
scattered data interpolation for computer graphics

J.P. Lewis
Weta Digital

Ken Anjyo
OLM Digital

Fred Pighin (*)
Google Inc

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

schedule

9:00-9:15 Introduction and survey of applications

9:15-9:30 Non-RBF algorithms

9:30-9:40 break

9:40-10:15 RBF and variants; connection to Laplacian splines

10:15-10:50 Case studies: Skinning, NPR Shading, Stereoscopic 3D

10:50-11:00 break

11:00-11:15 Greens functions, RBF and Gaussian process connections

11:15-12:00 Functional analysis, RBF and RKHS connections

12:00-12:15 Open problems, questions, conclusion

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

course website

• check back for corrections, errata:

• contact us if you find a bug: zilla@computer.org, anjyo@olm.co.jp

http://scribblethink.org/Courses/ScatteredInterpolation

Monday, January 3, 2011

mailto:zilla@computer.org
mailto:zilla@computer.org
mailto:anjyo@olm.co.jp
mailto:anjyo@olm.co.jp
http://scribblethink.org/Courses/ScatteredInterpolation
http://scribblethink.org/Courses/ScatteredInterpolation

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

quick survey of applications

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

wrinkles

Bickel, Lang, Botsch, Otaduy, Gross
Pose-Space Animation and Transfer of Facial Details

ACM SCA 2008

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

facial retargeting

Noh and Neumann, Expression Cloning, SIGGRAPH 2001

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

editing NPR light and shade

H. Todo, K. Anjyo, W. Baxter, and T. Igarashi.
Locally controllable stylized shading.

SIGGRAPH 07

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

image registration, morphing

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

inpainting

Savchenko, Kojekine, Unno
A Practical Image Retouching Method

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

implicit surfaces

Carr, Beatson et al.
Reconstruction and Representation of 3D Objects with Radial Basis Functions

SIGGRAPH 2001

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

colorization

Levin, Lischinski, Weiss,
Colorization using Optimization

SIGGRAPH 2004

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

colorization

Levin, Lischinski, Weiss,
Colorization using Optimization

SIGGRAPH 2004

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

body animation

Kurihara & Miyata,
Modeling Deformable Human Hands from Medical Images,

ACM SCA 2004

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

fluids	

• "meshfree"

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

machine learning

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

"S3D" (Stereoscopic movies)

• (discussed at 10:30)

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

definition

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

graphics history

• all graphics textbooks discuss splines;
none cover scattered interpolation (yet)

• < 1999: 3 papers?
 since: lots!

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

example

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

schedule

9:00-9:15 Introduction and survey of applications

9:15-9:30 Non-RBF algorithms

9:30-9:40 break

9:40-10:15 RBF and variants; connection to Laplacian splines

10:15-10:50 Case studies: Skinning, NPR Shading, Stereoscopic 3D

10:50-11:00 break

11:00-11:15 Greens functions, RBF and Gaussian process connections

11:15-12:00 Functional analysis, RBF and RKHS connections

12:00-12:15 Open problems, conclusion

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

Application: weighted PSD skinning

Kurihara & Miyata,
Modeling Deformable Human Hands from Medical Images,
ACM SCA 2004

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

Application: weighted PSD skinning

Kurihara & Miyata,
Modeling Deformable Human Hands from Medical Images,
ACM SCA 2004

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

"volume skinning"

Taehyun Rhee et al.
Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations,
IEEE Trans. Visualization and Computer Graphics March 2011

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

"volume skinning"

Taehyun Rhee et al.
Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations,
IEEE Trans. Visualization and Computer Graphics March 2011

Monday, January 3, 2011

Open Problems

blendshape desired

Monday, January 3, 2011

• Duchon: Green's function for Laplace in various dimensions n

• for m=2, n=1, this is R(x) = |x|^3

• for m=2, n=3, this is R(x) = |x|^1

vertex is linear with respect to each weight, whereas an interpolation that is more

smooth in some sense would be desirable.

The radial basis interpolation described earlier would seem to be an ideal solution to

this problem, since the sculpted faces could be placed at arbitrary (scattered) desired

locations in the parameter space w, and since the kernel could be chosen to smoothly

interpolate these data. The Greens function corresponding to the differential operator

family ∇2m was defined by [4] as

R(x− x�
) ∝

�
|x|2m−n log |x| if 2m− n is an even integer,

|x|2m−n otherwise,

for smoothness order m and space dimension n.

This requires a condition 2m > n in order to avoid having a singularity at the

origin. For a low-order smoothing with m = 2, in the case of our 100-dimensional “face

space” the kernel would be like

R(x) ∝ |x|−50

which has a singularity at the origin and is (for numerical purposes) zero elsewhere. A

practical RBF interpolation scheme could not be built on these assumptions.

Thus, we have the open problem of interpolating in a high (e.g. n = 100) dimen-

sional space. One possibility would be to dramatically increase the order of smoothness

m. While this has not been explored, it can be noted that in all other applications in

computer graphics C2 smoothness has typically proven sufficient (even for demanding

applications such as as car design), and we have no reason to believe that the motion

of the face between expressions is extremely smooth. Another direction (perhaps more

promising) would be to apply a local and adaptive dimensionality reduction such that

each vertex is interpolated in a local low-dimensional space even if the movement of

the face as a whole still has n = 100.

References

[1] Ken Anjyo, personal communication, 2010.
[2] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter Pfister,

and Markus Gross. Multi-scale capture of facial geometry and motion. ACM Trans. Graph.,
26(3):33, 2007.

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH

’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 67–76, New York, NY, USA, 2001. ACM.

[4] J. Duchon. Math. comp. Interpolation des Fonctions de Deux Variables Suivant le Principe de la

Flexion des Plaques Minces, 10:5–12, 1976.
[5] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from medical images.

In Proceedings of the 2004 ACM SIGGRAPH Symposium on Computer Animation (SCA-04),
pages 357–366, 2004.

[6] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation. In SIGGRAPH ’00: Proceedings of the 27th

annual conference on Computer graphics and interactive techniques, pages 165–172, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[7] J.P. Lewis, Fred Pighin, and Ken Anjyo. Scattered data interpolation for computer graphics.
SIGGRAPH Asia Course, http://portal.acm.org, 2010.

[8] Jun-yong Noh and Ulrich Neumann. Expression cloning. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages 277–288, New
York, NY, USA, 2001. ACM.

Monday, January 3, 2011

• Duchon: Green's function for Laplace in various dimensions n

• for m=2, n=100, this is

• singular at origin, numerically useless!

vertex is linear with respect to each weight, whereas an interpolation that is more

smooth in some sense would be desirable.

The radial basis interpolation described earlier would seem to be an ideal solution to

this problem, since the sculpted faces could be placed at arbitrary (scattered) desired

locations in the parameter space w, and since the kernel could be chosen to smoothly

interpolate these data. The Greens function corresponding to the differential operator

family ∇2m was defined by [4] as

R(x− x�
) ∝

�
|x|2m−n log |x| if 2m− n is an even integer,

|x|2m−n otherwise,

for smoothness order m and space dimension n.

This requires a condition 2m > n in order to avoid having a singularity at the

origin. For a low-order smoothing with m = 2, in the case of our 100-dimensional “face

space” the kernel would be like

R(x) ∝ |x|−50

which has a singularity at the origin and is (for numerical purposes) zero elsewhere. A

practical RBF interpolation scheme could not be built on these assumptions.

Thus, we have the open problem of interpolating in a high (e.g. n = 100) dimen-

sional space. One possibility would be to dramatically increase the order of smoothness

m. While this has not been explored, it can be noted that in all other applications in

computer graphics C2 smoothness has typically proven sufficient (even for demanding

applications such as as car design), and we have no reason to believe that the motion

of the face between expressions is extremely smooth. Another direction (perhaps more

promising) would be to apply a local and adaptive dimensionality reduction such that

each vertex is interpolated in a local low-dimensional space even if the movement of

the face as a whole still has n = 100.

References

[1] Ken Anjyo, personal communication, 2010.
[2] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter Pfister,

and Markus Gross. Multi-scale capture of facial geometry and motion. ACM Trans. Graph.,
26(3):33, 2007.

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH

’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 67–76, New York, NY, USA, 2001. ACM.

[4] J. Duchon. Math. comp. Interpolation des Fonctions de Deux Variables Suivant le Principe de la

Flexion des Plaques Minces, 10:5–12, 1976.
[5] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from medical images.

In Proceedings of the 2004 ACM SIGGRAPH Symposium on Computer Animation (SCA-04),
pages 357–366, 2004.

[6] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation. In SIGGRAPH ’00: Proceedings of the 27th

annual conference on Computer graphics and interactive techniques, pages 165–172, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[7] J.P. Lewis, Fred Pighin, and Ken Anjyo. Scattered data interpolation for computer graphics.
SIGGRAPH Asia Course, http://portal.acm.org, 2010.

[8] Jun-yong Noh and Ulrich Neumann. Expression cloning. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages 277–288, New
York, NY, USA, 2001. ACM.

Monday, January 3, 2011

Questions or Discussion?

Monday, January 3, 2011

SIGGRAPH Asia 2010 Course: Scattered Data Interpolation for Computer Graphics

thank you!

• check back for corrections, errata:

• contact: zilla@computer.org, anjyo@olm.co.jp

• Acknowledgment: Geoffrey Irving

http://scribblethink.org/Courses/ScatteredInterpolation

Monday, January 3, 2011

mailto:zilla@computer.org
mailto:zilla@computer.org
mailto:anjyo@olm.co.jp
mailto:anjyo@olm.co.jp
http://scribblethink.org/Courses/ScatteredInterpolation
http://scribblethink.org/Courses/ScatteredInterpolation

1 / 84

Scattered Data Interpolation in Computer Graphics

Euclidean invariant

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

2 / 84

Scattered interpolation is generally Euclidean invariant,
versus regular interpolation schemes

Rotate(Interpolate(data)) = Interpolate(Rotate(data))

Shepard Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

3 / 84

d̂(p) =

∑

wk(p)dk
∑

wk(p)

weights set to an inverse power of the distance:
wk(p) = ‖p− pk‖−p.

Note: singular at the data points p = pk.

Comparison: Shepard’s p = 1

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

4 / 84

Comparison: Shepard’s p = 2

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

5 / 84

Comparison: Shepard’s p = 5

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

6 / 84

Kernel smoothing

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

7 / 84

Nadaraya-Watson

d̂(p) =

∑

R(p,pk) dk
∑

R(p,pk)

Same as Shepard’s if R(p,pk) ≡ ‖p− pk‖−p

Foley and Nielsen

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

8 / 84

! Use Shepards to interpolate onto a regular grid

! Interpolate the grid with a regular spline

! Interpolate the residual with a second Shepards

! iterate...

T.A.Foley and G.M.Nielson Multivariate interpolation to
scattered data using delta iteration. In E.W.Cheny, ed.,
Approximation Theory II, p.419-424, Academic Press NY 1980.

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

9 / 84

! Fit a polynomial (or other basis) independently at each
point

! Use weighted least squares, de-weight data that are far
away

! For interpolation, weights must go to infinity at the
data points

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

10 / 84

Synthesis: d̂(x) =
∑m

0 a(x)i xi
k

Solve:

min
a

n
∑

k

w(x)
k (

m
∑

0

a(x)i xi
k − dk)

2

m - degree of polynomial

w(x)
k = 1

‖x−xk‖p

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

11 / 84

min
a

n
∑

k

w(x)
k (dk −

m
∑

0

a(x)i xi
k)

2

call xi
k ≡ bk ∈ Rm+1, the polynomial basis evaluated at the

kth point

= min
a

n
∑

k

w(x)
k (dk − bTa)2

Matrix version:

min
a

‖W(Ba− d)‖2

W is diagonal matrix with sqrt of w(x)
k .

MLS = Shepard’s when m = 0

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

12 / 84

min
a

n
∑

k

w(x)
k (a · 1− dk)

2

d

da

[

n
∑

k

w(x)
k (a2 − 2adk + d2k)

]

= 0

d

da

[

n
∑

k

wka
2 − 2wkadk + wkd

2
k

]

=
n

∑

k

2wka− 2wkdk = 0

a =

∑n
k wkdk

∑n
k wk

d̂(x) = a · 1

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

13 / 84

m = 1, i.e. local linear regression

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

14 / 84

m = 0, 1, comparison

Moving Least Squares

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

15 / 84

m = 2, i.e. local quadratic regression

Natural Neighbor Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

16 / 84

wikipedia

Natural Neighbor Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

17 / 84

Image: N. Sukmar, Natural Neighbor Interpolation and the Natural Element Method (NEM)

Notation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

18 / 84

R(x, y) symmetric pos. def.

R(x, y) = φ(‖x− y‖)

R matrix version

Rxy element of matrix

R is kernel or covariance

Gaussian Process regression

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

19 / 84

from
Generalized Stochastic Subdivision,

ACM TOG July 1987

Gaussian Process regression

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

20 / 84

linear estimator d̂t =
∑

wkdt+k

orthogonality E[(dt − d̂t)dm] = 0

E[dtdm] = E[
∑

wkdt+k dm]

autocovariance E[dtdm] = R(t−m)

linear system R(t−m) =
∑

wkR(t+ k −m)

Note no requirement on the actual spacing of the data. Related
to the “Kriging” method in geology.

Comparison: GaussianProcess

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

21 / 84

Laplace/Poisson Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

22 / 84

i.e. “Laplacian Splines” Objective: Minimize a roughness

measure, the integrated derivative (or gradient) squared:

min
f

∫
(

df(x)

dx

)2

dx

or

min
f

∫ ∫

‖∇f‖2ds

(subject to some constraints, to avoid a trivial solution)

function, operator

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

23 / 84

! function: f(x) → y

! operator: Mf → g, e.g. Matrix-vector multiplication

“Null space of the operator”

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

24 / 84

min
f

∫
(

df(x)

dx

)2

dx

Gives zero for f(x) = any constant.

Laplace/Poisson: solution approaches

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

25 / 84

! direct matrix inverse

! Jacobi (because matrix is quite sparse)

! Jacobi variants (SOR)

! Multigrid

Laplace/Poisson: Discrete

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

26 / 84

Local viewpoint:

roughness R =

∫

|∇u|2du ≈
∑

(uk+1 − uk)
2

for a particular k:
dR

duk

=
d

duk

[(uk − uk−1)
2 + (uk+1 − uk)

2]

= 2(uk − uk−1)− 2(uk+1 − uk) = 0

uk+1 − 2uk + uk−1 = 0 → ∇2u = 0

Note 1,-2,1 pattern.

Laplace/Poisson Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

27 / 84

Discrete/matrix viewpoint: Encode derivative operator in a
matrix D

Df =









−1 1
−1 1

. . .















f1
f2
...







min
f

∫
(

df

dx

)2

≈ min
f

‖Df‖2 = min
f

fTDTDf

Laplace/Poisson Interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

28 / 84

min
f

fTDTDf

d

df

(

fTDTDf
)

= 2DTDf = 0

i.e.

d2f

dx2
= 0 or ∇2 = 0

f = 0 is a solution; last eigenvalue is zero, corresponds to a
constant solution.

Discrete Laplacian

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

29 / 84

Notice

DTD =









1 −2 1
1 −2 1

. . .









Two-dimensional stencil

DTD =





1
1 −4 1

1





Jacobi iteration

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

30 / 84

Local viewpoint

Jacobi iteration sets each fk to the solution of its row of the
matrix equation, independent of all other rows:

∑

Arcfc = br

→ Arkfk = bk −
∑

j #=k

Arjfj

fk ←
bk
Akk

−
∑

j #=k

Akj/Akkfj

Jacobi iteration

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

31 / 84

apply to Laplace eqn
Jacobi iteration sets each fk to the solution of its row of the
matrix equation, independent of all other rows:

. . . ft−1 − 2ft + ft+1 = 0

2ft = ft−1 + ft+1

fk ← 0.5 ∗ (f [k − 1] + f [k + 1])

In 2D,
f[y][x] = 0.25 * (f[y+1][x] + f[y-1][x] +

f[y][x-1] + f[y][x+1])

But now let’s interpolate

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

32 / 84

1D case, say f3 is known. Three eqns involve f3. Subtract
(a multiple of) f3 from both sides of these equations:

f1 − 2f2 + f3 = 0 → f1 − 2f2 + 0 = −f3
f2 − 2f3 + f4 = 0 → f2 + 0 + f4 = 2f3
f3 − 2f4 + f5 = 0 → 0− 2f4 + f5 = −f3

L =









1 −2 0

1 0 1

0 −2

. . .









one column is zeroed

Multigrid inpainting

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

33 / 84

Program demonstration.

Remove dog’s spots. Combine Wiener filtering to separate
fur from luminance, with Laplace interpolation to adjust the
luminance.

Applications: Spot Removal

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

34 / 84

From: Lifting Detail from Darkness, SIGGRAPH 2001

Recovered fur: detail

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

35 / 84

Comparison: Laplace

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

36 / 84

Thin plate spline

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

37 / 84

Minimize the integrated second derivative squared
(approximate curvature)

min
f

∫
(

d2f

dx2

)2

dx

Null space: f = ax+ c

Membrane vs. Thin Plate

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

38 / 84

Left - membrane interpolation, right - thin plate.

Comparison: Cubic

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

39 / 84

Radial Basis Functions

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

40 / 84

d̂(p) =
N
∑

k

wkR(‖p− pk‖)

Data at arbitrary (irregularly spaced) locations can be
interpolated with a weighted sum of radial functions situated at
each data point.

Radial Basis Functions: History

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

41 / 84

! Broomhead & Lowe, 1988

! Werntges, ICNN 1993

! in Graphics: 1999-2001

Radial Basis Functions: Theory

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

42 / 84

! Micchelli - for a large class of functions, the RBF
matrix is non-singular

Radial Basis Functions (RBFs)

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

43 / 84

! any monotonic function can be used?!

! common choices:

" Gaussian R(r) = exp(−r2/σ2)

" Thin plate spline R(r) = r2 log r

" Hardy multiquadratic R(r) =
√

(r2 + c2), c > 0

Notice: the last two increase as a function of radius

            















Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

44 / 84

Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

45 / 84

Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

46 / 84

Radial Basis Functions

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

47 / 84

d̂(p) =
N
∑

k

wkR(‖p− pk‖)

e = ||(d−Rw)||2

e = (d−Rw)T (d−Rw)
de

dw
= 0 = −RT (d−Rw)

w = R−1d

Radial Basis Functions

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

48 / 84











R1,1 R1,2 R1,3 · · ·
R2,1 R2,2 · · ·
R3,1 · · ·
...





















w1

w2

w3
...











=











d1
d2
d3
...











RBF: multidimensional interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

49 / 84

wx = R−1dx

wy = R−1dy

wz = R−1dz

Matrix R is in common to all dimensions

Normalized Radial Basis Function

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

50 / 84

Ri() ⇐
R(‖x− xi‖)

∑

j R(‖x− xj‖)

! removes the “dips” that result from too-narrow σ

! i.e. somewhat less sensitive to choice of σ

! (for decaying kernel), far from the data, closest point
dominates

Normalized Radial Basis Function

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

51 / 84

insensitive to sigma, up to a point...

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

52 / 84

Comparison: Shepard’s p = 1

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

53 / 84

Comparison: Shepard’s p = 2

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

54 / 84

Comparison: Moving Least Squares, linear
polynomial

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

55 / 84

Comparison: Moving Least Squares,
quadratic polynomial

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

56 / 84

Comparison: GaussianProcess

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

57 / 84

Comparison: Laplace

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

58 / 84

Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

59 / 84

Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

60 / 84

Comparison: RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

61 / 84

Comparison: Normalized RBF-Gauss

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

62 / 84

Comparison: Cubic (i.e. RBF-Thin plate)

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

63 / 84

Comparison: Cubic + regularization

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

64 / 84

Approximation rather than interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

65 / 84

Find w to minimize (Rw − b)T (Rw − b). If the training
points are very close together, the corresponding columns of
R are nearly parallel. Difficult to control if points are chosen
by a user. Add a term to keep the weights small: wTw.

minimize (Rw − b)T (Rw − b) + λwTw

RT (Rw − b) + 2λw = 0

RTRw + 2λw = RTb

(RTR+ 2λI)w = RTb

w = (RTR+ 2λI)−1RTb

Comparison: Cubic + regularization

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

66 / 84

Regularization

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

67 / 84

Ill-conditioning and regularization. The regularization
parameter is 0, .01, and .1 respectively. (Vertical scale is

changing).

Relation between Laplace,Thin-Plate, RBF

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

68 / 84

2D thin-plate interpolation

d̂(p) =
∑

wkR(‖p− pk‖)

with R(r) = r2 log(r).

Solving Thin plate interpolation

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

69 / 84

! if few known points: use RBF

! if many points use multigrid instead

! but Carr/Beatson et. al. (SIGGRAPH 01) use FMM for
RBF with large numbers of points

Break

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

70 / 84

Relation between Laplace,Thin-Plate, RBF

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

71 / 84

2D thin-plate interpolation

d̂(p) =
∑

wkR(‖p− pk‖)

with R(r) = r2 log(r).

Where does r2 log(r) come from??

Relation between Laplace,Thin-Plate, RBF

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

72 / 84

the “roughness penalizing” formulation,

min
f

∫

‖∇f‖2dx

The RBF solution

f(p) =
∑

wkR(p− pk)

R is essentially (∇2)−1.

Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

73 / 84

Fit an unknown function f to the data yk, regularized by
minimizing a smoothness term.

min
f

=
∑

(fk − yk)
2 + λ

∫

||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

Variational derivative w.r.t. f leads to a differential equation

P TPf(x) =
1

λ

∑

(f(x)− yk)δ(x− xk)

Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

74 / 84

Solve linear differential equation by finding Green’s function
of the differential operator, convolving it with the RHS
(works only for a linear operator). Schematically,

Lf = rhs L is the operator P TP ,

rhs is the data fidelity

f = g % rhs f obtained by convolving g % rhs

L(g % rhs) = rhs

Lg = δ choosing rhs = δ

g is the “convolutional inverse” of L.

Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

75 / 84

Lg = δ

This is easier to solve in the Fourier domain, where
convolution becomes multplication. The transform of δ is a
constant, so in the Fourier domain g is the reciprocal of
L = P TP .

Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

76 / 84

Fit an unknown function f to the data yk, regularized by
minimizing a smoothness term.

min
f

=
∑

(fk − yk)
2 + λ||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

A similar discrete version.

min
f

= (f − y)TSTS(f − y) + λfTPTPf

Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

77 / 84

(continued) A similar discrete version.

min
f

= (f − y)TSTS(f − y) + λfTPTPf

! simplifying assumptions: uniform sampling, 1 dimension

! S is a diagonal “selection matrix” with 1s and 0s

! P is a diagonal-constant matrix that encodes the
discrete form of the roughness operator, e.g.





−2, 1, 0, 0, . . .
1,−2, 1, 0, . . .
0, 1,−2, 1, . . .





Where does the rbf kernel come from?

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

78 / 84

Note STS = S because diagonal
Take the derivative with respect to the vector f ,

2S(f − y) + λ2PTPf = 0

PTPf = −
1

λ
S(f − y)

Multiply by G, being the inverse of PTP:

f = GPTPf = −
1

λ
GS(f − y)

So the RBF kernel “comes from” G = (PTP)−1.

Where does kernel come from:
Discrete/Continuous

Euclidean invariant
Shepard
Interpolation
Comparison:
Shepard’s p = 1

Comparison:
Shepard’s p = 2

Comparison:
Shepard’s p = 5

Kernel smoothing

Foley and Nielsen
Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
MLS = Shepard’s
when m = 0

Moving Least
Squares
Moving Least
Squares
Moving Least
Squares
Natural Neighbor
Interpolation
Natural Neighbor
Interpolation

Notation
Gaussian Process
regression
Gaussian Process
regression

79 / 84

(Discrete version) RBF kernel is G = (PTP)−1.
Take SVD

P = UDVT ⇒ PTP = VD2VT

The inverse of VD2VT is VD−2VT .

! eigenvectors of a circulant matrix are sinusoids,

! and P is diagonal-constant (toeplitz), or nearly
circulant.

! So VD−2VT is approximately the same as taking the
Fourier transform and then the reciprocal (remembering
that D are the singular values of P not PTP)

Learning Doodle by Example

Application Examples

1

Problem Definition

• Given N similar input drawings (doodles)

• Construct more doodles that resemble the N inputs

Example results

2

Proposed Solution

• Construct a space of doodles defined by the inputs

• Use results from machine learning and statistics:

• Consider drawings as sample points in some space.

• Similar doodles should be located nearby in the space.

• We wish to fit (or learn) a continuous function over the space that “explains”
the examples as well.

• We call the result a “Latent Doodle Space”(LDS).

See the paper in EUROGRAPHICS06 (by Baxter and Anjyo) for details.

3

Two Main Challenges

To build a latent doodle space (LDS):

• Find correspondences between two line drawings.

• Hard problem. No perfect solution.

Do best possible, but still must have a good UI.

• Generate the space of similar drawings.

• Use Bayesian techniques and statistical methods to improve results.

4

How to construct the LDS?

To generate the space of similar drawings (LDS):

• Two main tasks :

• Finding latent coordinate system

• Interpolating within LDS

• Three options in the EG06 paper: PCA+RBF, PCA+GP, GPLVM

 This talk focuses on the first strategy: PCA+ RBF

RBF

PCA

5

Dimension reduction by PCA

• After establishing correspondences among line drawings:

• Construct the data matrix X (with zero-mean):

• Applying PCA: Eigen decomposition of the covariance matrix

•A line drawing (doodle) has the structure:

• line drawing - stroke - linear segmentslk sp av
p

(x, y)

a10 a11 a1s1
a20 a2s1

b10 b1s2
b20 b2s2

= X

line drawing
line drawing

stroke stroke

XT X

s1 s2

l2

l1

6

2-d LDS and RBF

• Make the LDS 2-dim by taking the eigenvectors with the first two largest

eigenvalues.

• Interpolate each of s, t (scalar) values of the drawing samples by thin plate

spline:

• space dimension n = 2 and smoothness m = 2 (explain later!)

•The spline function is: where

•The interpolant is of the form:

f (s, t) := wi

i

(s si , t ti) + as+ bt + c

r := (s, t) = s2 + t 2

7

Demo

8

Locally Controllable Stylized Shading

Application Examples

9

Background: Cartoon shading

• Based on thresholded N•L shading model

0.0 1.0

N•L intensity distribution

10

Motivation: Fake but expressive shading

Artists want neat shadingWith conventional shader

11

Our Goal

conventional desired

• Make toon shader artist-friendly
– Edit undesirable shaded area

– Add artistic light and shade to original 3D lighting

12

Video demonstration

13

• The main idea:

 Modify intensity according to painted strokes

Paint brush
operation

Intensity
modification

The shade painter (our approach)

14

Key-frame Animation

 Offset Data

Linear

interpolation

Keyframing

15

Intensity modification by painting

Fall off

 Modified intensity

Boundary constraints

Threshold

Fall-off constraints

No modification

Threshold

Painted
shade

Interpolation by RBF

16

•The discretized constraints for the RBF are
specified for the points and .

Boundary constraints

Threshold

Fall off constraints

No modification

RBF interpolation

17

• We employ the following interpolation function:

• We want to determine the weights {wk} and the four coefficients of P(x)

f (x) = wi (x c i)
i=1

l

+ P(x)

where x = (x1, x2, x3), and ; P(x) is a linear polynomial of

x1, x2, x3; ci means the constraint points (　 and　　) l is the number of all the

constraint points.

(x) := x x1
2
+ x2

2
+ x3

2

wi (c j c i)
i=1

l

+ P(c j) = h j , for1 j l.

For the given values hj (1 j l) , we have:

　 　Totally l + 4 unknown values.

The unknown values

18

 We further add the following condition:

 for any linear polynomial

 Taking Q = 1, x1, x2, and x3 , we know that the above

 condition means:

wi Q(c i)
i=1

l

= 0.

wi

i=1

l

= 0 wi

i=1

l

ci j = 0, (j =1, 2, 3)

The unknown values

19

• By putting P(x) = p0 + p1x1 + p2x2 + p3x3

we have the following linear equation:　

11 12 1l 1 c11 c12 c13
21

l1 ll 1 cl1 cl2 cl 3
1 1 1 0 0 0 0

c11 cl1
c12 cl 2
c13 cl 3 0 0

w1

wl

p0
p1
p2
p3

=

h1

hl
0

0

i j := (ci c j)

The linear equation for RBF

20

21

22

Functional Analysis, RBF and
RKHS connections

RBF and RKHS

1

Recall the RBFs in our examples

Background

Differential equation for TPS

RBF as TPS

Regularization problem

2

In our examples:

• The RBF interpolants can be expressed in such a form that:

Latent doodle space uses TPS:

- followed by linear polynomial

The shade painter employs and p is linear:

 PSD applications use Gaussian RBF with no polynomial term ().p x() 0

G x() = x
2
log x

G x() = x = x1
2
+ x2

2
+ x3

2

p x() = p x1,x2() c0 + c1x1 + c2x2

p x() = p x1,x2,x3() p0 + p1x1 + p2x2 + p3x3 .

3

In the shade painter case

• The shade painter uses and the interpolant:

- Point constraints: (k = 1, ..., N)　

- Vanishing moments:

where .

• We have (N+4) linear equations for (N+4) unknown values.

 Get the values of and the four coefficients of p by solving the linear

equation system!

G x() = x = x1
2
+ x2

2
+ x3

2

fk = iG xk xi()
i=1

N

+ p xk()

i

i=1

N

= 0. i

i=1

N

xi j = 0, j =1,2,3.

i{ }

xi = xi1, xi 2, xi 3()
T

4

So why?

• Where do RBFs come from?

• Why vanishing moment condition?

• Where is Gaussian RBF?

 Functional analysis might be helpful to answer them.

5

Thin Plate Spline Revisited

Background

Differential equation for TPS

RBF as TPS

Regularization problem

6

Background

• Let . Find a function defined on that minimizes the

following energy:

• Where can we find the solution ?

- As a necessary condition, it should belong to:

where

in R2 (x)

L2 () = : R {± } | (x)
2
dx1dx2 <{ } .

7

Differential equation for TPS

• Cauchy’s idea: Let . Then consider , where

 is a smooth function with compact support:

 is then a quadratic function of t :

and it must satisfy .

f = argF

t R, g

G t() = F f + t g()

g x() = 0, if x .

G t()

 G 0() = 0

G t() = t 2 gx1x1

2
+ 2gx1x2

2
+ gx2x2

2()d x

+ t 2 fx1x1
gx1x1

+ 4 fx1x2
gx1x2

+ 2 fx2x2
gx2x2()d x + (const).

8

Differential equation for TPS

• Cauchy’s idea (cont.):

 0 = .

Since g is arbitrary, we have:

 G 0() = 0

fx1x1gx1x1 + 2 fx1x2gx1x2 + fx2x2gx2x2()d x

= fx1x1x1gx1 + 2 fx1x2x1gx2 + fx2x2x2gx2()d x

= fx1x1x1x1 + 2 fx1x2x1x2 + fx2x2x2x2()gd x

= 2 f() gd x

integration by parts (twice!)

2 f
2

x1
2 +

2

x2
2

2

f = 0.

9

RBF as TPS

• We’ll use Green’s function associated with the differential operator :

- is the Dirac delta function.

2

x() = x
2
log x2 x() = x()

x()

x()

10

The Regularization Problem with TPS

• We treat a simple case where .

• For given data , find a solution f :

-

- is also given, called the regularization parameter.

• Where can we find the solution? ?:

= R2

B2
2()

xi, fi() R2 R i =1, 2, ..., N()

min
f

f i f xi()()
2

i=1

N

+ F f()

11

Regularization Problem in Function Space

Problem statement

12

Generalizing the TPS regularization problem

• Let . Generalize the TPS regularization problem into higher

dimensions and, instead of F, with:

- With this definition, .

• For given data , find a solution f :

• We need to decide where we find the solution - “Function Space”.

= Rn

xi, fi() Rn R i =1, 2, ..., N()

F = J2
2

13

Function Space

• A function space is a totality of functions that share common properties.

• Examples:

14

Regularization Problem in

• For given data , find a solution f :

• The function space where we want to find the solution is:

- Simple generalization of TPS, where we set m = n = 2 and . J2
2 f() = F f()

xi, fi() Rn R i =1, 2, ..., N()

15

Role of the parameters

• n: dimension of variables

- .

• m: degree of smoothness of the solution

- includes up to m-th order derivatives.

• : regularization parameter

- Specifies the trade-off between minimization of the first term

and smoothness of the solution enforced by .

f i f xi()()
2

i=1

N

Jm
n

Jm
n

x = x1, x2, ... , xn()
T

Rn

16

Solution

• If 2m - n > 0, the solution is then given by:

-

- .

• We need to get the weights and the coefficients of the polynomial.

- The vanishing moment condition is then satisfied:

i{ }

kQ xk()
k=1

N

= 0, for all Q

17

In our examples:

Latent doodle space uses TPS, where m = n = 2 and p is a linear polynomial.

The shade painter deals with the case where m = 2, n = 3, and p is linear.

• The RBF interpolants are given by:

-

-

• The regularization problem in does not explain the PSD cases.

18

Functional Analysis and RKHS

What is functional analysis?

RBF and RKHS

19

What is functional analysis?

• Mathematical theory of functions, differential equations.

• Deals with “generalization” of function, derivatives, ...

• Usually it’s a different thing from what we want to know...

• Function space is a concept of infinite dimensional geometry.

• Ex: .

• See the detailed discussions in our course notes.

Rn l2 L2

20

Basic properties of

• .

- This formula can be obtained through integration by parts.

 Recall the technique of “integration by parts” in the TPS case.

• .

 We therefore have: .

• is called a Reproducing Kernel Hilbert space.

Jm
n

Hm
n

21

RKHS and RBF

• The RBF interpolants are given by:

- The first term belongs to RKHS .

• Roughly speaking, an RKHS is a function space spanned by the finite sum

of { }. Particularly in solving the regularization problem, we can take

 for 1 i N (The representer theorem). .

• is a normed space with , which also means that

Hm
n

G x ck()
c i = xi

Hm
n

22

The kernel

• In our situations (examples), if we set , then K has the

following properties:

- K is a symmetric, positive semi-definite function.

 This gives an alternative definition of RKHS.

 K is called the kernel function of RKHS.

• G is characterized by

- This yields that

- .

K x , y() :=G x y()

mG x() = x().

23

The vanishing moment condition

• This condition follows from the fact that .

- We note that, for any f and g , .

- Substitute and . We thus have:

Bm
n f , g

Bm
n = 1()

m m f , g
L2

f = iG x xi()
i=1

N

Q x()

0 = iG x xi()
i=1

N

, Q x()
Bm
n

= i
mG x xi(), Q x()

L2

i=1

N

= i x xi(), Q x()
L2

i=1

N

= iQ xi()
i=1

N

.

24

The Gaussian RBF

• Instead of , consider with .

• The Green’s function of the differential operator is:

• is the solution of the regularization problem (We don’t need

a polynomial term this time).

f = iG x xi()
i=1

N

Jm
n am

m 0

Jm
n am =

2m

m!2m
> 0()

1()
m

m 0

m

25

So why?

• Where do RBFs come from?

• Why vanishing moment condition?

• Where is Gaussian RBF?

 Functional analysis should be helpful to answer them.

26

	 Euclidean invariant
	 Shepard Interpolation
	 Comparison: Shepard's p=1
	 Comparison: Shepard's p=2
	 Comparison: Shepard's p=5
	 Kernel smoothing
	 Foley and Nielsen
	 Moving Least Squares
	 Moving Least Squares
	 Moving Least Squares
	 MLS = Shepard's when m=0
	 Moving Least Squares
	 Moving Least Squares
	 Moving Least Squares
	 Natural Neighbor Interpolation
	 Natural Neighbor Interpolation
	 Notation
	 Gaussian Process regression
	 Gaussian Process regression
	 Comparison: GaussianProcess
	 Laplace/Poisson Interpolation
	 function, operator
	 ``Null space of the operator''
	 Laplace/Poisson: solution approaches
	 Laplace/Poisson: Discrete
	 Laplace/Poisson Interpolation
	 Laplace/Poisson Interpolation
	 Discrete Laplacian
	 Jacobi iteration
	 Jacobi iteration
	 But now let's interpolate
	 Multigrid inpainting
	 Applications: Spot Removal
	 Recovered fur: detail
	 Comparison: Laplace
	 Thin plate spline
	 Membrane vs. Thin Plate
	 Comparison: Cubic
	 Radial Basis Functions
	 Radial Basis Functions: History
	 Radial Basis Functions: Theory
	 Radial Basis Functions (RBFs)
	 Comparison: RBF-Gauss
	 Comparison: RBF-Gauss
	 Comparison: RBF-Gauss
	 Radial Basis Functions
	 Radial Basis Functions
	 RBF: multidimensional interpolation
	 Normalized Radial Basis Function
	 Normalized Radial Basis Function
	 insensitive to sigma, up to a point...
	 Comparison: Shepard's p=1
	 Comparison: Moving Least Squares, linear polynomial
	 Comparison: Moving Least Squares, quadratic polynomial
	 Comparison: Shepard's p=2
	 Comparison: GaussianProcess
	 Comparison: Laplace
	 Comparison: RBF-Gauss
	 Comparison: RBF-Gauss
	 Comparison: RBF-Gauss
	 Comparison: Normalized RBF-Gauss
	 Comparison: Cubic (i.e. RBF-Thin plate)
	 Comparison: Cubic + regularization
	Approximation rather than interpolation
	 Comparison: Cubic + regularization
	 Regularization
	 Relation between Laplace,Thin-Plate, RBF
	 Solving Thin plate interpolation
	 Break
	 Relation between Laplace,Thin-Plate, RBF
	 Relation between Laplace,Thin-Plate, RBF
	 Where does the rbf kernel come from?
	 Where does the rbf kernel come from?
	 Where does the rbf kernel come from?
	 Where does the rbf kernel come from?
	 Where does the rbf kernel come from?
	 Where does the rbf kernel come from?
	 Where does kernel come from: Discrete/Continuous
	 Guessing the kernel
	 Guessing the kernel: second example
	 Relation between RBF and Gaussian Process
	 Relation between RBF and Gaussian Process
	 Relation between RBF and Gaussian Process

