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schedule

9:00-9:15 Introduction and survey of applications

9:15-9:30 Non-RBF algorithms

9:30-9:40 break

9:40-10:15 RBF and variants; connection to Laplacian splines

10:15-10:50 Case studies:  Skinning, NPR Shading, Stereoscopic 3D

10:50-11:00 break

11:00-11:15 Greens functions, RBF and Gaussian process connections

11:15-12:00 Functional analysis, RBF and RKHS connections

12:00-12:15 Open problems, questions, conclusion
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course website

• check back for corrections, errata:

• contact us if you find a bug: zilla@computer.org, anjyo@olm.co.jp

http://scribblethink.org/Courses/ScatteredInterpolation

Monday, January 3, 2011
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quick survey of applications
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wrinkles

Bickel, Lang, Botsch, Otaduy, Gross
Pose-Space Animation and Transfer of Facial Details

ACM SCA 2008
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facial retargeting

Noh and Neumann, Expression Cloning, SIGGRAPH 2001 
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editing NPR light and shade

H. Todo, K. Anjyo, W. Baxter, and T. Igarashi. 
Locally controllable stylized shading. 

SIGGRAPH 07

Monday, January 3, 2011
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image registration, morphing
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inpainting

Savchenko, Kojekine, Unno
A Practical Image Retouching Method
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implicit surfaces

Carr, Beatson et al.
Reconstruction and Representation of 3D Objects with Radial Basis Functions

SIGGRAPH 2001

Monday, January 3, 2011
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colorization

Levin, Lischinski, Weiss,
Colorization using Optimization

SIGGRAPH 2004
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colorization

Levin, Lischinski, Weiss,
Colorization using Optimization

SIGGRAPH 2004
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body animation

Kurihara & Miyata, 
Modeling Deformable Human Hands from Medical Images, 

ACM SCA 2004
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fluids	

• "meshfree"
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machine learning
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"S3D" (Stereoscopic movies)

• (discussed at 10:30)
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definition
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graphics history

• all graphics textbooks discuss splines;
none cover scattered interpolation (yet)

• < 1999:    3 papers?
    since:  lots!
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example
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Application:  weighted PSD skinning

Kurihara & Miyata, 
Modeling Deformable Human Hands from Medical Images, 
ACM SCA 2004
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"volume skinning"

Taehyun Rhee et al.
Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations,
IEEE Trans. Visualization and Computer Graphics March 2011
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Open Problems

blendshape                                                           desired
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• Duchon: Green's function for Laplace           in various dimensions n

• for m=2, n=1, this is      R(x) = |x|^3

• for m=2, n=3, this is      R(x) = |x|^1

vertex is linear with respect to each weight, whereas an interpolation that is more

smooth in some sense would be desirable.

The radial basis interpolation described earlier would seem to be an ideal solution to

this problem, since the sculpted faces could be placed at arbitrary (scattered) desired

locations in the parameter space w, and since the kernel could be chosen to smoothly

interpolate these data. The Greens function corresponding to the differential operator

family ∇2m was defined by [4] as

R(x− x�
) ∝

�
|x|2m−n log |x| if 2m− n is an even integer,

|x|2m−n otherwise,

for smoothness order m and space dimension n.

This requires a condition 2m > n in order to avoid having a singularity at the

origin. For a low-order smoothing with m = 2, in the case of our 100-dimensional “face

space” the kernel would be like

R(x) ∝ |x|−50

which has a singularity at the origin and is (for numerical purposes) zero elsewhere. A

practical RBF interpolation scheme could not be built on these assumptions.

Thus, we have the open problem of interpolating in a high (e.g. n = 100) dimen-

sional space. One possibility would be to dramatically increase the order of smoothness

m. While this has not been explored, it can be noted that in all other applications in

computer graphics C2 smoothness has typically proven sufficient (even for demanding

applications such as as car design), and we have no reason to believe that the motion

of the face between expressions is extremely smooth. Another direction (perhaps more

promising) would be to apply a local and adaptive dimensionality reduction such that

each vertex is interpolated in a local low-dimensional space even if the movement of

the face as a whole still has n = 100.
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• Duchon: Green's function for Laplace           in various dimensions n

• for m=2, n=100, this is 

• singular at origin, numerically useless!
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thank you!

• check back for corrections, errata:

• contact: zilla@computer.org, anjyo@olm.co.jp

• Acknowledgment:       Geoffrey Irving

http://scribblethink.org/Courses/ScatteredInterpolation
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Scattered Data Interpolation in Computer Graphics
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Scattered interpolation is generally Euclidean invariant,
versus regular interpolation schemes

Rotate(Interpolate(data)) = Interpolate(Rotate(data))



Shepard Interpolation
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d̂(p) =

∑

wk(p)dk
∑

wk(p)

weights set to an inverse power of the distance:
wk(p) = ‖p− pk‖−p.

Note: singular at the data points p = pk.
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Comparison: Shepard’s p = 5
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Kernel smoothing
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Nadaraya-Watson

d̂(p) =

∑

R(p,pk) dk
∑

R(p,pk)

Same as Shepard’s if R(p,pk) ≡ ‖p− pk‖−p
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! Use Shepards to interpolate onto a regular grid

! Interpolate the grid with a regular spline

! Interpolate the residual with a second Shepards

! iterate...

T.A.Foley and G.M.Nielson Multivariate interpolation to
scattered data using delta iteration. In E.W.Cheny, ed.,
Approximation Theory II, p.419-424, Academic Press NY 1980.
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! Fit a polynomial (or other basis) independently at each
point

! Use weighted least squares, de-weight data that are far
away

! For interpolation, weights must go to infinity at the
data points
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Synthesis: d̂(x) =
∑m

0 a(x)i xi
k

Solve:

min
a

n
∑

k

w(x)
k (

m
∑

0

a(x)i xi
k − dk)

2

m - degree of polynomial

w(x)
k = 1

‖x−xk‖p
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min
a

n
∑

k

w(x)
k (dk −

m
∑

0

a(x)i xi
k)

2

call xi
k ≡ bk ∈ Rm+1, the polynomial basis evaluated at the

kth point

= min
a

n
∑

k

w(x)
k (dk − bTa)2

Matrix version:

min
a

‖W(Ba− d)‖2

W is diagonal matrix with sqrt of w(x)
k .



MLS = Shepard’s when m = 0
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min
a

n
∑

k

w(x)
k (a · 1− dk)

2

d

da

[

n
∑

k

w(x)
k (a2 − 2adk + d2k)

]

= 0

d

da

[

n
∑

k

wka
2 − 2wkadk + wkd

2
k

]

=
n

∑

k

2wka− 2wkdk = 0

a =

∑n
k wkdk

∑n
k wk

d̂(x) = a · 1



Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

13 / 84

m = 1, i.e. local linear regression
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m = 0, 1, comparison
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m = 2, i.e. local quadratic regression



Natural Neighbor Interpolation
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wikipedia



Natural Neighbor Interpolation
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Image: N. Sukmar, Natural Neighbor Interpolation and the Natural Element Method (NEM)
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R(x, y) symmetric pos. def.

R(x, y) = φ(‖x− y‖)

R matrix version

Rxy element of matrix

R is kernel or covariance



Gaussian Process regression
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from
Generalized Stochastic Subdivision,

ACM TOG July 1987



Gaussian Process regression
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linear estimator d̂t =
∑

wkdt+k

orthogonality E[(dt − d̂t)dm] = 0

E[dtdm] = E[
∑

wkdt+k dm]

autocovariance E[dtdm] = R(t−m)

linear system R(t−m) =
∑

wkR(t+ k −m)

Note no requirement on the actual spacing of the data. Related
to the “Kriging” method in geology.
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Laplace/Poisson Interpolation
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i.e. “Laplacian Splines” Objective: Minimize a roughness

measure, the integrated derivative (or gradient) squared:

min
f

∫
(

df(x)

dx

)2

dx

or

min
f

∫ ∫

‖∇f‖2ds

(subject to some constraints, to avoid a trivial solution)



function, operator
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! function: f(x) → y

! operator: Mf → g, e.g. Matrix-vector multiplication



“Null space of the operator”
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min
f

∫
(

df(x)

dx

)2

dx

Gives zero for f(x) = any constant.



Laplace/Poisson: solution approaches
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! direct matrix inverse

! Jacobi (because matrix is quite sparse)

! Jacobi variants (SOR)

! Multigrid



Laplace/Poisson: Discrete
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Local viewpoint:

roughness R =

∫

|∇u|2du ≈
∑

(uk+1 − uk)
2

for a particular k:
dR

duk

=
d

duk

[(uk − uk−1)
2 + (uk+1 − uk)

2]

= 2(uk − uk−1)− 2(uk+1 − uk) = 0

uk+1 − 2uk + uk−1 = 0 → ∇2u = 0

Note 1,-2,1 pattern.
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Discrete/matrix viewpoint: Encode derivative operator in a
matrix D

Df =









−1 1
−1 1

. . .















f1
f2
...







min
f

∫
(

df

dx

)2

≈ min
f

‖Df‖2 = min
f

fTDTDf
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min
f

fTDTDf

d

df

(

fTDTDf
)

= 2DTDf = 0

i.e.

d2f

dx2
= 0 or ∇2 = 0

f = 0 is a solution; last eigenvalue is zero, corresponds to a
constant solution.



Discrete Laplacian
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Notice

DTD =









1 −2 1
1 −2 1

. . .









Two-dimensional stencil

DTD =





1
1 −4 1

1







Jacobi iteration
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Local viewpoint

Jacobi iteration sets each fk to the solution of its row of the
matrix equation, independent of all other rows:

∑

Arcfc = br

→ Arkfk = bk −
∑

j #=k

Arjfj

fk ←
bk
Akk

−
∑

j #=k

Akj/Akkfj



Jacobi iteration
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apply to Laplace eqn
Jacobi iteration sets each fk to the solution of its row of the
matrix equation, independent of all other rows:

. . . ft−1 − 2ft + ft+1 = 0

2ft = ft−1 + ft+1

fk ← 0.5 ∗ (f [k − 1] + f [k + 1])

In 2D,
f[y][x] = 0.25 * ( f[y+1][x] + f[y-1][x] +

f[y][x-1] + f[y][x+1] )



But now let’s interpolate
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1D case, say f3 is known. Three eqns involve f3. Subtract
(a multiple of) f3 from both sides of these equations:

f1 − 2f2 + f3 = 0 → f1 − 2f2 + 0 = −f3
f2 − 2f3 + f4 = 0 → f2 + 0 + f4 = 2f3
f3 − 2f4 + f5 = 0 → 0− 2f4 + f5 = −f3

L =









1 −2 0

1 0 1

0 −2

. . .









one column is zeroed



Multigrid inpainting
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Program demonstration.

Remove dog’s spots. Combine Wiener filtering to separate
fur from luminance, with Laplace interpolation to adjust the
luminance.



Applications: Spot Removal
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From: Lifting Detail from Darkness, SIGGRAPH 2001



Recovered fur: detail
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Comparison: Laplace
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Thin plate spline
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Minimize the integrated second derivative squared
(approximate curvature)

min
f

∫
(

d2f

dx2

)2

dx

Null space: f = ax+ c



Membrane vs. Thin Plate
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Left - membrane interpolation, right - thin plate.



Comparison: Cubic
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Radial Basis Functions
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d̂(p) =
N
∑

k

wkR(‖p− pk‖)

Data at arbitrary (irregularly spaced) locations can be
interpolated with a weighted sum of radial functions situated at
each data point.



Radial Basis Functions: History

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

41 / 84

! Broomhead & Lowe, 1988

! Werntges, ICNN 1993

! in Graphics: 1999-2001



Radial Basis Functions: Theory
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! Micchelli - for a large class of functions, the RBF
matrix is non-singular



Radial Basis Functions (RBFs)
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! any monotonic function can be used?!

! common choices:

" Gaussian R(r) = exp(−r2/σ2)

" Thin plate spline R(r) = r2 log r

" Hardy multiquadratic R(r) =
√

(r2 + c2), c > 0

Notice: the last two increase as a function of radius

            

















Comparison: RBF-Gauss
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Comparison: RBF-Gauss
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Comparison: RBF-Gauss
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Radial Basis Functions
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d̂(p) =
N
∑

k

wkR(‖p− pk‖)

e = ||(d−Rw)||2

e = (d−Rw)T (d−Rw)
de

dw
= 0 = −RT (d−Rw)

w = R−1d



Radial Basis Functions
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RBF: multidimensional interpolation
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wx = R−1dx

wy = R−1dy

wz = R−1dz

Matrix R is in common to all dimensions



Normalized Radial Basis Function
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Ri() ⇐
R(‖x− xi‖)

∑

j R(‖x− xj‖)

! removes the “dips” that result from too-narrow σ

! i.e. somewhat less sensitive to choice of σ

! (for decaying kernel), far from the data, closest point
dominates



Normalized Radial Basis Function
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insensitive to sigma, up to a point...
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Comparison: Shepard’s p = 1
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Comparison: Shepard’s p = 2
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Comparison: Moving Least Squares, linear
polynomial
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Comparison: Moving Least Squares,
quadratic polynomial
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Comparison: GaussianProcess
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Comparison: Laplace
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Comparison: RBF-Gauss
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Comparison: RBF-Gauss
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Comparison: RBF-Gauss
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Comparison: Normalized RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

62 / 84



Comparison: Cubic (i.e. RBF-Thin plate)
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Comparison: Cubic + regularization
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Approximation rather than interpolation
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Find w to minimize (Rw − b)T (Rw − b). If the training
points are very close together, the corresponding columns of
R are nearly parallel. Difficult to control if points are chosen
by a user. Add a term to keep the weights small: wTw.

minimize (Rw − b)T (Rw − b) + λwTw

RT (Rw − b) + 2λw = 0

RTRw + 2λw = RTb

(RTR+ 2λI)w = RTb

w = (RTR+ 2λI)−1RTb



Comparison: Cubic + regularization
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Regularization
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Ill-conditioning and regularization. The regularization
parameter is 0, .01, and .1 respectively. (Vertical scale is

changing).



Relation between Laplace,Thin-Plate, RBF
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2D thin-plate interpolation

d̂(p) =
∑

wkR(‖p− pk‖)

with R(r) = r2 log(r).



Solving Thin plate interpolation
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! if few known points: use RBF

! if many points use multigrid instead

! but Carr/Beatson et. al. (SIGGRAPH 01) use FMM for
RBF with large numbers of points



Break
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Relation between Laplace,Thin-Plate, RBF

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

71 / 84

2D thin-plate interpolation

d̂(p) =
∑

wkR(‖p− pk‖)

with R(r) = r2 log(r).

Where does r2 log(r) come from??



Relation between Laplace,Thin-Plate, RBF
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the “roughness penalizing” formulation,

min
f

∫

‖∇f‖2dx

The RBF solution

f(p) =
∑

wkR(p− pk)

R is essentially (∇2)−1.



Where does the rbf kernel come from?
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Fit an unknown function f to the data yk, regularized by
minimizing a smoothness term.

min
f

=
∑

(fk − yk)
2 + λ

∫

||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

Variational derivative w.r.t. f leads to a differential equation

P TPf(x) =
1

λ

∑

(f(x)− yk)δ(x− xk)



Where does the rbf kernel come from?
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Solve linear differential equation by finding Green’s function
of the differential operator, convolving it with the RHS
(works only for a linear operator). Schematically,

Lf = rhs L is the operator P TP ,

rhs is the data fidelity

f = g % rhs f obtained by convolving g % rhs

L(g % rhs) = rhs

Lg = δ choosing rhs = δ

g is the “convolutional inverse” of L.



Where does the rbf kernel come from?
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Lg = δ

This is easier to solve in the Fourier domain, where
convolution becomes multplication. The transform of δ is a
constant, so in the Fourier domain g is the reciprocal of
L = P TP .



Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

76 / 84

Fit an unknown function f to the data yk, regularized by
minimizing a smoothness term.

min
f

=
∑

(fk − yk)
2 + λ||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

A similar discrete version.

min
f

= (f − y)TSTS(f − y) + λfTPTPf
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(continued) A similar discrete version.

min
f

= (f − y)TSTS(f − y) + λfTPTPf

! simplifying assumptions: uniform sampling, 1 dimension

! S is a diagonal “selection matrix” with 1s and 0s

! P is a diagonal-constant matrix that encodes the
discrete form of the roughness operator, e.g.





−2, 1, 0, 0, . . .
1,−2, 1, 0, . . .
0, 1,−2, 1, . . .
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Note STS = S because diagonal
Take the derivative with respect to the vector f ,

2S(f − y) + λ2PTPf = 0

PTPf = −
1

λ
S(f − y)

Multiply by G, being the inverse of PTP:

f = GPTPf = −
1

λ
GS(f − y)

So the RBF kernel “comes from” G = (PTP)−1.



Where does kernel come from:
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(Discrete version) RBF kernel is G = (PTP)−1.
Take SVD

P = UDVT ⇒ PTP = VD2VT

The inverse of VD2VT is VD−2VT .

! eigenvectors of a circulant matrix are sinusoids,

! and P is diagonal-constant (toeplitz), or nearly
circulant.

! So VD−2VT is approximately the same as taking the
Fourier transform and then the reciprocal (remembering
that D are the singular values of P not PTP)



Learning Doodle by Example

Application Examples

1

Problem Definition

• Given N similar input drawings (doodles)

• Construct more doodles that resemble the N inputs

Example results

2



Proposed Solution

• Construct  a space of doodles defined by the inputs

• Use results from machine learning and statistics:

• Consider drawings as sample points in some space.

• Similar doodles should be located nearby in the space.

• We wish to fit (or learn) a continuous function over the space that “explains” 
the examples as well.

• We call the result a “Latent Doodle Space”(LDS).

See the paper in EUROGRAPHICS06 (by Baxter and Anjyo) for details.

3

Two Main Challenges

To build a latent doodle space (LDS):

• Find correspondences between two line drawings.

• Hard problem. No perfect solution.

Do best possible, but still must have a good UI.

• Generate the space of similar drawings.

• Use Bayesian techniques and statistical methods to improve results.

4



How to construct the LDS?

To generate the space of similar drawings (LDS):

• Two main tasks :

• Finding latent coordinate system

• Interpolating within LDS

• Three options in the EG06 paper: PCA+RBF, PCA+GP, GPLVM

 This talk focuses on the first strategy: PCA+ RBF

RBF

PCA

5

Dimension reduction by PCA

•  After establishing correspondences among line drawings:

• Construct the data matrix X (with zero-mean):

• Applying PCA: Eigen decomposition of the covariance matrix 

•A line drawing (doodle) has the structure:

• line drawing     - stroke     - linear segmentslk sp av
p

(x, y)

  

a10 a11 a1s1
a20 a2s1

b10 b1s2
b20 b2s2

 

 

 
 
 
 

 

 

 
 
 
 

= X

line drawing
line drawing   

     

  

     
stroke stroke

XT X

s1 s2

l2

l1
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2-d LDS and RBF

•  Make the LDS 2-dim by taking the eigenvectors with the first two largest 

eigenvalues.

•  Interpolate each of s, t (scalar) values of the drawing samples by thin plate 

spline:

• space dimension n = 2 and smoothness m = 2 (explain later!)

•The spline function is:                                      where

•The interpolant  is of the form:                                         

f (s, t) := wi

i

(s si , t ti) + as+ bt + c

r := (s, t) = s2 + t 2

7

Demo

8



Locally Controllable Stylized Shading

Application Examples

9

Background: Cartoon shading

• Based on thresholded N•L shading model

0.0 1.0

N•L intensity distribution

10



Motivation: Fake but expressive shading

Artists want neat shadingWith conventional shader

11

Our Goal

conventional desired 

• Make toon shader artist-friendly
– Edit undesirable shaded area

– Add artistic light and shade to original 3D lighting 

12



Video demonstration

13

• The main idea:

  Modify intensity according to painted strokes

Paint brush 
operation

Intensity 
modification

The shade painter (our approach) 

14



Key-frame Animation

 Offset Data

Linear 

interpolation

Keyframing 

15

Intensity modification by painting

Fall off

 Modified intensity

Boundary constraints

Threshold

Fall-off constraints

No modification

Threshold

Painted 
shade

Interpolation by RBF

16



•The discretized constraints for the RBF are 
specified for the points    and   .

Boundary constraints

Threshold

Fall off constraints

No modification

RBF interpolation

17

• We employ the following interpolation function:

• We want to determine the weights {wk} and the four coefficients of P(x) 

f (x) = wi (x c i)
i=1

l

+ P(x)

where x = (x1, x2, x3), and                                           ; P(x) is a linear polynomial of 

x1, x2, x3;  ci means the constraint points (　  and　　)   l is the number of all the 

constraint points.

(x) := x x1
2
+ x2

2
+ x3

2

wi (c j c i)
i=1

l

+ P(c j ) = h j , for1 j l.

For the given values hj (1  j  l) , we have:

　 　Totally l + 4 unknown values.

The unknown values

18



 We further add the following condition: 

  for any linear polynomial

   Taking Q = 1, x1, x2, and x3 , we know that the above  

       condition  means:

wi Q(c i)
i=1

l

= 0.

wi

i=1

l

= 0 wi

i=1

l

ci j = 0, ( j =1, 2, 3)

The unknown values

19

• By putting P(x) = p0 + p1x1 + p2x2 + p3x3

we have the following linear equation:　

  

11 12 1l 1 c11 c12 c13
21

l1 ll 1 cl1 cl2 cl 3
1 1 1 0 0 0 0

c11 cl1
c12 cl 2
c13 cl 3 0 0
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wl
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p1
p2
p3
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h1

hl
0

0

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

i j := (ci c j )

The linear equation for RBF

20
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Functional Analysis, RBF and 
RKHS connections

RBF and RKHS

1

Recall the RBFs in our examples

Background

Differential equation for TPS

RBF as TPS

Regularization problem

2



In our examples:

• The RBF interpolants can be expressed in such a form that:

Latent doodle space uses TPS:                              

- followed by linear polynomial 

The shade painter employs                                             and p is linear:

 PSD applications use Gaussian RBF with no polynomial term (              ).p x( ) 0

G x( ) = x
2
log x

G x( ) = x = x1
2
+ x2

2
+ x3

2

p x( ) = p x1,x2( ) c0 + c1x1 + c2x2

p x( ) = p x1,x2,x3( ) p0 + p1x1 + p2x2 + p3x3 .

3

In the shade painter case

• The shade painter uses                                              and the interpolant: 

- Point constraints:                                             ( k = 1, ..., N)　        

- Vanishing moments:

where                            . 

•  We have (N+4) linear equations for (N+4) unknown values.

 Get the values of         and the four coefficients of p by solving the linear 

equation system!                      

G x( ) = x = x1
2
+ x2

2
+ x3

2

fk = iG xk xi( )
i=1

N

+ p xk( )

i

i=1

N

= 0. i

i=1

N

xi j = 0, j =1,2,3.

i{ }

xi = xi1, xi 2, xi 3( )
T

4



So why?

• Where do RBFs come from?

• Why vanishing moment condition?

• Where is Gaussian RBF?

 Functional analysis might be helpful to answer them.

5

Thin Plate Spline Revisited

Background

Differential equation for TPS

RBF as TPS

Regularization problem

6



Background

•  Let               .  Find a function          defined on       that minimizes the 

following energy: 

• Where can we find the solution ?               

- As a necessary condition, it should belong to:

where

in R2 (x)

L2 ( ) = : R {± } | (x)
2
dx1dx2 <{ } .

7

Differential equation for TPS 

•  Cauchy’s idea:   Let                   . Then consider                              , where

                 is a smooth function with compact support:              

           is then a quadratic function of t :

and it must satisfy                .  

f = argF

t R, g

G t( ) = F f + t g( )

g x( ) = 0, if x .

G t( )

 G 0( ) = 0

G t( ) = t 2 gx1x1

2
+ 2gx1x2

2
+ gx2x2

2( )d x

+ t 2 fx1x1
gx1x1

+ 4 fx1x2
gx1x2

+ 2 fx2x2
gx2x2( )d x +  (const).

8



Differential equation for TPS 

•  Cauchy’s idea (cont.):   

           

  0 =                                                                .

Since  g  is arbitrary, we have:                 

 G 0( ) = 0

fx1x1gx1x1 + 2 fx1x2gx1x2 + fx2x2gx2x2( )d x

= fx1x1x1gx1 + 2 fx1x2x1gx2 + fx2x2x2gx2( )d x

= fx1x1x1x1 + 2 fx1x2x1x2 + fx2x2x2x2( )gd x

= 2 f( ) gd x

integration by parts (twice!)

2 f
2

x1
2 +

2

x2
2

 

 
 

 

 
 

2

f = 0.

9

RBF as TPS 

•  We’ll use Green’s function         associated with the differential operator      :  

-           is the Dirac delta function.                                                     

2

x( ) = x
2
log x2 x( ) = x( )

x( )

x( )

10



The Regularization Problem with TPS 

•  We treat a simple case where             . 

• For given data                                           , find a solution f :  

-  

-     is also given, called the regularization parameter.

• Where can we find the solution?             ?:               

= R2

B2
2( )

xi, fi( ) R2 R i =1, 2, ..., N( )

min
f

f i f xi( )( )
2

i=1

N

+ F f( )
 
 
 

  

 
 
 

  

11

Regularization Problem in Function Space 

Problem statement

12



Generalizing the TPS regularization problem

•  Let             . Generalize the TPS regularization problem into higher 

dimensions and, instead of F, with:

- With this definition,              . 

•  For given data                                              , find a solution f :  

• We need to decide where we find the solution - “Function Space”.

= Rn

xi, fi( ) Rn R i =1, 2, ..., N( )

F = J2
2

13

Function Space

• A function space is  a totality of functions that share common properties.

• Examples:

14



Regularization Problem in 

•   For given data                                             , find a solution f :  

•  The function space where we want to find the solution is:

-  Simple generalization of TPS, where we set m = n = 2 and                       . J2
2 f( ) = F f( )

xi, fi( ) Rn R i =1, 2, ..., N( )

15

Role of the parameters

• n: dimension of variables 

-                                         .

• m: degree of smoothness of the solution

-       includes up to m-th order derivatives.

•    : regularization parameter

- Specifies the trade-off between minimization of the first term                    

and smoothness of the solution enforced by      . 

f i f xi( )( )
2

i=1

N

Jm
n

Jm
n

x = x1, x2, ... , xn( )
T

Rn

16



Solution

• If 2m - n > 0, the solution is then given by:

-         

-                               .

• We need to get the weights        and the coefficients of the polynomial.

- The vanishing moment condition is then satisfied:  

i{ }

kQ xk( )
k=1

N

= 0, for all Q

17

In our examples:

Latent doodle space uses TPS, where m = n = 2 and p is a linear polynomial.

The shade painter deals with the case where m = 2, n = 3, and p is linear.

• The RBF interpolants are given by:

-         

-   

• The regularization problem in         does not explain the PSD cases.

18



Functional Analysis and RKHS

What is functional analysis?

RBF and RKHS

19

What is functional analysis?

•  Mathematical theory of functions, differential equations.                                          

•  Deals with “generalization” of function, derivatives, ...                                                    

•  Usually it’s a different thing from what we want to know...

• Function space is a concept of infinite dimensional geometry.

• Ex:                                      .

• See the detailed discussions in our course notes.

Rn l2 L2

20



Basic properties of 

•                                               . 

-  This formula can be obtained through integration by parts.

 Recall the technique of “integration by parts” in the TPS case.

•                                                      .     

   We therefore have:                                             . 

•          is called a Reproducing Kernel Hilbert space.

Jm
n

Hm
n

21

RKHS and RBF

• The RBF interpolants are given by:

- The first term belongs to RKHS        .

•   Roughly speaking, an RKHS is a function space spanned by the finite sum 

of {                }. Particularly in solving the regularization problem, we can take               

               for  1  i  N (The representer theorem).                                       . 

•        is a normed space with                           , which also means that         

Hm
n

G x ck( )
c i = xi

Hm
n

22



The kernel 

•  In our situations (examples), if we set                                , then K has the 

following properties:

-  K is a symmetric, positive semi-definite function.

 This gives an alternative definition of RKHS.

  K is called the kernel function of RKHS.

• G is characterized by 

- This yields that 

-                                                                         .

K x , y( ) :=G x y( )

mG x( ) = x( ).
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The vanishing moment condition

•  This condition follows from the fact that                                    .

- We note that, for any f and g          ,                                             .

- Substitute                             and                        . We thus have:

Bm
n f , g

Bm
n = 1( )

m m f , g
L2

f = iG x xi( )
i=1

N

Q x( )

0 = iG x xi( )
i=1

N

, Q x( )
Bm
n

= i
mG x xi( ), Q x( )

L2

i=1

N

= i x xi( ), Q x( )
L2

i=1

N

= iQ xi( )
i=1

N

.
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The Gaussian RBF

•  Instead of      , consider                with                            .                                      

• The Green’s function of the differential operator                  is:

•                               is the solution of the regularization problem (We don’t need 

a polynomial term this time).

f = iG x xi( )
i=1

N

Jm
n am

m 0

Jm
n am =

2m

m!2m
> 0( )

1( )
m

m 0

m

25

So why?

• Where do RBFs come from?

• Why vanishing moment condition?

• Where is Gaussian RBF?

 Functional analysis should be helpful to answer them.
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