1,α2,··· ,αn
ξα1

1 · ξα2

2 · · · ξαn
n ,

where Cα1,α2,··· ,αn
are constant coefficients. Then we set

P (D) ≡ P

(

∂

∂x1
,
∂

∂x2
, · · · , ∂

∂xn

)

5This means that
∫
K

|f(x)|dx < +∞ holds for any compact set (i.e., bounded and closed)
K in Ω.

6The theory of hyperfunction [49] gives an alternative theoretical basis on calculus. How-
ever, it requires algebraic concepts, such as sheaf and cohomology, so that it is not so elemen-
tary, compared to the distribution theory [52], which we discuss in these course notes.
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as a partial differential operator. If P (D) is a monomial, for instance, like

Dα = ∂|α|

∂x
α1

1
∂x

α2

2
···∂xαn

n
, we put

Dαu :=
∂|α|u

∂xα1

1 ∂xα2

2 · · · ∂xαn
n
.

Classically, for a given function f on Ω, we want to find a (smooth) solution
u that satisfies P (D)u = f on Ω7. Now this is understood as the following
problem:

Solving differential equation in ℑ′:
For a given F ∈ ℑ′, find a T ∈ ℑ′ such that P (D)T = F.

Of course we may take the given F as an ordinary function f , in the sense that
we put F = Tf . According to the above formulation, we want to find a solution
in the much wider space ℑ′. Even if we can find the solution in ℑ′, it is not
easy to see whether the solution can be represented as an ordinary function.
The solution would therefore be called a weak solution. In addition, when we
differentiate a generalized function T , we would then refer to dT

dx as the weak
derivative of T . In this theoretical approach, what we should do first is to assure
the existence of the solution, whereas we need a practical solution. So there still
exists a gap between the theory and our practical demand. However, it should
be noted that Finite Element Methods (FEM) and several related approaches
have the theoretical basis from the distribution theory.

7.3 Hilbert Space

We first explain pre-Hilbert space. To make it, we need the following definition.

Definition: Let F be a vector space over R. The two-term operation, denoted
by 〈 , 〉 (or 〈 , 〉F ), is called the inner product, if it satisfies the following
conditions:

• 〈, 〉 is symmetric and bilinear:
〈f, g〉 = 〈g, f〉,
〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉,
〈f, β1g1 + β2g2, 〉 = β1〈f, g1〉+ β2〈f, g2〉
for any f, f1, f2, g, g1, g2 ∈ F , and any α, α1, α2, β, β1, β2 ∈ R.

• 〈f, f〉 ≥ 0, for anyf ∈ F , and 〈f, f〉 = 0, if and only if f = 0.

The vector space with the inner product is called a pre-Hilbert space. It is then
noted that any pre-Hilbert space F is a normed space with the norm ‖ ‖ (or
denoted by ‖ ‖F , if necessary), which is induced by the inner product: ‖f‖ :=
√

〈f, f〉. The following formula always holds, known as Schwarz’ inequality:

7We skip the discussion on the initial condition, for simplicity.
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|〈f, g〉| ≤ ‖f‖‖g‖, for any f, g ∈ F . (25)

Now, similar to the case of ℑ and ℑ′, we consider F and its dual space F ′,
which is the totality of continuous linear functionals on F . Let T be a linear
functional on F . This means that T satisfies the condition (20) for ℑ = F ).
The continuity of T in (21) is then expressed using the norm:

There exists a constant C such that |T (f)| ≤ C‖f‖ holds for any f ∈ F . (26)

Further, if the pre-Hilbert space F is complete, i.e., any Cauchy sequence (fn) ⊂
F has its limit in F , F is then called a Hilbert space.

Hilbert Space Examples :

1. Rn. For x = (x1, x2, ..., xn)
T and y = (y1, y2, ..., yn)

T ∈ Rn, we have
〈x,y〉 :=∑n

i=1 xiyi.

2. l2 := {c = (cj)
∞
j=1|cj ∈ R,

∑∞
j=1 |cj |2 < ∞}. The inner product is given

by: 〈c,d〉 :=
∑∞

i=1 cidi, where c = (cj)
∞
j=1 and d = (dj)

∞
j=1 ∈ l2.

3. L2 space: L2(Ω) = {f : Ω → R ∪ {±∞}|
∫

Ω
|f(x)|2dx < ∞}. For f and

g ∈ L2(Ω), we have 〈f, g〉 :=
∫

Ω f(x)g(x)dx.

4. Sobolev space: Wm
2 (Ω) := {f ∈ L2(Ω)|Dαf ∈ L2(Ω), |α| ≤ m}, where

Dαf means a weak derivative. The inner product is given by 〈f, g〉 :=
∑

|α|≤m

∫

Ω
Dαf(x)Dαg(x)dx.

We will use the following basic theorem in explaining RKHS in the next section:

Theorem 1 (Riesz): Let H be a Hilbert space, and T be a real-valued continu-
ous linear functional on H . Then there exists one and only one function t ∈ H

such that
T (f) = 〈t, f〉 (27)

for all f ∈ H .

This theorem says that Hilbert space H is isomorphic to its dual space H ′ as
linear topological spaces8

8The norm ‖ ‖ in H ′ is then given by ‖T‖ := sup‖f‖≤1|T (f)|, for T ∈ H ′.
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Fourier Analysis in Hilbert Space We first recall the orthogonal relation
between trigonometric functions:

∫ π

−π

cosnx cosmx dx =

{

π (m = n)

0 (m 6= n),

∫ π

−π

sinnx sinmx dx =

{

π (m = n)

0 (m 6= n),
∫ π

−π

cosnx sinmx dx = 0.

Let f and g be the elements of a Hilbert space H . We say that f is orthogonal
to g, if 〈f, g〉 = 0.

Consider now the function space L2(−π, π), where the inner product is given by:
〈f, g〉 := 1

π

∫ π

−π f(x)g(x)dx. The subset S := {1, cosnx, sinnx |n = 1, 2, · · · } of

L2(−π, π) is then known as a complete orthonormal system of L2(−π, π). This
means that the system S ≡ {ϕ1, ϕ2, · · · } satisfies the following conditions:

〈ϕi, ϕj〉 = δij for i, j = 1, 2, · · · . (28)

f =

∞
∑

j=1

〈f, ϕj〉ϕj , for any f ∈ L2(−π, π). (29)

The conditions (28) and (29) of course give the definition of complete orthonor-
mal system (CONS) for a general Hilbert space. The coefficients 〈f, ϕj〉 in (29)
are then referred to as the Fourier coefficients of f . The right hand of equation
(29) is called the Fourier series of f , with regard to the CONS S.

CONS Examples

1. Legendre polynomials {Pn(x)}

Pn(x) :=
1

2nn!

dn

dxn
(x2 − 1)n (n = 0, 1, · · · ).

Then we have
∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn.

Therefore {
√

2n+1
2 Pn(x);n = 0, 1, 2, · · · } constitutes a CONS of L2(−1, 1).

2. Laguerre polynomials {Ln(x)}

Ln(x) := ex
dn

dxn
(xne−x) (n = 0, 1, · · · ).

This time we have
∫ ∞

0

Lm(x)Ln(x)dx = (n!)2δmn.
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Therefore { 1
n!Ln(x)e

−x/2;n = 0, 1, 2, · · · } constitutes a CONS of L2(0,∞).

For our practical purposes, we may assume that Hilbert space always has a
complete orthonormal system9.

7.4 Reproducing Kernel Hilbert Space

A radial basis function (RBF) is closely related to a reproducing kernel Hilbert
space (RKHS). Actually an RBF appear in solving a regularization problem on
a certain RKHS H(Ω), where Ω is a domain in Rn or Rn itself. As mentioned
in earlier sections, there are several RBFs that are used in scattered data inter-
polation, such as Gaussian, and thin plate spline. The choice of an RBF that
is most suited in solving an interpolation/regularization problem depends not
only on the smoothness of the function to be desired but also on the dimension
n. In this section we will briefly sketch this interesting relation among RBF,
smoothness of the function, and the space dimension. Now let us start with the
definition of RKHS.

7.4.1 Reproducing Kernel

Let E be an abstract set, and H be a Hilbert space consisting of the (real-
valued10) functions defined on E, with the inner product 〈, 〉.
Definition The function K : E × E → R is called a reproducing kernel of H ,
if it satisfies the following conditions11:

1. For any fixed y ∈ E, K(x, y) belongs to H as a function of x on E.

2. For any f ∈ H , we have f(y) = 〈f(x),K(x, y)〉x .

Definition If Hilbert space H has the reproducing kernel, which satisfies the
above conditions (1) and (2), then H is referred to as a reproducing kernel
Hilbert space (RKHS).

The following proposition will be used in characterizing the reproducing kernel
in the next section.

Proposition 1. For the reproducing kernel K, we have:

K(y, z) = 〈K(x, y),K(x, z)〉x (30)

9Rigorously, it is a necessary and sufficient condition for Hilbert space H to have a complete
orthonormal system that H is separable as a metric space. This means that there exists a
dense, and countable subset of H. However we don’t have to care about it for our practical
situations.

10Formally, we can treat complex-valued functions, but the “complex” case may be skipped
in this course.

11In condition (2), the inner product 〈, 〉x means that we get the inner product value of the
two functions with variable x.
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Proof. From condition (1) of the reproducing kernel, we have K(y, z) ∈ H for
a fixed z. Then, by putting f(y) = K(y, z) in condition (2), we have

K(y, z) = 〈K(x, z),K(x, y)〉x = 〈K(x, y),K(x, z)〉x.

The next theorem is well known as a classical result in the reproducing kernel
theory (N. Aronszajn [2], S. Bergman [7]).

Theorem 2: Hilbert space H(E) has a reproducing kernel, if and only if the
following condition is satisfied:
For any y ∈ E, there exists a positive constant C = Cy , such that

|f(y)| ≤ Cy‖f‖, for any f ∈ H . (31)

Proof. [only if part] The assertion follows from Schwarz’ inequality (25). [if
part] For a fixed y ∈ E, let us consider the linear functional δy : H(E) → R,
which is defined as δy(f) := f(y), for f ∈ H(E). According to (26), condition
(31) means that δy is continuous. The assertion thus follows from Riesz’ Theo-
rem (Theorem 1 with (27)).

Relating to the above theorem, we note that the reproducing kernel K is
uniquely determined for an RKHS H(E) (also see Theorem 3 in the next sec-
tion).

RKHS Examples

1. R: Let E be {1}. Here we identify H(E) with R. An arbitrary element
of H(E) is a map f : E ≡ {1} → R. Specifying f ∈ H(E) therefore
means specifying a real number x with f(1) = x. Let the inner product
〈, 〉 for H(E) be the ordinary multiplication in R : 〈x, y〉 = x · y. We
define K : E × E → R as K(1, 1) := 1. It is then easy to see K satisfies
condition (1) in the definition of the reproducing kernel. As for condition
(2), we have: 〈f(1),K(1, 1)〉 = f(1)1 = f(1).

2. l2: Let a = (aj)
∞
j=1 ∈ l2. Then a defines a map α : N → R with

α(i) := ai(i ∈ N). We thus identify a ↔ α. By setting E = N , we have
H(N) ≡ {α : N → R|∑∞

i=1 |α(i)|2 < ∞} ∼= l2 with its kernel function
K as being K(i, j) = δij .

3. Let A be an n-th order, symmetric, and positive semi-definite matrix.
Then A(Rn) is RKHS and its reproducing kernel is A (see the discussions
in the next section):

A(Rn) ≡ {Ax ∈ Rn | x ∈ Rn}.

7.5 Fundamental Properties

Proposition 2. Let K : E × E → R be the kernel function of RKHS H(E).
Then K is a symmetric, positive semi-definite function.
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Proof. (30) in Proposition 1 says that K is symmetric, since the inner product
itself is symmetric. For (x1, x2, · · · , xn)T ∈ En and (a1, a2, · · · , an)T ∈ Rn, we
have, using (30),

n
∑

i,J=1

aiajK(xi, xj) =

n
∑

i,j=1

aiaj〈K(x, xi),K(x, xj)〉x

=

〈

n
∑

i=1

ajK(x, xi),

n
∑

j=1

ajK(x, xj)

〉

x

=

∥

∥

∥

∥

∥

n
∑

k=1

akK(x, xk)

∥

∥

∥

∥

∥

2

x

≥ 0.

The following theorem says that RKHS is constructed by specifying a symmet-
ric, positive semi-definite function. It should also be noted that the proof is
constructive so that it might be useful even in our practical situations.

Theorem 3. Suppose that K is a symmetric, positive semi-definite function
on E × E. Then there exists a Hilbert space H that has K as its reproducing
kernel.

Sketch of the proof. We put F := {∑l
i=1 αiK(x, xi)| l ∈ N , αi ∈ R, xi ∈ E}.

By defining addition and multiplication by constant as usual, we can make F a
vector space. Also we can introduce the inner product for f =

∑m
i=1 αiK(x, xi)

and g =
∑n

j=1 βjK(x, xj) ∈ F as follows: 〈f, g〉 :=∑m
i=1

∑n
j=1 αiβjK(xi, xj) ∈

R. Since K is positive semi-definite, it follows that 〈f, f〉 ≥ 0. It is easy to
see that F is a pre-Hilbert space. Next we set H as the completion12 of F .
Then, with g(x) ≡ gy(x) = K(x, y), we have 〈(f(x),K(x, y)〉x = 〈f, hy〉 =
∑m

i=1 αiK(xi, y) =
∑m

i−1 αiK(y, xi) = f(y), for any f ∈ F . This also holds for
any f of H , because, for any Cauchy sequence {fm} of F , we have

|fm(y)− fn(y)| ≤ |〈(fm − fn)(x),K(x, y)〉x|
≤ ‖fm − fn‖x · ‖K(x, y)‖x = ‖fm − fn‖ ·K(y, y).

This means that {fm(y)} ⊂ R converges at any y. H therefore includes f =
limn→∞ fn, because f also satisfies condition (2) in the definition of reproducing
kernel.

One more remark is about an RKHS that has the complete orthonormal system
(CONS). Let us describe the reproducing kernel K with CONS ≡ {ϕj}∞j=1.
From condition (1) of the reproducing kernel, we first get

K(x, y) =

∞
∑

i=1

αi(y)ϕi(x).

12The completion simply means that all the limits of Cauchy sequences of F are included
into its completion. For example, for Q, the totality of rational numbers, its completion is R,
the totality of real numbers.
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Then, taking f(y) = ϕi(y) in condition (2), we have

ϕi(y) = 〈ϕi,K(·, y)〉 = 〈ϕi,

∞
∑

k=1

αk(y)ϕk〉

=

∞
∑

k=1

αk(y)〈ϕi, ϕk〉 =
∞
∑

k=1

αk(y)δik = αi(y).

We therefore have

K(x, y) =

∞
∑

i=1

ϕi(x)ϕi(y).

7.6 RKHS in L
2 space

We briefly describe an infinite-dimensional RKHS in L2(E). E is assumed to
be a domain in Rn, and we say L2 instead of L2(E) from now on. Supposing
that K is a symmetric, positive semi-definite function on E ×E, we first define
the real-valued function κ(f) on E : κ(f)(y) := 〈K(x, y), f(x)〉x, for any y ∈ E.
Let us further suppose that

∫∫

|K(x, x′)|2dxdx′ <∞. (32)

Then κ can be considered as a linear operator: L2 → L2, because, using Schwarz’
inequality (25), we have

∫

|κ(f)(y)|2dy =

∫

〈K(x, x′), f(x)〉2xdx′

=

∫
(
∫

K(x, x′)f(x)dx

)2

dx′

≤
∫∫

|K(x, x′)|2dx
∫

|f(y)|2dydx′

=

∫∫

|K(x, x′)|2dxdx′
∫

|f(y)|2dy

= ‖f‖2L2 ·
∫∫

|K(x, x′)|2dxdx′ <∞.

This yields that κ(f) ∈ L2 and that κ is a continuous linear operator, known
as Hilbert-Schmidt integral operator. According to Mercer’s theorem, we then
have the eigen decomposition: K(x, x′) =

∑

ν≥1 λνφν(x)φν (x
′) where ν ∈ N ,

and λν , φν are eigen value and eigen functions of κ, respectively. Assumption
(32) yields

∑

ν≥1 λ
2
ν < ∞, so that we have limk→∞ λk = 0. We now assume

that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · > 0. We then know that {φn}∞n=1 is a CONS of
L2, which consequently gives the following result:
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Theorem 4. Let Hκ be the totality of the functions f ∈ L2, satisfying
∑

k≥1
fkgk
λk

<∞. We then have:

1. Hκ is a Hilbert space with the inner product: 〈f, g〉κ =
∑

k≥1
fkgk
λk

<∞
2. For g ∈ Hκ, we have

〈g, φν〉κ =
〈g, φν〉L2

λν
, 〈φν , φν〉κ =

1

λν
(i.e., ‖φν‖κ =

1√
λν

) (ν = 1, 2, · · · ).

3. K is the reproducing kernel of Hκ : f(x) = 〈f,K(·, x)〉κ for any f ∈ Hκ.

We skipped the mathematical details and the rigorous proof of the above theo-
rem. Instead, we should keep in mind the relation between Hκ and L2 through
the CONS derived from the Hilbert-Schmidt operator κ. We also note that a
similar result is obtained in a finite-dimesional case, where K simply means an
n-th order symmetric, positive semi-definite matrix and L2 ∼= Rn.

7.7 RBF and RKHS

In this section, though a few theorems are stated, we don’t give any rigorous
explanations and proofs for them. We would just like to sketch the overall flow
from the theory to our practice.

7.7.1 Regularization problem in RKHS

For simplicity, let E = Ω = Rn. Suppose that (xi, fi) are given as sample
points, where fi ∈ R, xi ∈ Rn(i = 1, 2, · · · , N). Let us consider the following
regularization problem: Find a function f defined on Rn such that

min
f

{

N
∑

i=1

(fi − f(xi))
2 + λJn

m(f)

}

, (33)

where

Jn
m(f) :=

∑

α1+α2+···+αn=m

m!

α1!α2! · · ·αn!
‖Dαf‖2L2, (34)

Dαf :=
∂mf

∂xα1

1 ∂xα2

2 · · · ∂xαn
n
.

The regularization term λJn
m(f) in (33) prescribes smoothness of a solution.

Now where can we find a solution of this problem (33)? According to the
definition of Jn

m(f), we should find a solution to (33) in the following space:

Bn
m := {f : Rn → R ∪ {±∞}|Dαf ∈ L2(Rn), for any α(|α| = m)}. (35)
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So recall the thin plate spline case. We then start with B2
2 in (15) to minimize

the energy functional (16).

In the following we want to solve the regularization problem like (33) in RKHS.
The main reason for this is the following nice property of RKHS:

Representer Theorem13 Let H be an RKHS, with its reproducing kernel K and
norm ‖ ‖H . Consider the regularization problem of the following form: Find
f ∈ H such that

min
f∈H

{

N
∑

i=1

(fi − f(xi))
2 + λ‖f‖2H

}

. (36)

The solution f can then be found in the form:

f(x) =
N
∑

i=1

αiK(x,xi). (37)

It would therefore be nice, if we could have Bn
m as the RKHS in the above

theorem. However, Jn
m cannot be the squared norm for Bn

m, as described next.

The functional Jn
m has the following properties:

1. Jn
m(f) = 0 ⇔ f ∈ Pm−1 (the totality of at most (m-1)-th order polyno-

mials).

2. Jn
m(f) = (−1)m〈f,∆mf〉L2 .

Since the null space of Jn
m is equal to Pm−1, we first represent Bn

m as being the
direct sum of the two function spaces: Bn

m = Hn
m ⊕ Pm−1. Then let us solve

the regularization problem on Hn
m:

Theorem 5 [37]. If m > n
2 , then Hn

m is an RKHS with:

〈f, g〉Hn
m
:=

∑

α1+α2+···+αn=m

m!

α1!α2! · · ·αn!
〈Dαf,Dαg〉L2 = 〈(−1)m∆mf, g〉L2.

(38)

This also means ‖f‖2
Hn

m
= Jn

m(f).

With the above theorem, the regularization problem (33) is restated as:

min
f∈Bn

m

{

N
∑

i=1

(fi − f(xi))
2 + λJn

m(f)

}

⇔ min
g∈Hn

m, p∈Pm−1

{

N
∑

i=1

{fi − (g(xi) + p(xi))}2 + λ‖g‖2Hn
m

}

. (39)

13This is one of the variations of the representer theorem. Please refer to [51].
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We thus know the solution to (39) is represented in the form of

f(x) =

N
∑

i=1

αiK(x,xi) + pm−1(x), (40)

where pm−1(x) ∈ Pm−1.

7.7.2 RBF as Green’s function

Considering the inner product of Hn
m (38) in Theorem 5, we assume that

K(x,y) = G(x− y). Let G then be a Green’s function in the sense that

∆mG(x) = δ(x), (41)

where δ means a generalized function as Dirac δ. We therefore have the solution
f in (40) as

f(x) =

N
∑

i=1

αiG(x− xi) + p(x), (42)

where p is a polynomial ∈ Pm−1.

This brings us to our familiar class of radial basis functions:

G(x) =

{

βmn|x|2m−n log |x| if 2m− n is an even integer,

γmn|x|2m−n otherwise,
(43)

where βmn and γmn are constants.

For example, for the thin plate spline, we have m = n = 2 so that G(x) =
|x|2 log |x| and the polynomial p in (42) is of the first order (linear). Another
familiar case is where m = 2 and n = 3. The we have G(x) = |x| and a linear
polynomial for (42).

Regularization with RKHS norm Let us consider another regularization
problem, where, instead of Jn

m(f) in (33) and (34), we take
∑

m≥0 amJ
n
m(f)

with am being constants and a0 6= 0. According to the scenario of establishing
the above theorems, we have the following result in which the regularization
problem is directly solved in an RKHS.

1. We can find a Green’s function for the operator
∑

m≥0(−1)m∆m. The

solution is then given by f(x) =
∑N

k=1 ckG(x− xk). Note that this time
we don’t need a polynomial term like (42).

2. Gaussian RBF. In a particular case, where am = σ2m

m!2m (σ > 0), we have

the Green’s function as G(x) = c exp(− ‖x‖2

2σ2 ).
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As described in 2.7, Gaussian Process regression (GPR) can also be used for
scattered data interpolation and extrapolation. It should then be noted that
we can interpret both of the techniques for GPR and RBF in the common
framework of RKHS. Please refer to [1] for this interesting issue.

8 Conclusion

8.1 Comparison and Performance

Several general statements about the performance of the various methods can
be made.

• Radial Basis and Wiener interpolation both generally require solving a
linear system to determine the weights wk. This typically requires O(N3)
time (the matrix is symmetric so Choleski can be used), but this can be
done as a setup or “training” precomputation.

• Shepard’s method is simple and has no setup or training cost. On the
other hand it provides rather poor interpolation.

• All methods except for moving least squares have a runtime cost that is
linear in the number of data points.

• Moving least squares have no training cost, but require solving a linear
system at runtime. On the other hand this system may involve a small
subset of the total number of data points.

• For the roughness penalty methods that have equivalent RBF and relax-
ation formulations, the RBF approach scales with the number of known
data points, whereas the direct (Laplace/Poisson) approach scales with
the number of unknown points (i.e. locations to be synthesized). In both
cases the scaling is typically cubic in the number of points. This can be
reduced to linear time with multipole methods in the case of an RBF
approach, and multigrid in the case of direct approaches. Laplace inter-
polation is poor (e.g. it is piecewise linear in the one dimensional case).
The iterated Laplacian provides better interpolation but is more difficult
to solve with fast (multigrid) methods.

8.2 Further Readings

There are several recent books [12, 64, 19] covering scattered data interpolation
topics though unfortunately all of them require a level of mathematics well
beyond that required for this course. [19] is perhaps the most accessible. Radial
basis and other interpolation methods are also covered in machine learning texts
[9] since they can be used for regression and classification.
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9 Appendices

A Python program for Laplace interpolation

def solve(d,constrained):

n = d.size

nc = constrained.size

A00 = sparse.lil_matrix((n,n))

A = sparse.lil_matrix((n+nc,n+nc))

A00.setdiag(-2.*n_.ones(n))

koff = 1

A00.setdiag(n_.ones(n),koff)

A00.setdiag(n_.ones(n),-koff)

A00[0,0] = -1.

A00[n-1,n-1] = -1.

A[0:n,0:n] = A00

S = sparse.lil_matrix((nc,n))

for ir in range(nc):

S[ir,constrained[ir]] = 1.

St = S.T

A[0:n,n:(n+nc)] = St

A[n:(n+nc),0:n] = S

A = A.tocsr()

b = n_.zeros((n+nc,1))

for i in range(nc):

b[n+i] = d[constrained[i]]

f = linsolve.spsolve(A,b)

f = f[0:n]

return f



Scattered Data Interpolation for Computer Graphics 64

def test():

x = n_.array([2.,4., 6., 8., 13., 14.])

y = n_.array([2.,7., 8., 9., 12., 12.5])

n = x.size

LEN = 200

x = x * LEN / 20.

X = n_.arange(float(LEN))

Y = n_.zeros((LEN,))

for i in range(x.size):

ii = int(x[i])

Y[ii] = y[i]

f1 = solve(Y,x)
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